1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <paths.h> 40 #include <stdint.h> 41 #include <string.h> 42 #include <setjmp.h> 43 #include <disk.h> 44 45 #include <efi.h> 46 #include <efilib.h> 47 #include <efichar.h> 48 49 #include <uuid.h> 50 51 #include <bootstrap.h> 52 #include <smbios.h> 53 54 #include "efizfs.h" 55 56 #include "loader_efi.h" 57 58 struct arch_switch archsw; /* MI/MD interface boundary */ 59 60 EFI_GUID acpi = ACPI_TABLE_GUID; 61 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 62 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 63 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 64 EFI_GUID mps = MPS_TABLE_GUID; 65 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 66 EFI_GUID smbios = SMBIOS_TABLE_GUID; 67 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 68 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 69 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 70 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 71 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 72 EFI_GUID esrt = ESRT_TABLE_GUID; 73 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 74 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 75 EFI_GUID fdtdtb = FDT_TABLE_GUID; 76 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 77 78 /* 79 * Number of seconds to wait for a keystroke before exiting with failure 80 * in the event no currdev is found. -2 means always break, -1 means 81 * never break, 0 means poll once and then reboot, > 0 means wait for 82 * that many seconds. "fail_timeout" can be set in the environment as 83 * well. 84 */ 85 static int fail_timeout = 5; 86 87 /* 88 * Current boot variable 89 */ 90 UINT16 boot_current; 91 92 /* 93 * Image that we booted from. 94 */ 95 EFI_LOADED_IMAGE *boot_img; 96 97 static bool 98 has_keyboard(void) 99 { 100 EFI_STATUS status; 101 EFI_DEVICE_PATH *path; 102 EFI_HANDLE *hin, *hin_end, *walker; 103 UINTN sz; 104 bool retval = false; 105 106 /* 107 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 108 * do the typical dance to get the right sized buffer. 109 */ 110 sz = 0; 111 hin = NULL; 112 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 113 if (status == EFI_BUFFER_TOO_SMALL) { 114 hin = (EFI_HANDLE *)malloc(sz); 115 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 116 hin); 117 if (EFI_ERROR(status)) 118 free(hin); 119 } 120 if (EFI_ERROR(status)) 121 return retval; 122 123 /* 124 * Look at each of the handles. If it supports the device path protocol, 125 * use it to get the device path for this handle. Then see if that 126 * device path matches either the USB device path for keyboards or the 127 * legacy device path for keyboards. 128 */ 129 hin_end = &hin[sz / sizeof(*hin)]; 130 for (walker = hin; walker < hin_end; walker++) { 131 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 132 if (EFI_ERROR(status)) 133 continue; 134 135 while (!IsDevicePathEnd(path)) { 136 /* 137 * Check for the ACPI keyboard node. All PNP3xx nodes 138 * are keyboards of different flavors. Note: It is 139 * unclear of there's always a keyboard node when 140 * there's a keyboard controller, or if there's only one 141 * when a keyboard is detected at boot. 142 */ 143 if (DevicePathType(path) == ACPI_DEVICE_PATH && 144 (DevicePathSubType(path) == ACPI_DP || 145 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 146 ACPI_HID_DEVICE_PATH *acpi; 147 148 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 149 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 150 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 151 retval = true; 152 goto out; 153 } 154 /* 155 * Check for USB keyboard node, if present. Unlike a 156 * PS/2 keyboard, these definitely only appear when 157 * connected to the system. 158 */ 159 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 160 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 161 USB_CLASS_DEVICE_PATH *usb; 162 163 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 164 if (usb->DeviceClass == 3 && /* HID */ 165 usb->DeviceSubClass == 1 && /* Boot devices */ 166 usb->DeviceProtocol == 1) { /* Boot keyboards */ 167 retval = true; 168 goto out; 169 } 170 } 171 path = NextDevicePathNode(path); 172 } 173 } 174 out: 175 free(hin); 176 return retval; 177 } 178 179 static void 180 set_currdev(const char *devname) 181 { 182 183 /* 184 * Don't execute hooks here; we may need to try setting these more than 185 * once here if we're probing for the ZFS pool we're supposed to boot. 186 * The currdev hook is intended to just validate user input anyways, 187 * while the loaddev hook makes it immutable once we've determined what 188 * the proper currdev is. 189 */ 190 env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, 191 env_nounset); 192 env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, 193 env_nounset); 194 } 195 196 static void 197 set_currdev_devdesc(struct devdesc *currdev) 198 { 199 const char *devname; 200 201 devname = efi_fmtdev(currdev); 202 printf("Setting currdev to %s\n", devname); 203 set_currdev(devname); 204 } 205 206 static void 207 set_currdev_devsw(struct devsw *dev, int unit) 208 { 209 struct devdesc currdev; 210 211 currdev.d_dev = dev; 212 currdev.d_unit = unit; 213 214 set_currdev_devdesc(&currdev); 215 } 216 217 static void 218 set_currdev_pdinfo(pdinfo_t *dp) 219 { 220 221 /* 222 * Disks are special: they have partitions. if the parent 223 * pointer is non-null, we're a partition not a full disk 224 * and we need to adjust currdev appropriately. 