xref: /freebsd/stand/efi/loader/main.c (revision 2ef9ff7dd34a78a7890ba4d6de64da34d9c10942)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <stdint.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <disk.h>
43 
44 #include <efi.h>
45 #include <efilib.h>
46 #include <efichar.h>
47 
48 #include <uuid.h>
49 
50 #include <bootstrap.h>
51 #include <smbios.h>
52 
53 #include "efizfs.h"
54 
55 #include "loader_efi.h"
56 
57 struct arch_switch archsw;	/* MI/MD interface boundary */
58 
59 EFI_GUID acpi = ACPI_TABLE_GUID;
60 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
61 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
62 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
63 EFI_GUID mps = MPS_TABLE_GUID;
64 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
65 EFI_GUID smbios = SMBIOS_TABLE_GUID;
66 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
67 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
68 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
69 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
70 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
71 EFI_GUID esrt = ESRT_TABLE_GUID;
72 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
73 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
74 EFI_GUID fdtdtb = FDT_TABLE_GUID;
75 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
76 
77 /*
78  * Number of seconds to wait for a keystroke before exiting with failure
79  * in the event no currdev is found. -2 means always break, -1 means
80  * never break, 0 means poll once and then reboot, > 0 means wait for
81  * that many seconds. "fail_timeout" can be set in the environment as
82  * well.
83  */
84 static int fail_timeout = 5;
85 
86 /*
87  * Current boot variable
88  */
89 UINT16 boot_current;
90 
91 /*
92  * Image that we booted from.
93  */
94 EFI_LOADED_IMAGE *boot_img;
95 
96 static bool
97 has_keyboard(void)
98 {
99 	EFI_STATUS status;
100 	EFI_DEVICE_PATH *path;
101 	EFI_HANDLE *hin, *hin_end, *walker;
102 	UINTN sz;
103 	bool retval = false;
104 
105 	/*
106 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
107 	 * do the typical dance to get the right sized buffer.
108 	 */
109 	sz = 0;
110 	hin = NULL;
111 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
112 	if (status == EFI_BUFFER_TOO_SMALL) {
113 		hin = (EFI_HANDLE *)malloc(sz);
114 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
115 		    hin);
116 		if (EFI_ERROR(status))
117 			free(hin);
118 	}
119 	if (EFI_ERROR(status))
120 		return retval;
121 
122 	/*
123 	 * Look at each of the handles. If it supports the device path protocol,
124 	 * use it to get the device path for this handle. Then see if that
125 	 * device path matches either the USB device path for keyboards or the
126 	 * legacy device path for keyboards.
127 	 */
128 	hin_end = &hin[sz / sizeof(*hin)];
129 	for (walker = hin; walker < hin_end; walker++) {
130 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
131 		if (EFI_ERROR(status))
132 			continue;
133 
134 		while (!IsDevicePathEnd(path)) {
135 			/*
136 			 * Check for the ACPI keyboard node. All PNP3xx nodes
137 			 * are keyboards of different flavors. Note: It is
138 			 * unclear of there's always a keyboard node when
139 			 * there's a keyboard controller, or if there's only one
140 			 * when a keyboard is detected at boot.
141 			 */
142 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
143 			    (DevicePathSubType(path) == ACPI_DP ||
144 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
145 				ACPI_HID_DEVICE_PATH  *acpi;
146 
147 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
148 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
149 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
150 					retval = true;
151 					goto out;
152 				}
153 			/*
154 			 * Check for USB keyboard node, if present. Unlike a
155 			 * PS/2 keyboard, these definitely only appear when
156 			 * connected to the system.
157 			 */
158 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
159 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
160 				USB_CLASS_DEVICE_PATH *usb;
161 
162 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
163 				if (usb->DeviceClass == 3 && /* HID */
164 				    usb->DeviceSubClass == 1 && /* Boot devices */
165 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
166 					retval = true;
167 					goto out;
168 				}
169 			}
170 			path = NextDevicePathNode(path);
171 		}
172 	}
173 out:
174 	free(hin);
175 	return retval;
176 }
177 
178 static void
179 set_currdev(const char *devname)
180 {
181 
182 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
183 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
184 }
185 
186 static void
187 set_currdev_devdesc(struct devdesc *currdev)
188 {
189 	const char *devname;
190 
191 	devname = efi_fmtdev(currdev);
192 	printf("Setting currdev to %s\n", devname);
193 	set_currdev(devname);
194 }
195 
196 static void
197 set_currdev_devsw(struct devsw *dev, int unit)
198 {
199 	struct devdesc currdev;
200 
201 	currdev.d_dev = dev;
202 	currdev.d_unit = unit;
203 
204 	set_currdev_devdesc(&currdev);
205 }
206 
207 static void
208 set_currdev_pdinfo(pdinfo_t *dp)
209 {
210 
211 	/*
212 	 * Disks are special: they have partitions. if the parent
213 	 * pointer is non-null, we're a partition not a full disk
214 	 * and we need to adjust currdev appropriately.