225 */ 226 if (dp->pd_devsw->dv_type == DEVT_DISK) { 227 struct disk_devdesc currdev; 228 229 currdev.dd.d_dev = dp->pd_devsw; 230 if (dp->pd_parent == NULL) { 231 currdev.dd.d_unit = dp->pd_unit; 232 currdev.d_slice = D_SLICENONE; 233 currdev.d_partition = D_PARTNONE; 234 } else { 235 currdev.dd.d_unit = dp->pd_parent->pd_unit; 236 currdev.d_slice = dp->pd_unit; 237 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 238 } 239 set_currdev_devdesc((struct devdesc *)&currdev); 240 } else { 241 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 242 } 243 } 244 245 static bool 246 sanity_check_currdev(void) 247 { 248 struct stat st; 249 250 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 251 #ifdef PATH_BOOTABLE_TOKEN 252 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ 253 #endif 254 stat(PATH_KERNEL, &st) == 0); 255 } 256 257 #ifdef EFI_ZFS_BOOT 258 static bool 259 probe_zfs_currdev(uint64_t guid) 260 { 261 char *devname; 262 struct zfs_devdesc currdev; 263 264 currdev.dd.d_dev = &zfs_dev; 265 currdev.dd.d_unit = 0; 266 currdev.pool_guid = guid; 267 currdev.root_guid = 0; 268 set_currdev_devdesc((struct devdesc *)&currdev); 269 devname = efi_fmtdev(&currdev); 270 init_zfs_bootenv(devname); 271 272 return (sanity_check_currdev()); 273 } 274 #endif 275 276 static bool 277 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 278 { 279 uint64_t guid; 280 281 #ifdef EFI_ZFS_BOOT 282 /* 283 * If there's a zpool on this device, try it as a ZFS 284 * filesystem, which has somewhat different setup than all 285 * other types of fs due to imperfect loader integration. 286 * This all stems from ZFS being both a device (zpool) and 287 * a filesystem, plus the boot env feature. 288 */ 289 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 290 return (probe_zfs_currdev(guid)); 291 #endif 292 /* 293 * All other filesystems just need the pdinfo 294 * initialized in the standard way. 295 */ 296 set_currdev_pdinfo(pp); 297 return (sanity_check_currdev()); 298 } 299 300 /* 301 * Sometimes we get filenames that are all upper case 302 * and/or have backslashes in them. Filter all this out 303 * if it looks like we need to do so. 304 */ 305 static void 306 fix_dosisms(char *p) 307 { 308 while (*p) { 309 if (isupper(*p)) 310 *p = tolower(*p); 311 else if (*p == '\\') 312 *p = '/'; 313 p++; 314 } 315 } 316 317 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 318 319 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 320 static int 321 match_boot_info(char *boot_info, size_t bisz) 322 { 323 uint32_t attr; 324 uint16_t fplen; 325 size_t len; 326 char *walker, *ep; 327 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 328 pdinfo_t *pp; 329 CHAR16 *descr; 330 char *kernel = NULL; 331 FILEPATH_DEVICE_PATH *fp; 332 struct stat st; 333 CHAR16 *text; 334 335 /* 336 * FreeBSD encodes it's boot loading path into the boot loader 337 * BootXXXX variable. We look for the last one in the path 338 * and use that to load the kernel. However, if we only fine 339 * one DEVICE_PATH, then there's nothing specific and we should 340 * fall back. 341 * 342 * In an ideal world, we'd look at the image handle we were 343 * passed, match up with the loader we are and then return the 344 * next one in the path. This would be most flexible and cover 345 * many chain booting scenarios where you need to use this 346 * boot loader to get to the next boot loader. However, that 347 * doesn't work. We rarely have the path to the image booted 348 * (just the device) so we can't count on that. So, we do the 349 * enxt best thing, we look through the device path(s) passed 350 * in the BootXXXX varaible. If there's only one, we return 351 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 352 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 353 * return BAD_CHOICE for the caller to sort out. 354 */ 355 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 356 return NOT_SPECIFIC; 357 walker = boot_info; 358 ep = walker + bisz; 359 memcpy(&attr, walker, sizeof(attr)); 360 walker += sizeof(attr); 361 memcpy(&fplen, walker, sizeof(fplen)); 362 walker += sizeof(fplen); 363 descr = (CHAR16 *)(intptr_t)walker; 364 len = ucs2len(descr); 365 walker += (len + 1) * sizeof(CHAR16); 366 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 367 edp = (EFI_DEVICE_PATH *)(walker + fplen); 368 if ((char *)edp > ep) 369 return NOT_SPECIFIC; 370 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 371 text = efi_devpath_name(dp); 372 if (text != NULL) { 373 printf(" BootInfo Path: %S\n", text); 374 efi_free_devpath_name(text); 375 } 376 last_dp = dp; 377 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 378 } 379 380 /* 381 * If there's only one item in the list, then nothing was 382 * specified. Or if the last path doesn't have a media 383 * path in it. Those show up as various VenHw() nodes 384 * which are basically opaque to us. Don't count those 385 * as something specifc. 386 */ 387 if (last_dp == first_dp) { 388 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 389 return NOT_SPECIFIC; 390 } 391 if (efi_devpath_to_media_path(last_dp) == NULL) { 392 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 393 return NOT_SPECIFIC; 394 } 395 396 /* 397 * OK. At this point we either have a good path or a bad one. 398 * Let's check. 399 */ 400 pp = efiblk_get_pdinfo_by_device_path(last_dp); 401 if (pp == NULL) { 402 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 403 return BAD_CHOICE; 404 } 405 set_currdev_pdinfo(pp); 406 if (!sanity_check_currdev()) { 407 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 408 return BAD_CHOICE; 409 } 410 411 /* 412 * OK. We've found a device that matches, next we need to check the last 413 * component of the path. If it's a file, then we set the default kernel 414 * to that. Otherwise, just use this as the default root. 415 * 416 * Reminder: we're running very early, before we've parsed the defaults 417 * file, so we may need to have a hack override. 418 */ 419 dp = efi_devpath_last_node(last_dp); 420 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 421 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 422 printf("Using Boot%04x for root partition\n", boot_current); 423 return (BOOT_INFO_OK); /* use currdir, default kernel */ 424 } 425 fp = (FILEPATH_DEVICE_PATH *)dp; 426 ucs2_to_utf8(fp->PathName, &kernel); 427 if (kernel == NULL) { 428 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 429 return (BAD_CHOICE); 430 } 431 if (*kernel == '\\' || isupper(*kernel)) 432 fix_dosisms(kernel); 433 if (stat(kernel, &st) != 0) { 434 free(kernel); 435 printf("Not using Boot%04x: can't find %s\n", boot_current, 436 kernel); 437 return (BAD_CHOICE); 438 } 439 setenv("kernel", kernel, 1); 440 free(kernel); 441 text = efi_devpath_name(last_dp); 442 if (text) { 443 printf("Using Boot%04x %S + %s\n", boot_current, text, 444 kernel); 445 efi_free_devpath_name(text); 446 } 447 448 return (BOOT_INFO_OK); 449 } 450 451 /* 452 * Look at the passed-in boot_info, if any. If we find it then we need 453 * to see if we can find ourselves in the boot chain. If we can, and 454 * there's another specified thing to boot next, assume that the file 455 * is loaded from / and use that for the root filesystem. If can't 456 * find the specified thing, we must fail the boot. If we're last on 457 * the list, then we fallback to looking for the first available / 458 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 459 * partition that has either /boot/defaults/loader.conf on it or 460 * /boot/kernel/kernel (the default kernel) that we can use. 461 * 462 * We always fail if we can't find the right thing. However, as 463 * a concession to buggy UEFI implementations, like u-boot, if 464 * we have determined that the host is violating the UEFI boot 465 * manager protocol, we'll signal the rest of the program that 466 * a drop to the OK boot loader prompt is possible. 467 */ 468 static int 469 find_currdev(bool do_bootmgr, bool is_last, 470 char *boot_info, size_t boot_info_sz) 471 { 472 pdinfo_t *dp, *pp; 473 EFI_DEVICE_PATH *devpath, *copy; 474 EFI_HANDLE h; 475 CHAR16 *text; 476 struct devsw *dev; 477 int unit; 478 uint64_t extra; 479 int rv; 480 char *rootdev; 481 482 /* 483 * First choice: if rootdev is already set, use that, even if 484 * it's wrong. 485 */ 486 rootdev = getenv("rootdev"); 487 if (rootdev != NULL) { 488 printf(" Setting currdev to configured rootdev %s\n", 489 rootdev); 490 set_currdev(rootdev); 491 return (0); 492 } 493 494 /* 495 * Second choice: If uefi_rootdev is set, translate that UEFI device 496 * path to the loader's internal name and use that. 497 */ 498 do { 499 rootdev = getenv("uefi_rootdev"); 500 if (rootdev == NULL) 501 break; 502 devpath = efi_name_to_devpath(rootdev); 503 if (devpath == NULL) 504 break; 505 dp = efiblk_get_pdinfo_by_device_path(devpath); 506 efi_devpath_free(devpath); 507 if (dp == NULL) 508 break; 509 printf(" Setting currdev to UEFI path %s\n", 510 rootdev); 511 set_currdev_pdinfo(dp); 512 return (0); 513 } while (0); 514 515 /* 516 * Third choice: If we can find out image boot_info, and there's 517 * a follow-on boot image in that boot_info, use that. In this 518 * case root will be the partition specified in that image and 519 * we'll load the kernel specified by the file path. Should there 520 * not be a filepath, we use the default. This filepath overrides 521 * loader.conf. 522 */ 523 if (do_bootmgr) { 524 rv = match_boot_info(boot_info, boot_info_sz); 525 switch (rv) { 526 case BOOT_INFO_OK: /* We found it */ 527 return (0); 528 case BAD_CHOICE: /* specified file not found -> error */ 529 /* XXX do we want to have an escape hatch for last in boot order? */ 530 return (ENOENT); 531 } /* Nothing specified, try normal match */ 532 } 533 534 #ifdef EFI_ZFS_BOOT 535 /* 536 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 537 * it found, if it's sane. ZFS is the only thing that looks for 538 * disks and pools to boot. This may change in the future, however, 539 * if we allow specifying which pool to boot from via UEFI variables 540 * rather than the bootenv stuff that FreeBSD uses today. 541 */ 542 if (pool_guid != 0) { 543 printf("Trying ZFS pool\n"); 544 if (probe_zfs_currdev(pool_guid)) 545 return (0); 546 } 547 #endif /* EFI_ZFS_BOOT */ 548 549 /* 550 * Try to find the block device by its handle based on the 551 * image we're booting. If we can't find a sane partition, 552 * search all the other partitions of the disk. We do not 553 * search other disks because it's a violation of the UEFI 554 * boot protocol to do so. We fail and let UEFI go on to 555 * the next candidate. 556 */ 557 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 558 if (dp != NULL) { 559 text = efi_devpath_name(dp->pd_devpath); 560 if (text != NULL) { 561 printf("Trying ESP: %S\n", text); 562 efi_free_devpath_name(text); 563 } 564 set_currdev_pdinfo(dp); 565 if (sanity_check_currdev()) 566 return (0); 567 if (dp->pd_parent != NULL) { 568 pdinfo_t *espdp = dp; 569 dp = dp->pd_parent; 570 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 571 /* Already tried the ESP */ 572 if (espdp == pp) 573 continue; 574 /* 575 * Roll up the ZFS special case 576 * for those partitions that have 577 * zpools on them. 578 */ 579 text = efi_devpath_name(pp->pd_devpath); 580 if (text != NULL) { 581 printf("Trying: %S\n", text); 582 efi_free_devpath_name(text); 583 } 584 if (try_as_currdev(dp, pp)) 585 return (0); 586 } 587 } 588 } 589 590 /* 591 * Try the device handle from our loaded image first. If that 592 * fails, use the device path from the loaded image and see if 593 * any of the nodes in that path match one of the enumerated 594 * handles. Currently, this handle list is only for netboot. 