215 	 */
216 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
217 		struct disk_devdesc currdev;
218 
219 		currdev.dd.d_dev = dp->pd_devsw;
220 		if (dp->pd_parent == NULL) {
221 			currdev.dd.d_unit = dp->pd_unit;
222 			currdev.d_slice = D_SLICENONE;
223 			currdev.d_partition = D_PARTNONE;
224 		} else {
225 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
226 			currdev.d_slice = dp->pd_unit;
227 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
228 		}
229 		set_currdev_devdesc((struct devdesc *)&currdev);
230 	} else {
231 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
232 	}
233 }
234 
235 static bool
236 sanity_check_currdev(void)
237 {
238 	struct stat st;
239 
240 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
241 	    stat("/boot/kernel/kernel", &st) == 0);
242 }
243 
244 #ifdef EFI_ZFS_BOOT
245 static bool
246 probe_zfs_currdev(uint64_t guid)
247 {
248 	char *devname;
249 	struct zfs_devdesc currdev;
250 
251 	currdev.dd.d_dev = &zfs_dev;
252 	currdev.dd.d_unit = 0;
253 	currdev.pool_guid = guid;
254 	currdev.root_guid = 0;
255 	set_currdev_devdesc((struct devdesc *)&currdev);
256 	devname = efi_fmtdev(&currdev);
257 	init_zfs_bootenv(devname);
258 
259 	return (sanity_check_currdev());
260 }
261 #endif
262 
263 static bool
264 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
265 {
266 	uint64_t guid;
267 
268 #ifdef EFI_ZFS_BOOT
269 	/*
270 	 * If there's a zpool on this device, try it as a ZFS
271 	 * filesystem, which has somewhat different setup than all
272 	 * other types of fs due to imperfect loader integration.
273 	 * This all stems from ZFS being both a device (zpool) and
274 	 * a filesystem, plus the boot env feature.
275 	 */
276 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
277 		return (probe_zfs_currdev(guid));
278 #endif
279 	/*
280 	 * All other filesystems just need the pdinfo
281 	 * initialized in the standard way.
282 	 */
283 	set_currdev_pdinfo(pp);
284 	return (sanity_check_currdev());
285 }
286 
287 /*
288  * Sometimes we get filenames that are all upper case
289  * and/or have backslashes in them. Filter all this out
290  * if it looks like we need to do so.
291  */
292 static void
293 fix_dosisms(char *p)
294 {
295 	while (*p) {
296 		if (isupper(*p))
297 			*p = tolower(*p);
298 		else if (*p == '\\')
299 			*p = '/';
300 		p++;
301 	}
302 }
303 
304 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
305 
306 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
307 static int
308 match_boot_info(char *boot_info, size_t bisz)
309 {
310 	uint32_t attr;
311 	uint16_t fplen;
312 	size_t len;
313 	char *walker, *ep;
314 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
315 	pdinfo_t *pp;
316 	CHAR16 *descr;
317 	char *kernel = NULL;
318 	FILEPATH_DEVICE_PATH  *fp;
319 	struct stat st;
320 	CHAR16 *text;
321 
322 	/*
323 	 * FreeBSD encodes it's boot loading path into the boot loader
324 	 * BootXXXX variable. We look for the last one in the path
325 	 * and use that to load the kernel. However, if we only fine
326 	 * one DEVICE_PATH, then there's nothing specific and we should
327 	 * fall back.
328 	 *
329 	 * In an ideal world, we'd look at the image handle we were
330 	 * passed, match up with the loader we are and then return the
331 	 * next one in the path. This would be most flexible and cover
332 	 * many chain booting scenarios where you need to use this
333 	 * boot loader to get to the next boot loader. However, that
334 	 * doesn't work. We rarely have the path to the image booted
335 	 * (just the device) so we can't count on that. So, we do the
336 	 * enxt best thing, we look through the device path(s) passed
337 	 * in the BootXXXX varaible. If there's only one, we return
338 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
339 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
340 	 * return BAD_CHOICE for the caller to sort out.
341 	 */
342 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
343 		return NOT_SPECIFIC;
344 	walker = boot_info;
345 	ep = walker + bisz;
346 	memcpy(&attr, walker, sizeof(attr));
347 	walker += sizeof(attr);
348 	memcpy(&fplen, walker, sizeof(fplen));
349 	walker += sizeof(fplen);
350 	descr = (CHAR16 *)(intptr_t)walker;
351 	len = ucs2len(descr);
352 	walker += (len + 1) * sizeof(CHAR16);
353 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
354 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
355 	if ((char *)edp > ep)
356 		return NOT_SPECIFIC;
357 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
358 		text = efi_devpath_name(dp);
359 		if (text != NULL) {
360 			printf("   BootInfo Path: %S\n", text);
361 			efi_free_devpath_name(text);
362 		}
363 		last_dp = dp;
364 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
365 	}
366 
367 	/*
368 	 * If there's only one item in the list, then nothing was
369 	 * specified. Or if the last path doesn't have a media
370 	 * path in it. Those show up as various VenHw() nodes
371 	 * which are basically opaque to us. Don't count those
372 	 * as something specifc.
373 	 */
374 	if (last_dp == first_dp) {
375 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
376 		return NOT_SPECIFIC;
377 	}
378 	if (efi_devpath_to_media_path(last_dp) == NULL) {
379 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
380 		return NOT_SPECIFIC;
381 	}
382 
383 	/*
384 	 * OK. At this point we either have a good path or a bad one.
385 	 * Let's check.
386 	 */
387 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
388 	if (pp == NULL) {
389 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
390 		return BAD_CHOICE;
391 	}
392 	set_currdev_pdinfo(pp);
393 	if (!sanity_check_currdev()) {
394 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
395 		return BAD_CHOICE;
396 	}
397 
398 	/*
399 	 * OK. We've found a device that matches, next we need to check the last
400 	 * component of the path. If it's a file, then we set the default kernel
401 	 * to that. Otherwise, just use this as the default root.
402 	 *
403 	 * Reminder: we're running very early, before we've parsed the defaults
404 	 * file, so we may need to have a hack override.
405 	 */
406 	dp = efi_devpath_last_node(last_dp);
407 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
408 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
409 		printf("Using Boot%04x for root partition\n", boot_current);
410 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
411 	}
412 	fp = (FILEPATH_DEVICE_PATH *)dp;
413 	ucs2_to_utf8(fp->PathName, &kernel);
414 	if (kernel == NULL) {
415 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
416 		return (BAD_CHOICE);
417 	}
418 	if (*kernel == '\\' || isupper(*kernel))
419 		fix_dosisms(kernel);
420 	if (stat(kernel, &st) != 0) {
421 		free(kernel);
422 		printf("Not using Boot%04x: can't find %s\n", boot_current,
423 		    kernel);
424 		return (BAD_CHOICE);
425 	}
426 	setenv("kernel", kernel, 1);
427 	free(kernel);
428 	text = efi_devpath_name(last_dp);
429 	if (text) {
430 		printf("Using Boot%04x %S + %s\n", boot_current, text,
431 		    kernel);
432 		efi_free_devpath_name(text);
433 	}
434 
435 	return (BOOT_INFO_OK);
436 }
437 
438 /*
439  * Look at the passed-in boot_info, if any. If we find it then we need
440  * to see if we can find ourselves in the boot chain. If we can, and
441  * there's another specified thing to boot next, assume that the file
442  * is loaded from / and use that for the root filesystem. If can't
443  * find the specified thing, we must fail the boot. If we're last on
444  * the list, then we fallback to looking for the first available /
445  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
446  * partition that has either /boot/defaults/loader.conf on it or
447  * /boot/kernel/kernel (the default kernel) that we can use.
448  *
449  * We always fail if we can't find the right thing. However, as
450  * a concession to buggy UEFI implementations, like u-boot, if
451  * we have determined that the host is violating the UEFI boot
452  * manager protocol, we'll signal the rest of the program that
453  * a drop to the OK boot loader prompt is possible.
454  */
455 static int
456 find_currdev(bool do_bootmgr, bool is_last,
457     char *boot_info, size_t boot_info_sz)
458 {
459 	pdinfo_t *dp, *pp;
460 	EFI_DEVICE_PATH *devpath, *copy;
461 	EFI_HANDLE h;
462 	CHAR16 *text;
463 	struct devsw *dev;
464 	int unit;
465 	uint64_t extra;
466 	int rv;
467 	char *rootdev;
468 
469 	/*
470 	 * First choice: if rootdev is already set, use that, even if
471 	 * it's wrong.
472 	 */
473 	rootdev = getenv("rootdev");
474 	if (rootdev != NULL) {
475 		printf("    Setting currdev to configured rootdev %s\n",
476 		    rootdev);
477 		set_currdev(rootdev);
478 		return (0);
479 	}
480 
481 	/*
482 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
483 	 * path to the loader's internal name and use that.
484 	 */
485 	do {
486 		rootdev = getenv("uefi_rootdev");
487 		if (rootdev == NULL)
488 			break;
489 		devpath = efi_name_to_devpath(rootdev);
490 		if (devpath == NULL)
491 			break;
492 		dp = efiblk_get_pdinfo_by_device_path(devpath);
493 		efi_devpath_free(devpath);
494 		if (dp == NULL)
495 			break;
496 		printf("    Setting currdev to UEFI path %s\n",
497 		    rootdev);
498 		set_currdev_pdinfo(dp);
499 		return (0);
500 	} while (0);
501 
502 	/*
503 	 * Third choice: If we can find out image boot_info, and there's
504 	 * a follow-on boot image in that boot_info, use that. In this
505 	 * case root will be the partition specified in that image and
506 	 * we'll load the kernel specified by the file path. Should there
507 	 * not be a filepath, we use the default. This filepath overrides
508 	 * loader.conf.
509 	 */
510 	if (do_bootmgr) {
511 		rv = match_boot_info(boot_info, boot_info_sz);
512 		switch (rv) {
513 		case BOOT_INFO_OK:	/* We found it */
514 			return (0);
515 		case BAD_CHOICE:	/* specified file not found -> error */
516 			/* XXX do we want to have an escape hatch for last in boot order? */
517 			return (ENOENT);
518 		} /* Nothing specified, try normal match */
519 	}
520 
521 #ifdef EFI_ZFS_BOOT
522 	/*
523 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
524 	 * it found, if it's sane. ZFS is the only thing that looks for
525 	 * disks and pools to boot. This may change in the future, however,
526 	 * if we allow specifying which pool to boot from via UEFI variables
527 	 * rather than the bootenv stuff that FreeBSD uses today.
528 	 */
529 	if (pool_guid != 0) {
530 		printf("Trying ZFS pool\n");
531 		if (probe_zfs_currdev(pool_guid))
532 			return (0);
533 	}
534 #endif /* EFI_ZFS_BOOT */
535 
536 	/*
537 	 * Try to find the block device by its handle based on the
538 	 * image we're booting. If we can't find a sane partition,
539 	 * search all the other partitions of the disk. We do not
540 	 * search other disks because it's a violation of the UEFI
541 	 * boot protocol to do so. We fail and let UEFI go on to
542 	 * the next candidate.
543 	 */
544 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
545 	if (dp != NULL) {
546 		text = efi_devpath_name(dp->pd_devpath);
547 		if (text != NULL) {
548 			printf("Trying ESP: %S\n", text);
549 			efi_free_devpath_name(text);
550 		}
551 		set_currdev_pdinfo(dp);
552 		if (sanity_check_currdev())
553 			return (0);
554 		if (dp->pd_parent != NULL) {
555 			pdinfo_t *espdp = dp;
556 			dp = dp->pd_parent;
557 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
558 				/* Already tried the ESP */
559 				if (espdp == pp)
560 					continue;
561 				/*
562 				 * Roll up the ZFS special case
563 				 * for those partitions that have
564 				 * zpools on them.