595 */ 596 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 597 set_currdev_devsw(dev, unit); 598 if (sanity_check_currdev()) 599 return (0); 600 } 601 602 copy = NULL; 603 devpath = efi_lookup_image_devpath(IH); 604 while (devpath != NULL) { 605 h = efi_devpath_handle(devpath); 606 if (h == NULL) 607 break; 608 609 free(copy); 610 copy = NULL; 611 612 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 613 set_currdev_devsw(dev, unit); 614 if (sanity_check_currdev()) 615 return (0); 616 } 617 618 devpath = efi_lookup_devpath(h); 619 if (devpath != NULL) { 620 copy = efi_devpath_trim(devpath); 621 devpath = copy; 622 } 623 } 624 free(copy); 625 626 return (ENOENT); 627 } 628 629 static bool 630 interactive_interrupt(const char *msg) 631 { 632 time_t now, then, last; 633 634 last = 0; 635 now = then = getsecs(); 636 printf("%s\n", msg); 637 if (fail_timeout == -2) /* Always break to OK */ 638 return (true); 639 if (fail_timeout == -1) /* Never break to OK */ 640 return (false); 641 do { 642 if (last != now) { 643 printf("press any key to interrupt reboot in %d seconds\r", 644 fail_timeout - (int)(now - then)); 645 last = now; 646 } 647 648 /* XXX no pause or timeout wait for char */ 649 if (ischar()) 650 return (true); 651 now = getsecs(); 652 } while (now - then < fail_timeout); 653 return (false); 654 } 655 656 static int 657 parse_args(int argc, CHAR16 *argv[]) 658 { 659 int i, j, howto; 660 bool vargood; 661 char var[128]; 662 663 /* 664 * Parse the args to set the console settings, etc 665 * boot1.efi passes these in, if it can read /boot.config or /boot/config 666 * or iPXE may be setup to pass these in. Or the optional argument in the 667 * boot environment was used to pass these arguments in (in which case 668 * neither /boot.config nor /boot/config are consulted). 669 * 670 * Loop through the args, and for each one that contains an '=' that is 671 * not the first character, add it to the environment. This allows 672 * loader and kernel env vars to be passed on the command line. Convert 673 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 674 * method is flawed for non-ASCII characters). 675 */ 676 howto = 0; 677 for (i = 1; i < argc; i++) { 678 cpy16to8(argv[i], var, sizeof(var)); 679 howto |= boot_parse_arg(var); 680 } 681 682 return (howto); 683 } 684 685 static void 686 setenv_int(const char *key, int val) 687 { 688 char buf[20]; 689 690 snprintf(buf, sizeof(buf), "%d", val); 691 setenv(key, buf, 1); 692 } 693 694 /* 695 * Parse ConOut (the list of consoles active) and see if we can find a 696 * serial port and/or a video port. It would be nice to also walk the 697 * ACPI name space to map the UID for the serial port to a port. The 698 * latter is especially hard. 699 */ 700 int 701 parse_uefi_con_out(void) 702 { 703 int how, rv; 704 int vid_seen = 0, com_seen = 0, seen = 0; 705 size_t sz; 706 char buf[4096], *ep; 707 EFI_DEVICE_PATH *node; 708 ACPI_HID_DEVICE_PATH *acpi; 709 UART_DEVICE_PATH *uart; 710 bool pci_pending; 711 712 how = 0; 713 sz = sizeof(buf); 714 rv = efi_global_getenv("ConOut", buf, &sz); 715 if (rv != EFI_SUCCESS) { 716 /* If we don't have any ConOut default to serial */ 717 how = RB_SERIAL; 718 goto out; 719 } 720 ep = buf + sz; 721 node = (EFI_DEVICE_PATH *)buf; 722 while ((char *)node < ep) { 723 pci_pending = false; 724 if (DevicePathType(node) == ACPI_DEVICE_PATH && 725 DevicePathSubType(node) == ACPI_DP) { 726 /* Check for Serial node */ 727 acpi = (void *)node; 728 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 729 setenv_int("efi_8250_uid", acpi->UID); 730 com_seen = ++seen; 731 } 732 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 733 DevicePathSubType(node) == MSG_UART_DP) { 734 735 uart = (void *)node; 736 setenv_int("efi_com_speed", uart->BaudRate); 737 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 738 DevicePathSubType(node) == ACPI_ADR_DP) { 739 /* Check for AcpiAdr() Node for video */ 740 vid_seen = ++seen; 741 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 742 DevicePathSubType(node) == HW_PCI_DP) { 743 /* 744 * Note, vmware fusion has a funky console device 745 * PciRoot(0x0)/Pci(0xf,0x0) 746 * which we can only detect at the end since we also 747 * have to cope with: 748 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 749 * so only match it if it's last. 750 */ 751 pci_pending = true; 752 } 753 node = NextDevicePathNode(node); 754 } 755 if (pci_pending && vid_seen == 0) 756 vid_seen = ++seen; 757 758 /* 759 * Truth table for RB_MULTIPLE | RB_SERIAL 760 * Value Result 761 * 0 Use only video console 762 * RB_SERIAL Use only serial console 763 * RB_MULTIPLE Use both video and serial console 764 * (but video is primary so gets rc messages) 765 * both Use both video and serial console 766 * (but serial is primary so gets rc messages) 767 * 768 * Try to honor this as best we can. If only one of serial / video 769 * found, then use that. Otherwise, use the first one we found. 770 * This also implies if we found nothing, default to video. 