565 				 */
566 				text = efi_devpath_name(pp->pd_devpath);
567 				if (text != NULL) {
568 					printf("Trying: %S\n", text);
569 					efi_free_devpath_name(text);
570 				}
571 				if (try_as_currdev(dp, pp))
572 					return (0);
573 			}
574 		}
575 	}
576 
577 	/*
578 	 * Try the device handle from our loaded image first.  If that
579 	 * fails, use the device path from the loaded image and see if
580 	 * any of the nodes in that path match one of the enumerated
581 	 * handles. Currently, this handle list is only for netboot.
582 	 */
583 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
584 		set_currdev_devsw(dev, unit);
585 		if (sanity_check_currdev())
586 			return (0);
587 	}
588 
589 	copy = NULL;
590 	devpath = efi_lookup_image_devpath(IH);
591 	while (devpath != NULL) {
592 		h = efi_devpath_handle(devpath);
593 		if (h == NULL)
594 			break;
595 
596 		free(copy);
597 		copy = NULL;
598 
599 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
600 			set_currdev_devsw(dev, unit);
601 			if (sanity_check_currdev())
602 				return (0);
603 		}
604 
605 		devpath = efi_lookup_devpath(h);
606 		if (devpath != NULL) {
607 			copy = efi_devpath_trim(devpath);
608 			devpath = copy;
609 		}
610 	}
611 	free(copy);
612 
613 	return (ENOENT);
614 }
615 
616 static bool
617 interactive_interrupt(const char *msg)
618 {
619 	time_t now, then, last;
620 
621 	last = 0;
622 	now = then = getsecs();
623 	printf("%s\n", msg);
624 	if (fail_timeout == -2)		/* Always break to OK */
625 		return (true);
626 	if (fail_timeout == -1)		/* Never break to OK */
627 		return (false);
628 	do {
629 		if (last != now) {
630 			printf("press any key to interrupt reboot in %d seconds\r",
631 			    fail_timeout - (int)(now - then));
632 			last = now;
633 		}
634 
635 		/* XXX no pause or timeout wait for char */
636 		if (ischar())
637 			return (true);
638 		now = getsecs();
639 	} while (now - then < fail_timeout);
640 	return (false);
641 }
642 
643 static int
644 parse_args(int argc, CHAR16 *argv[])
645 {
646 	int i, j, howto;
647 	bool vargood;
648 	char var[128];
649 
650 	/*
651 	 * Parse the args to set the console settings, etc
652 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
653 	 * or iPXE may be setup to pass these in. Or the optional argument in the
654 	 * boot environment was used to pass these arguments in (in which case
655 	 * neither /boot.config nor /boot/config are consulted).
656 	 *
657 	 * Loop through the args, and for each one that contains an '=' that is
658 	 * not the first character, add it to the environment.  This allows
659 	 * loader and kernel env vars to be passed on the command line.  Convert
660 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
661 	 * method is flawed for non-ASCII characters).
662 	 */
663 	howto = 0;
664 	for (i = 1; i < argc; i++) {
665 		cpy16to8(argv[i], var, sizeof(var));
666 		howto |= boot_parse_arg(var);
667 	}
668 
669 	return (howto);
670 }
671 
672 static void
673 setenv_int(const char *key, int val)
674 {
675 	char buf[20];
676 
677 	snprintf(buf, sizeof(buf), "%d", val);
678 	setenv(key, buf, 1);
679 }
680 
681 /*
682  * Parse ConOut (the list of consoles active) and see if we can find a
683  * serial port and/or a video port. It would be nice to also walk the
684  * ACPI name space to map the UID for the serial port to a port. The
685  * latter is especially hard.
686  */
687 static int
688 parse_uefi_con_out(void)
689 {
690 	int how, rv;
691 	int vid_seen = 0, com_seen = 0, seen = 0;
692 	size_t sz;
693 	char buf[4096], *ep;
694 	EFI_DEVICE_PATH *node;
695 	ACPI_HID_DEVICE_PATH  *acpi;
696 	UART_DEVICE_PATH  *uart;
697 	bool pci_pending;
698 
699 	how = 0;
700 	sz = sizeof(buf);
701 	rv = efi_global_getenv("ConOut", buf, &sz);
702 	if (rv != EFI_SUCCESS)
703 		goto out;
704 	ep = buf + sz;
705 	node = (EFI_DEVICE_PATH *)buf;
706 	while ((char *)node < ep) {
707 		pci_pending = false;
708 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
709 		    DevicePathSubType(node) == ACPI_DP) {
710 			/* Check for Serial node */
711 			acpi = (void *)node;
712 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
713 				setenv_int("efi_8250_uid", acpi->UID);
714 				com_seen = ++seen;
715 			}
716 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
717 		    DevicePathSubType(node) == MSG_UART_DP) {
718 
719 			uart = (void *)node;
720 			setenv_int("efi_com_speed", uart->BaudRate);
721 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
722 		    DevicePathSubType(node) == ACPI_ADR_DP) {
723 			/* Check for AcpiAdr() Node for video */
724 			vid_seen = ++seen;
725 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
726 		    DevicePathSubType(node) == HW_PCI_DP) {
727 			/*
728 			 * Note, vmware fusion has a funky console device
729 			 *	PciRoot(0x0)/Pci(0xf,0x0)
730 			 * which we can only detect at the end since we also
731 			 * have to cope with:
732 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
733 			 * so only match it if it's last.
734 			 */
735 			pci_pending = true;
736 		}
737 		node = NextDevicePathNode(node); /* Skip the end node */
738 	}
739 	if (pci_pending && vid_seen == 0)
740 		vid_seen = ++seen;
741 
742 	/*
743 	 * Truth table for RB_MULTIPLE | RB_SERIAL
744 	 * Value		Result
745 	 * 0			Use only video console
746 	 * RB_SERIAL		Use only serial console
747 	 * RB_MULTIPLE		Use both video and serial console
748 	 *			(but video is primary so gets rc messages)
749 	 * both			Use both video and serial console
750 	 *			(but serial is primary so gets rc messages)
751 	 *
752 	 * Try to honor this as best we can. If only one of serial / video
753 	 * found, then use that. Otherwise, use the first one we found.
754 	 * This also implies if we found nothing, default to video.
755 	 */
756 	how = 0;
757 	if (vid_seen && com_seen) {
758 		how |= RB_MULTIPLE;
759 		if (com_seen < vid_seen)
760 			how |= RB_SERIAL;
761 	} else if (com_seen)
762 		how |= RB_SERIAL;
763 out:
764 	return (how);
765 }
766 
767 void
768 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
769 {
770 	pdinfo_t *dp;
771 	struct stat st;
772 	int fd = -1;
773 	char *env = NULL;
774 
775 	dp = efiblk_get_pdinfo_by_handle(h);
776 	if (dp == NULL)
777 		return;
778 	set_currdev_pdinfo(dp);
779 	if (stat(env_fn, &st) != 0)
780 		return;
781 	fd = open(env_fn, O_RDONLY);
782 	if (fd == -1)
783 		return;
784 	env = malloc(st.st_size + 1);
785 	if (env == NULL)
786 		goto out;
787 	if (read(fd, env, st.st_size) != st.st_size)
788 		goto out;
789 	env[st.st_size] = '\0';
790 	boot_parse_cmdline(env);
791 out:
792 	free(env);
793 	close(fd);
794 }
795 
796 static void
797 read_loader_env(const char *name, char *def_fn, bool once)
798 {
799 	UINTN len;
800 	char *fn, *freeme = NULL;
801 
802 	len = 0;
803 	fn = def_fn;
804 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
805 		freeme = fn = malloc(len + 1);
806 		if (fn != NULL) {
807 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
808 				free(fn);
809 				fn = NULL;
810 				printf(
811 			    "Can't fetch FreeBSD::%s we know is there\n", name);
812 			} else {
813 				/*
814 				 * if tagged as 'once' delete the env variable so we
815 				 * only use it once.
816 				 */
817 				if (once)
818 					efi_freebsd_delenv(name);
819 				/*
820 				 * We malloced 1 more than len above, then redid the call.
821 				 * so now we have room at the end of the string to NUL terminate
822 				 * it here, even if the typical idium would have '- 1' here to
823 				 * not overflow. len should be the same on return both times.
824 				 */
825 				fn[len] = '\0';
826 			}
827 		} else {
828 			printf(
829 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
830 			    len, name);
831 		}
832 	}
833 	if (fn) {
834 		printf("    Reading loader env vars from %s\n", fn);
835 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
836 	}
837 }
838 
839 
840 
841 EFI_STATUS
842 main(int argc, CHAR16 *argv[])
843 {
844 	EFI_GUID *guid;
845 	int howto, i, uhowto;
846 	UINTN k;
847 	bool has_kbd, is_last;
848 	char *s;
849 	EFI_DEVICE_PATH *imgpath;
850 	CHAR16 *text;
851 	EFI_STATUS rv;
852 	size_t sz, bosz = 0, bisz = 0;
853 	UINT16 boot_order[100];
854 	char boot_info[4096];
855 	char buf[32];
856 	bool uefi_boot_mgr;
857 
858 	archsw.arch_autoload = efi_autoload;
859 	archsw.arch_getdev = efi_getdev;
860 	archsw.arch_copyin = efi_copyin;
861 	archsw.arch_copyout = efi_copyout;
862 	archsw.arch_readin = efi_readin;
863 	archsw.arch_zfs_probe = efi_zfs_probe;
864 
865         /* Get our loaded image protocol interface structure. */
866 	BS->HandleProtocol(IH, &imgid, (VOID**)&boot_img);
867 
868 	/*
869 	 * Chicken-and-egg problem; we want to have console output early, but
870 	 * some console attributes may depend on reading from eg. the boot
871 	 * device, which we can't do yet.  We can use printf() etc. once this is
872 	 * done. So, we set it to the efi console, then call console init. This
873 	 * gets us printf early, but also primes the pump for all future console
874 	 * changes to take effect, regardless of where they come from.
875 	 */
876 	setenv("console", "efi", 1);
877 	cons_probe();
878 
879 	/* Init the time source */
880 	efi_time_init();
881 
882 	/*
883 	 * Initialise the block cache. Set the upper limit.
884 	 */
885 	bcache_init(32768, 512);
886 
887 	/*
888 	 * Scan the BLOCK IO MEDIA handles then
889 	 * march through the device switch probing for things.
890 	 */
891 	i = efipart_inithandles();
892 	if (i != 0 && i != ENOENT) {
893 		printf("efipart_inithandles failed with ERRNO %d, expect "
894 		    "failures\n", i);
895 	}
896 
897 	for (i = 0; devsw[i] != NULL; i++)
898 		if (devsw[i]->dv_init != NULL)
899 			(devsw[i]->dv_init)();
900 
901 	/*
902 	 * Detect console settings two different ways: one via the command
903 	 * args (eg -h) or via the UEFI ConOut variable.
904 	 */
905 	has_kbd = has_keyboard();
906 	howto = parse_args(argc, argv);
907 	if (!has_kbd && (howto & RB_PROBE))
908 		howto |= RB_SERIAL | RB_MULTIPLE;
909 	howto &= ~RB_PROBE;
910 	uhowto = parse_uefi_con_out();
911 
912 	/*
913 	 * Read additional environment variables from the boot device's
914 	 * "LoaderEnv" file. Any boot loader environment variable may be set
915 	 * there, which are subtly different than loader.conf variables. Only
916 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
917 	 * for two reasons.  First, the parser is simplistic and doesn't grok
918 	 * quotes.  Second, because the variables that cause an action to happen
919 	 * are parsed by the lua, 4th or whatever code that's not yet
920 	 * loaded. This is relative to the root directory when loader.efi is
921 	 * loaded off the UFS root drive (when chain booted), or from the ESP
922 	 * when directly loaded by the BIOS.