771 */ 772 how = 0; 773 if (vid_seen && com_seen) { 774 how |= RB_MULTIPLE; 775 if (com_seen < vid_seen) 776 how |= RB_SERIAL; 777 } else if (com_seen) 778 how |= RB_SERIAL; 779 out: 780 return (how); 781 } 782 783 void 784 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 785 { 786 pdinfo_t *dp; 787 struct stat st; 788 int fd = -1; 789 char *env = NULL; 790 791 dp = efiblk_get_pdinfo_by_handle(h); 792 if (dp == NULL) 793 return; 794 set_currdev_pdinfo(dp); 795 if (stat(env_fn, &st) != 0) 796 return; 797 fd = open(env_fn, O_RDONLY); 798 if (fd == -1) 799 return; 800 env = malloc(st.st_size + 1); 801 if (env == NULL) 802 goto out; 803 if (read(fd, env, st.st_size) != st.st_size) 804 goto out; 805 env[st.st_size] = '\0'; 806 boot_parse_cmdline(env); 807 out: 808 free(env); 809 close(fd); 810 } 811 812 static void 813 read_loader_env(const char *name, char *def_fn, bool once) 814 { 815 UINTN len; 816 char *fn, *freeme = NULL; 817 818 len = 0; 819 fn = def_fn; 820 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 821 freeme = fn = malloc(len + 1); 822 if (fn != NULL) { 823 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 824 free(fn); 825 fn = NULL; 826 printf( 827 "Can't fetch FreeBSD::%s we know is there\n", name); 828 } else { 829 /* 830 * if tagged as 'once' delete the env variable so we 831 * only use it once. 832 */ 833 if (once) 834 efi_freebsd_delenv(name); 835 /* 836 * We malloced 1 more than len above, then redid the call. 837 * so now we have room at the end of the string to NUL terminate 838 * it here, even if the typical idium would have '- 1' here to 839 * not overflow. len should be the same on return both times. 840 */ 841 fn[len] = '\0'; 842 } 843 } else { 844 printf( 845 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 846 len, name); 847 } 848 } 849 if (fn) { 850 printf(" Reading loader env vars from %s\n", fn); 851 parse_loader_efi_config(boot_img->DeviceHandle, fn); 852 } 853 } 854 855 856 857 EFI_STATUS 858 main(int argc, CHAR16 *argv[]) 859 { 860 EFI_GUID *guid; 861 int howto, i, uhowto; 862 UINTN k; 863 bool has_kbd, is_last; 864 char *s; 865 EFI_DEVICE_PATH *imgpath; 866 CHAR16 *text; 867 EFI_STATUS rv; 868 size_t sz, bosz = 0, bisz = 0; 869 UINT16 boot_order[100]; 870 char boot_info[4096]; 871 char buf[32]; 872 bool uefi_boot_mgr; 873 874 archsw.arch_autoload = efi_autoload; 875 archsw.arch_getdev = efi_getdev; 876 archsw.arch_copyin = efi_copyin; 877 archsw.arch_copyout = efi_copyout; 878 #ifdef __amd64__ 879 archsw.arch_hypervisor = x86_hypervisor; 880 #endif 881 archsw.arch_readin = efi_readin; 882 archsw.arch_zfs_probe = efi_zfs_probe; 883 884 /* Get our loaded image protocol interface structure. */ 885 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 886 887 /* 888 * Chicken-and-egg problem; we want to have console output early, but 889 * some console attributes may depend on reading from eg. the boot 890 * device, which we can't do yet. We can use printf() etc. once this is 891 * done. So, we set it to the efi console, then call console init. This 892 * gets us printf early, but also primes the pump for all future console 893 * changes to take effect, regardless of where they come from. 894 */ 895 setenv("console", "efi", 1); 896 cons_probe(); 897 898 /* Init the time source */ 899 efi_time_init(); 900 901 /* 902 * Initialise the block cache. Set the upper limit. 903 */ 904 bcache_init(32768, 512); 905 906 /* 907 * Scan the BLOCK IO MEDIA handles then 908 * march through the device switch probing for things. 909 */ 910 i = efipart_inithandles(); 911 if (i != 0 && i != ENOENT) { 912 printf("efipart_inithandles failed with ERRNO %d, expect " 913 "failures\n", i); 914 } 915 916 for (i = 0; devsw[i] != NULL; i++) 917 if (devsw[i]->dv_init != NULL) 918 (devsw[i]->dv_init)(); 919 920 /* 921 * Detect console settings two different ways: one via the command 922 * args (eg -h) or via the UEFI ConOut variable. 923 */ 924 has_kbd = has_keyboard(); 925 howto = parse_args(argc, argv); 926 if (!has_kbd && (howto & RB_PROBE)) 927 howto |= RB_SERIAL | RB_MULTIPLE; 928 howto &= ~RB_PROBE; 929 uhowto = parse_uefi_con_out(); 930 931 /* 932 * Read additional environment variables from the boot device's 933 * "LoaderEnv" file. Any boot loader environment variable may be set 934 * there, which are subtly different than loader.conf variables. Only 935 * the 'simple' ones may be set so things like foo_load="YES" won't work 936 * for two reasons. First, the parser is simplistic and doesn't grok 937 * quotes. Second, because the variables that cause an action to happen 938 * are parsed by the lua, 4th or whatever code that's not yet 939 * loaded. This is relative to the root directory when loader.efi is 940 * loaded off the UFS root drive (when chain booted), or from the ESP 941 * when directly loaded by the BIOS. 942 * 943 * We also read in NextLoaderEnv if it was specified. This allows next boot 944 * functionality to be implemented and to override anything in LoaderEnv. 945 */ 946 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 947 read_loader_env("NextLoaderEnv", NULL, true); 948 949 /* 950 * We now have two notions of console. howto should be viewed as 951 * overrides. If console is already set, don't set it again. 952 */ 953 #define VIDEO_ONLY 0 954 #define SERIAL_ONLY RB_SERIAL 955 #define VID_SER_BOTH RB_MULTIPLE 956 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 957 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 958 if (strcmp(getenv("console"), "efi") == 0) { 959 if ((howto & CON_MASK) == 0) { 960 /* No override, uhowto is controlling and efi cons is perfect */ 961 howto = howto | (uhowto & CON_MASK); 962 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 963 /* override matches what UEFI told us, efi console is perfect */ 964 } else if ((uhowto & (CON_MASK)) != 0) { 965 /* 966 * We detected a serial console on ConOut. All possible 967 * overrides include serial. We can't really override what efi 968 * gives us, so we use it knowing it's the best choice. 