923 	 *
924 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
925 	 * functionality to be implemented and to override anything in LoaderEnv.
926 	 */
927 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
928 	read_loader_env("NextLoaderEnv", NULL, true);
929 
930 	/*
931 	 * We now have two notions of console. howto should be viewed as
932 	 * overrides. If console is already set, don't set it again.
933 	 */
934 #define	VIDEO_ONLY	0
935 #define	SERIAL_ONLY	RB_SERIAL
936 #define	VID_SER_BOTH	RB_MULTIPLE
937 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
938 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
939 	if (strcmp(getenv("console"), "efi") == 0) {
940 		if ((howto & CON_MASK) == 0) {
941 			/* No override, uhowto is controlling and efi cons is perfect */
942 			howto = howto | (uhowto & CON_MASK);
943 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
944 			/* override matches what UEFI told us, efi console is perfect */
945 		} else if ((uhowto & (CON_MASK)) != 0) {
946 			/*
947 			 * We detected a serial console on ConOut. All possible
948 			 * overrides include serial. We can't really override what efi
949 			 * gives us, so we use it knowing it's the best choice.
950 			 */
951 			/* Do nothing */
952 		} else {
953 			/*
954 			 * We detected some kind of serial in the override, but ConOut
955 			 * has no serial, so we have to sort out which case it really is.
956 			 */
957 			switch (howto & CON_MASK) {
958 			case SERIAL_ONLY:
959 				setenv("console", "comconsole", 1);
960 				break;
961 			case VID_SER_BOTH:
962 				setenv("console", "efi comconsole", 1);
963 				break;
964 			case SER_VID_BOTH:
965 				setenv("console", "comconsole efi", 1);
966 				break;
967 				/* case VIDEO_ONLY can't happen -- it's the first if above */
968 			}
969 		}
970 	}
971 
972 	/*
973 	 * howto is set now how we want to export the flags to the kernel, so
974 	 * set the env based on it.
975 	 */
976 	boot_howto_to_env(howto);
977 
978 	if (efi_copy_init()) {
979 		printf("failed to allocate staging area\n");
980 		return (EFI_BUFFER_TOO_SMALL);
981 	}
982 
983 	if ((s = getenv("fail_timeout")) != NULL)
984 		fail_timeout = strtol(s, NULL, 10);
985 
986 	printf("%s\n", bootprog_info);
987 	printf("   Command line arguments:");
988 	for (i = 0; i < argc; i++)
989 		printf(" %S", argv[i]);
990 	printf("\n");
991 
992 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
993 	    ST->Hdr.Revision & 0xffff);
994 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
995 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
996 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
997 
998 	/* Determine the devpath of our image so we can prefer it. */
999 	text = efi_devpath_name(boot_img->FilePath);
1000 	if (text != NULL) {
1001 		printf("   Load Path: %S\n", text);
1002 		efi_setenv_freebsd_wcs("LoaderPath", text);
1003 		efi_free_devpath_name(text);
1004 	}
1005 
1006 	rv = BS->HandleProtocol(boot_img->DeviceHandle, &devid, (void **)&imgpath);
1007 	if (rv == EFI_SUCCESS) {
1008 		text = efi_devpath_name(imgpath);
1009 		if (text != NULL) {
1010 			printf("   Load Device: %S\n", text);
1011 			efi_setenv_freebsd_wcs("LoaderDev", text);
1012 			efi_free_devpath_name(text);
1013 		}
1014 	}
1015 
1016 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1017 		printf("    Ignoring UEFI boot manager\n");
1018 		uefi_boot_mgr = false;
1019 	} else {
1020 		uefi_boot_mgr = true;
1021 		boot_current = 0;
1022 		sz = sizeof(boot_current);
1023 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1024 		if (rv == EFI_SUCCESS)
1025 			printf("   BootCurrent: %04x\n", boot_current);
1026 		else {
1027 			boot_current = 0xffff;
1028 			uefi_boot_mgr = false;
1029 		}
1030 
1031 		sz = sizeof(boot_order);
1032 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1033 		if (rv == EFI_SUCCESS) {
1034 			printf("   BootOrder:");
1035 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1036 				printf(" %04x%s", boot_order[i],
1037 				    boot_order[i] == boot_current ? "[*]" : "");
1038 			printf("\n");
1039 			is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1040 			bosz = sz;
1041 		} else if (uefi_boot_mgr) {
1042 			/*
1043 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1044 			 * boot manager protocol. So we fake it here and don't consider it
1045 			 * a failure.
1046 			 */
1047 			bosz = sizeof(boot_order[0]);
1048 			boot_order[0] = boot_current;
1049 			is_last = true;
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Next, find the boot info structure the UEFI boot manager is
1055 	 * supposed to setup. We need this so we can walk through it to
1056 	 * find where we are in the booting process and what to try to
1057 	 * boot next.
1058 	 */
1059 	if (uefi_boot_mgr) {
1060 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1061 		sz = sizeof(boot_info);
1062 		rv = efi_global_getenv(buf, &boot_info, &sz);
1063 		if (rv == EFI_SUCCESS)
1064 			bisz = sz;
1065 		else
1066 			uefi_boot_mgr = false;
1067 	}
1068 
1069 	/*
1070 	 * Disable the watchdog timer. By default the boot manager sets
1071 	 * the timer to 5 minutes before invoking a boot option. If we
1072 	 * want to return to the boot manager, we have to disable the
1073 	 * watchdog timer and since we're an interactive program, we don't
1074 	 * want to wait until the user types "quit". The timer may have
1075 	 * fired by then. We don't care if this fails. It does not prevent
1076 	 * normal functioning in any way...
1077 	 */
1078 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1079 
1080 	/*
1081 	 * Initialize the trusted/forbidden certificates from UEFI.
1082 	 * They will be later used to verify the manifest(s),
1083 	 * which should contain hashes of verified files.
1084 	 * This needs to be initialized before any configuration files
1085 	 * are loaded.
1086 	 */
1087 #ifdef EFI_SECUREBOOT
1088 	ve_efi_init();
1089 #endif
1090 
1091 	/*
1092 	 * Try and find a good currdev based on the image that was booted.
1093 	 * It might be desirable here to have a short pause to allow falling
1094 	 * through to the boot loader instead of returning instantly to follow
1095 	 * the boot protocol and also allow an escape hatch for users wishing
1096 	 * to try something different.
1097 	 */
1098 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1099 		if (uefi_boot_mgr &&
1100 		    !interactive_interrupt("Failed to find bootable partition"))
1101 			return (EFI_NOT_FOUND);
1102 
1103 	efi_init_environment();
1104 
1105 #if !defined(__arm__)
1106 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1107 		guid = &ST->ConfigurationTable[k].VendorGuid;
1108 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
1109 			char buf[40];
1110 
1111 			snprintf(buf, sizeof(buf), "%p",
1112 			    ST->ConfigurationTable[k].VendorTable);
1113 			setenv("hint.smbios.0.mem", buf, 1);
1114 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
1115 			break;
1116 		}
1117 	}
1118 #endif
1119 
1120 	interact();			/* doesn't return */
1121 
1122 	return (EFI_SUCCESS);		/* keep compiler happy */
1123 }
1124 
1125 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1126 
1127 static int
1128 command_poweroff(int argc __unused, char *argv[] __unused)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; devsw[i] != NULL; ++i)
1133 		if (devsw[i]->dv_cleanup != NULL)
1134 			(devsw[i]->dv_cleanup)();
1135 
1136 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1137 
1138 	/* NOTREACHED */
1139 	return (CMD_ERROR);
1140 }
1141 
1142 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1143 
1144 static int
1145 command_reboot(int argc, char *argv[])
1146 {
1147 	int i;
1148 
1149 	for (i = 0; devsw[i] != NULL; ++i)
1150 		if (devsw[i]->dv_cleanup != NULL)
1151 			(devsw[i]->dv_cleanup)();
1152 
1153 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1154 
1155 	/* NOTREACHED */
1156 	return (CMD_ERROR);
1157 }
1158 
1159 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1160 
1161 static int
1162 command_quit(int argc, char *argv[])
1163 {
1164 	exit(0);
1165 	return (CMD_OK);
1166 }
1167 
1168 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1169 
1170 static int
1171 command_memmap(int argc __unused, char *argv[] __unused)
1172 {
1173 	UINTN sz;
1174 	EFI_MEMORY_DESCRIPTOR *map, *p;
1175 	UINTN key, dsz;
1176 	UINT32 dver;
1177 	EFI_STATUS status;
1178 	int i, ndesc;
1179 	char line[80];
1180 
1181 	sz = 0;
1182 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1183 	if (status != EFI_BUFFER_TOO_SMALL) {
1184 		printf("Can't determine memory map size\n");
1185 		return (CMD_ERROR);
1186 	}
1187 	map = malloc(sz);
1188 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1189 	if (EFI_ERROR(status)) {
1190 		printf("Can't read memory map\n");
1191 		return (CMD_ERROR);
1192 	}
1193 
1194 	ndesc = sz / dsz;
1195 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1196 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1197 	pager_open();
1198 	if (pager_output(line)) {
1199 		pager_close();
1200 		return (CMD_OK);
1201 	}
1202 
1203 	for (i = 0, p = map; i < ndesc;
1204 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1205 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1206 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1207 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1208 		if (pager_output(line))
1209 			break;
1210 
1211 		if (p->Attribute & EFI_MEMORY_UC)
1212 			printf("UC ");
1213 		if (p->Attribute & EFI_MEMORY_WC)
1214 			printf("WC ");
1215 		if (p->Attribute & EFI_MEMORY_WT)
1216 			printf("WT ");
1217 		if (p->Attribute & EFI_MEMORY_WB)
1218 			printf("WB ");
1219 		if (p->Attribute & EFI_MEMORY_UCE)
1220 			printf("UCE ");
1221 		if (p->Attribute & EFI_MEMORY_WP)
1222 			printf("WP ");
1223 		if (p->Attribute & EFI_MEMORY_RP)
1224 			printf("RP ");
1225 		if (p->Attribute & EFI_MEMORY_XP)
1226 			printf("XP ");
1227 		if (p->Attribute & EFI_MEMORY_NV)
1228 			printf("NV ");
1229 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1230 			printf("MR ");
1231 		if (p->Attribute & EFI_MEMORY_RO)
1232 			printf("RO ");
1233 		if (pager_output("\n"))
1234 			break;
1235 	}
1236 
1237 	pager_close();
1238 	return (CMD_OK);
1239 }
1240 
1241 COMMAND_SET(configuration, "configuration", "print configuration tables",
1242     command_configuration);
1243 
1244 static int
1245 command_configuration(int argc, char *argv[])
1246 {
1247 	UINTN i;
1248 	char *name;
1249 
1250 	printf("NumberOfTableEntries=%lu\n",
1251 		(unsigned long)ST->NumberOfTableEntries);