969 */ 970 /* Do nothing */ 971 } else { 972 /* 973 * We detected some kind of serial in the override, but ConOut 974 * has no serial, so we have to sort out which case it really is. 975 */ 976 switch (howto & CON_MASK) { 977 case SERIAL_ONLY: 978 setenv("console", "comconsole", 1); 979 break; 980 case VID_SER_BOTH: 981 setenv("console", "efi comconsole", 1); 982 break; 983 case SER_VID_BOTH: 984 setenv("console", "comconsole efi", 1); 985 break; 986 /* case VIDEO_ONLY can't happen -- it's the first if above */ 987 } 988 } 989 } 990 991 /* 992 * howto is set now how we want to export the flags to the kernel, so 993 * set the env based on it. 994 */ 995 boot_howto_to_env(howto); 996 997 if (efi_copy_init()) { 998 printf("failed to allocate staging area\n"); 999 return (EFI_BUFFER_TOO_SMALL); 1000 } 1001 1002 if ((s = getenv("fail_timeout")) != NULL) 1003 fail_timeout = strtol(s, NULL, 10); 1004 1005 printf("%s\n", bootprog_info); 1006 printf(" Command line arguments:"); 1007 for (i = 0; i < argc; i++) 1008 printf(" %S", argv[i]); 1009 printf("\n"); 1010 1011 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); 1012 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1013 ST->Hdr.Revision & 0xffff); 1014 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1015 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1016 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1017 1018 /* Determine the devpath of our image so we can prefer it. */ 1019 text = efi_devpath_name(boot_img->FilePath); 1020 if (text != NULL) { 1021 printf(" Load Path: %S\n", text); 1022 efi_setenv_freebsd_wcs("LoaderPath", text); 1023 efi_free_devpath_name(text); 1024 } 1025 1026 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1027 (void **)&imgpath); 1028 if (rv == EFI_SUCCESS) { 1029 text = efi_devpath_name(imgpath); 1030 if (text != NULL) { 1031 printf(" Load Device: %S\n", text); 1032 efi_setenv_freebsd_wcs("LoaderDev", text); 1033 efi_free_devpath_name(text); 1034 } 1035 } 1036 1037 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1038 printf(" Ignoring UEFI boot manager\n"); 1039 uefi_boot_mgr = false; 1040 } else { 1041 uefi_boot_mgr = true; 1042 boot_current = 0; 1043 sz = sizeof(boot_current); 1044 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1045 if (rv == EFI_SUCCESS) 1046 printf(" BootCurrent: %04x\n", boot_current); 1047 else { 1048 boot_current = 0xffff; 1049 uefi_boot_mgr = false; 1050 } 1051 1052 sz = sizeof(boot_order); 1053 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1054 if (rv == EFI_SUCCESS) { 1055 printf(" BootOrder:"); 1056 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1057 printf(" %04x%s", boot_order[i], 1058 boot_order[i] == boot_current ? "[*]" : ""); 1059 printf("\n"); 1060 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1061 bosz = sz; 1062 } else if (uefi_boot_mgr) { 1063 /* 1064 * u-boot doesn't set BootOrder, but otherwise participates in the 1065 * boot manager protocol. So we fake it here and don't consider it 1066 * a failure. 1067 */ 1068 bosz = sizeof(boot_order[0]); 1069 boot_order[0] = boot_current; 1070 is_last = true; 1071 } 1072 } 1073 1074 /* 1075 * Next, find the boot info structure the UEFI boot manager is 1076 * supposed to setup. We need this so we can walk through it to 1077 * find where we are in the booting process and what to try to 1078 * boot next. 1079 */ 1080 if (uefi_boot_mgr) { 1081 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1082 sz = sizeof(boot_info); 1083 rv = efi_global_getenv(buf, &boot_info, &sz); 1084 if (rv == EFI_SUCCESS) 1085 bisz = sz; 1086 else 1087 uefi_boot_mgr = false; 1088 } 1089 1090 /* 1091 * Disable the watchdog timer. By default the boot manager sets 1092 * the timer to 5 minutes before invoking a boot option. If we 1093 * want to return to the boot manager, we have to disable the 1094 * watchdog timer and since we're an interactive program, we don't 1095 * want to wait until the user types "quit". The timer may have 1096 * fired by then. We don't care if this fails. It does not prevent 1097 * normal functioning in any way... 1098 */ 1099 BS->SetWatchdogTimer(0, 0, 0, NULL); 1100 1101 /* 1102 * Initialize the trusted/forbidden certificates from UEFI. 1103 * They will be later used to verify the manifest(s), 1104 * which should contain hashes of verified files. 1105 * This needs to be initialized before any configuration files 1106 * are loaded. 1107 */ 1108 #ifdef EFI_SECUREBOOT 1109 ve_efi_init(); 1110 #endif 1111 1112 /* 1113 * Try and find a good currdev based on the image that was booted. 1114 * It might be desirable here to have a short pause to allow falling 1115 * through to the boot loader instead of returning instantly to follow 1116 * the boot protocol and also allow an escape hatch for users wishing 1117 * to try something different. 1118 */ 1119 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1120 if (uefi_boot_mgr && 1121 !interactive_interrupt("Failed to find bootable partition")) 1122 return (EFI_NOT_FOUND); 1123 1124 efi_init_environment(); 1125 1126 #if !defined(__arm__) 1127 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1128 guid = &ST->ConfigurationTable[k].VendorGuid; 1129 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1130 char buf[40]; 1131 1132 snprintf(buf, sizeof(buf), "%p", 1133 ST->ConfigurationTable[k].VendorTable); 1134 setenv("hint.smbios.0.mem", buf, 1); 1135 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1136 break; 1137 } 1138 } 1139 #endif 1140 1141 interact(); /* doesn't return */ 1142 1143 return (EFI_SUCCESS); /* keep compiler happy */ 1144 } 1145 1146 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1147 1148 static int 1149 command_poweroff(int argc __unused, char *argv[] __unused) 1150 { 1151 int i; 1152 1153 for (i = 0; devsw[i] != NULL; ++i) 1154 if (devsw[i]->dv_cleanup != NULL) 1155 (devsw[i]->dv_cleanup)(); 1156 1157 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1158 1159 /* NOTREACHED */ 1160 return (CMD_ERROR); 1161 } 1162 1163 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1164 1165 static int 1166 command_reboot(int argc, char *argv[]) 1167 { 1168 int i; 1169 1170 for (i = 0; devsw[i] != NULL; ++i) 1171 if (devsw[i]->dv_cleanup != NULL) 1172 (devsw[i]->dv_cleanup)(); 1173 1174 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1175 1176 /* NOTREACHED */ 1177 return (CMD_ERROR); 1178 } 1179 1180 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1181 1182 static int 1183 command_quit(int argc, char *argv[]) 1184 { 1185 exit(0); 1186 return (CMD_OK); 1187 } 1188 1189 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1190 1191 static int 1192 command_memmap(int argc __unused, char *argv[] __unused) 1193 { 1194 UINTN sz; 1195 EFI_MEMORY_DESCRIPTOR *map, *p; 1196 UINTN key, dsz; 1197 UINT32 dver; 1198 EFI_STATUS status; 1199 int i, ndesc; 1200 char line[80]; 1201 1202 sz = 0; 1203 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1204 if (status != EFI_BUFFER_TOO_SMALL) { 1205 printf("Can't determine memory map size\n"); 1206 return (CMD_ERROR); 1207 } 1208 map = malloc(sz); 1209 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1210 if (EFI_ERROR(status)) { 1211 printf("Can't read memory map\n"); 1212 return (CMD_ERROR); 1213 } 1214 1215 ndesc = sz / dsz; 1216 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1217 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1218 pager_open(); 1219 if (pager_output(line)) { 1220 pager_close(); 1221 return (CMD_OK); 1222 } 1223 1224 for (i = 0, p = map; i < ndesc; 1225 i++, p = NextMemoryDescriptor(p, dsz)) { 1226 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1227 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1228 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1229 if (pager_output(line)) 1230 break; 1231 1232 if (p->Attribute & EFI_MEMORY_UC) 1233 printf("UC "); 1234 if (p->Attribute & EFI_MEMORY_WC) 1235 printf("WC "); 1236 if (p->Attribute & EFI_MEMORY_WT) 1237 printf("WT "); 1238 if (p->Attribute & EFI_MEMORY_WB) 1239 printf("WB "); 1240 if (p->Attribute & EFI_MEMORY_UCE) 1241 printf("UCE "); 1242 if (p->Attribute & EFI_MEMORY_WP) 1243 printf("WP "); 1244 if (p->Attribute & EFI_MEMORY_RP) 1245 printf("RP "); 1246 if (p->Attribute & EFI_MEMORY_XP) 1247 printf("XP "); 1248 if (p->Attribute & EFI_MEMORY_NV) 1249 printf("NV "); 1250 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1251 printf("MR "); 1252 if (p->Attribute & EFI_MEMORY_RO) 1253 printf("RO "); 1254 if (pager_output("\n")) 1255 break; 1256 } 1257 1258 pager_close(); 1259 return (CMD_OK); 1260 } 1261 1262 COMMAND_SET(configuration, "configuration", "print configuration tables", 1263 command_configuration); 1264 1265 static int 1266 command_configuration(int argc, char *argv[]) 1267 { 1268 UINTN i; 1269 char *name; 1270 1271 printf("NumberOfTableEntries=%lu\n", 1272 (unsigned long)ST->NumberOfTableEntries); 1273 1274 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1275 EFI_GUID *guid; 1276 1277 printf(" "); 1278 guid = &ST->ConfigurationTable[i].VendorGuid; 1279 1280 if (efi_guid_to_name(guid, &name) == true) { 1281 printf(name); 1282 free(name); 1283 } else { 1284 printf("Error while translating UUID to name"); 1285 } 1286 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1287 } 1288 1289 return (CMD_OK); 1290 } 1291 1292 1293 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1294 1295 static int 1296 command_mode(int argc, char *argv[]) 1297 { 1298 UINTN cols, rows; 1299 unsigned int mode; 1300 int i; 1301 char *cp; 1302 EFI_STATUS status; 1303 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1304 1305 conout = ST->ConOut; 1306 1307 if (argc > 1) { 1308 mode = strtol(argv[1], &cp, 0); 1309 if (cp[0] != '\0') { 1310 printf("Invalid mode\n"); 1311 return (CMD_ERROR); 1312 } 1313 status = conout->QueryMode(conout, mode, &cols, &rows); 1314 if (EFI_ERROR(status)) { 1315 printf("invalid mode %d\n", mode); 1316 return (CMD_ERROR); 1317 } 1318 status = conout->SetMode(conout, mode); 1319 if (EFI_ERROR(status)) { 1320 printf("couldn't set mode %d\n", mode); 1321 return (CMD_ERROR); 1322 } 1323 (void) efi_cons_update_mode(); 1324 return (CMD_OK); 1325 } 1326 1327 printf("Current mode: %d\n", conout->Mode->Mode); 1328 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1329 status = conout->QueryMode(conout, i, &cols, &rows); 1330 if (EFI_ERROR(status)) 1331 continue; 1332 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1333 (unsigned)rows); 1334 } 1335 1336 if (i != 0) 1337 printf("Select a mode with the command \"mode <number>\"\n"); 1338 1339 return (CMD_OK); 1340 } 1341 1342 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1343 1344 static int 1345 command_lsefi(int argc __unused, char *argv[] __unused) 1346 { 1347 char *name; 1348 EFI_HANDLE *buffer = NULL; 1349 EFI_HANDLE handle; 1350 UINTN bufsz = 0, i, j; 1351 EFI_STATUS status; 1352 int ret = 0; 1353 1354 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1355 if (status != EFI_BUFFER_TOO_SMALL) { 1356 snprintf(command_errbuf, sizeof (command_errbuf), 1357 "unexpected error: %lld", (long long)status); 1358 return (CMD_ERROR); 1359 } 1360 if ((buffer = malloc(bufsz)) == NULL) { 1361 sprintf(command_errbuf, "out of memory"); 1362 return (CMD_ERROR); 1363 } 1364 1365 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1366 if (EFI_ERROR(status)) { 1367 free(buffer); 1368 snprintf(command_errbuf, sizeof (command_errbuf), 1369 "LocateHandle() error: %lld", (long long)status); 1370 return (CMD_ERROR); 1371 } 1372 1373 pager_open(); 1374 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1375 UINTN nproto = 0; 1376 EFI_GUID **protocols = NULL; 1377 1378 handle = buffer[i]; 1379 printf("Handle %p", handle); 1380 if (pager_output("\n")) 1381 break; 1382 /* device path */ 1383 1384 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1385 if (EFI_ERROR(status)) { 1386 snprintf(command_errbuf, sizeof (command_errbuf), 1387 "ProtocolsPerHandle() error: %lld", 1388 (long long)status); 1389 continue; 1390 } 1391 1392 for (j = 0; j < nproto; j++) { 1393 if (efi_guid_to_name(protocols[j], &name) == true) { 1394 printf(" %s", name); 1395 free(name); 1396 } else { 1397 printf("Error while translating UUID to name"); 1398 } 1399 if ((ret = pager_output("\n")) != 0) 1400 break; 1401 } 1402 BS->FreePool(protocols); 1403 if (ret != 0) 1404 break; 1405 } 1406 pager_close(); 1407 free(buffer); 1408 return (CMD_OK); 1409 } 1410 1411 #ifdef LOADER_FDT_SUPPORT 1412 extern int command_fdt_internal(int argc, char *argv[]); 1413 1414 /* 1415 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1416 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1417 * (which uses static pointer), we're defining wrapper function, which 1418 * calls the proper fdt handling routine. 1419 */ 1420 static int 1421 command_fdt(int argc, char *argv[]) 1422 { 1423 1424 return (command_fdt_internal(argc, argv)); 1425 } 1426 1427 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1428 #endif 1429 1430 /* 1431 * Chain load another efi loader. 1432 */ 1433 static int 1434 command_chain(int argc, char *argv[]) 1435 { 1436 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1437 EFI_HANDLE loaderhandle; 1438 EFI_LOADED_IMAGE *loaded_image; 1439 EFI_STATUS status; 1440 struct stat st; 1441 struct devdesc *dev; 1442 char *name, *path; 1443 void *buf; 1444 int fd; 1445 1446 if (argc < 2) { 1447 command_errmsg = "wrong number of arguments"; 1448 return (CMD_ERROR); 1449 } 1450 1451 name = argv[1]; 1452 1453 if ((fd = open(name, O_RDONLY)) < 0) { 1454 command_errmsg = "no such file"; 1455 return (CMD_ERROR); 1456 } 1457 1458 #ifdef LOADER_VERIEXEC 1459 if (verify_file(fd, name, 0, VE_MUST) < 0) { 1460 sprintf(command_errbuf, "can't verify: %s", name); 1461 close(fd); 1462 return (CMD_ERROR); 1463 } 1464 #endif 1465 1466 if (fstat(fd, &st) < -1) { 1467 command_errmsg = "stat failed"; 1468 close(fd); 1469 return (CMD_ERROR); 1470 } 1471 1472 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1473 if (status != EFI_SUCCESS) { 1474 command_errmsg = "failed to allocate buffer"; 1475 close(fd); 1476 return (CMD_ERROR); 1477 } 1478 if (read(fd, buf, st.st_size) != st.st_size) { 1479 command_errmsg = "error while reading the file"; 1480 (void)BS->FreePool(buf); 1481 close(fd); 1482 return (CMD_ERROR); 1483 } 1484 close(fd); 1485 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1486 (void)BS->FreePool(buf); 1487 if (status != EFI_SUCCESS) { 1488 command_errmsg = "LoadImage failed"; 1489 return (CMD_ERROR); 1490 } 1491 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1492 (void **)&loaded_image); 1493 1494 if (argc > 2) { 1495 int i, len = 0; 1496 CHAR16 *argp; 1497 1498 for (i = 2; i < argc; i++) 1499 len += strlen(argv[i]) + 1; 1500 1501 len *= sizeof (*argp); 1502 loaded_image->LoadOptions = argp = malloc (len); 1503 loaded_image->LoadOptionsSize = len; 1504 for (i = 2; i < argc; i++) { 1505 char *ptr = argv[i]; 1506 while (*ptr) 1507 *(argp++) = *(ptr++); 1508 *(argp++) = ' '; 1509 } 1510 *(--argv) = 0; 1511 } 1512 1513 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1514 #ifdef EFI_ZFS_BOOT 1515 struct zfs_devdesc *z_dev; 1516 #endif 1517 struct disk_devdesc *d_dev; 1518 pdinfo_t *hd, *pd; 1519 1520 switch (dev->d_dev->dv_type) { 1521 #ifdef EFI_ZFS_BOOT 1522 case DEVT_ZFS: 1523 z_dev = (struct zfs_devdesc *)dev; 1524 loaded_image->DeviceHandle = 1525 efizfs_get_handle_by_guid(z_dev->pool_guid); 1526 break; 1527 #endif 1528 case DEVT_NET: 1529 loaded_image->DeviceHandle = 1530 efi_find_handle(dev->d_dev, dev->d_unit); 1531 break; 1532 default: 1533 hd = efiblk_get_pdinfo(dev); 1534 if (STAILQ_EMPTY(&hd->pd_part)) { 1535 loaded_image->DeviceHandle = hd->pd_handle; 1536 break; 1537 } 1538 d_dev = (struct disk_devdesc *)dev; 1539 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1540 /* 1541 * d_partition should be 255 1542 */ 1543 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1544 loaded_image->DeviceHandle = 1545 pd->pd_handle; 1546 break; 1547 } 1548 } 1549 break; 1550 } 1551 } 1552 1553 dev_cleanup(); 1554 status = BS->StartImage(loaderhandle, NULL, NULL); 1555 if (status != EFI_SUCCESS) { 1556 command_errmsg = "StartImage failed"; 1557 free(loaded_image->LoadOptions); 1558 loaded_image->LoadOptions = NULL; 1559 status = BS->UnloadImage(loaded_image); 1560 return (CMD_ERROR); 1561 } 1562 1563 return (CMD_ERROR); /* not reached */ 1564 } 1565 1566 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1567