1252 
1253 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1254 		EFI_GUID *guid;
1255 
1256 		printf("  ");
1257 		guid = &ST->ConfigurationTable[i].VendorGuid;
1258 
1259 		if (efi_guid_to_name(guid, &name) == true) {
1260 			printf(name);
1261 			free(name);
1262 		} else {
1263 			printf("Error while translating UUID to name");
1264 		}
1265 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1266 	}
1267 
1268 	return (CMD_OK);
1269 }
1270 
1271 
1272 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1273 
1274 static int
1275 command_mode(int argc, char *argv[])
1276 {
1277 	UINTN cols, rows;
1278 	unsigned int mode;
1279 	int i;
1280 	char *cp;
1281 	char rowenv[8];
1282 	EFI_STATUS status;
1283 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1284 	extern void HO(void);
1285 
1286 	conout = ST->ConOut;
1287 
1288 	if (argc > 1) {
1289 		mode = strtol(argv[1], &cp, 0);
1290 		if (cp[0] != '\0') {
1291 			printf("Invalid mode\n");
1292 			return (CMD_ERROR);
1293 		}
1294 		status = conout->QueryMode(conout, mode, &cols, &rows);
1295 		if (EFI_ERROR(status)) {
1296 			printf("invalid mode %d\n", mode);
1297 			return (CMD_ERROR);
1298 		}
1299 		status = conout->SetMode(conout, mode);
1300 		if (EFI_ERROR(status)) {
1301 			printf("couldn't set mode %d\n", mode);
1302 			return (CMD_ERROR);
1303 		}
1304 		sprintf(rowenv, "%u", (unsigned)rows);
1305 		setenv("LINES", rowenv, 1);
1306 		HO();		/* set cursor */
1307 		return (CMD_OK);
1308 	}
1309 
1310 	printf("Current mode: %d\n", conout->Mode->Mode);
1311 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1312 		status = conout->QueryMode(conout, i, &cols, &rows);
1313 		if (EFI_ERROR(status))
1314 			continue;
1315 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1316 		    (unsigned)rows);
1317 	}
1318 
1319 	if (i != 0)
1320 		printf("Select a mode with the command \"mode <number>\"\n");
1321 
1322 	return (CMD_OK);
1323 }
1324 
1325 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1326 
1327 static int
1328 command_lsefi(int argc __unused, char *argv[] __unused)
1329 {
1330 	char *name;
1331 	EFI_HANDLE *buffer = NULL;
1332 	EFI_HANDLE handle;
1333 	UINTN bufsz = 0, i, j;
1334 	EFI_STATUS status;
1335 	int ret = 0;
1336 
1337 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1338 	if (status != EFI_BUFFER_TOO_SMALL) {
1339 		snprintf(command_errbuf, sizeof (command_errbuf),
1340 		    "unexpected error: %lld", (long long)status);
1341 		return (CMD_ERROR);
1342 	}
1343 	if ((buffer = malloc(bufsz)) == NULL) {
1344 		sprintf(command_errbuf, "out of memory");
1345 		return (CMD_ERROR);
1346 	}
1347 
1348 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1349 	if (EFI_ERROR(status)) {
1350 		free(buffer);
1351 		snprintf(command_errbuf, sizeof (command_errbuf),
1352 		    "LocateHandle() error: %lld", (long long)status);
1353 		return (CMD_ERROR);
1354 	}
1355 
1356 	pager_open();
1357 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1358 		UINTN nproto = 0;
1359 		EFI_GUID **protocols = NULL;
1360 
1361 		handle = buffer[i];
1362 		printf("Handle %p", handle);
1363 		if (pager_output("\n"))
1364 			break;
1365 		/* device path */
1366 
1367 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1368 		if (EFI_ERROR(status)) {
1369 			snprintf(command_errbuf, sizeof (command_errbuf),
1370 			    "ProtocolsPerHandle() error: %lld",
1371 			    (long long)status);
1372 			continue;
1373 		}
1374 
1375 		for (j = 0; j < nproto; j++) {
1376 			if (efi_guid_to_name(protocols[j], &name) == true) {
1377 				printf("  %s", name);
1378 				free(name);
1379 			} else {
1380 				printf("Error while translating UUID to name");
1381 			}
1382 			if ((ret = pager_output("\n")) != 0)
1383 				break;
1384 		}
1385 		BS->FreePool(protocols);
1386 		if (ret != 0)
1387 			break;
1388 	}
1389 	pager_close();
1390 	free(buffer);
1391 	return (CMD_OK);
1392 }
1393 
1394 #ifdef LOADER_FDT_SUPPORT
1395 extern int command_fdt_internal(int argc, char *argv[]);
1396 
1397 /*
1398  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1399  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1400  * (which uses static pointer), we're defining wrapper function, which
1401  * calls the proper fdt handling routine.
1402  */
1403 static int
1404 command_fdt(int argc, char *argv[])
1405 {
1406 
1407 	return (command_fdt_internal(argc, argv));
1408 }
1409 
1410 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1411 #endif
1412 
1413 /*
1414  * Chain load another efi loader.
1415  */
1416 static int
1417 command_chain(int argc, char *argv[])
1418 {
1419 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1420 	EFI_HANDLE loaderhandle;
1421 	EFI_LOADED_IMAGE *loaded_image;
1422 	EFI_STATUS status;
1423 	struct stat st;
1424 	struct devdesc *dev;
1425 	char *name, *path;
1426 	void *buf;
1427 	int fd;
1428 
1429 	if (argc < 2) {
1430 		command_errmsg = "wrong number of arguments";
1431 		return (CMD_ERROR);
1432 	}
1433 
1434 	name = argv[1];
1435 
1436 	if ((fd = open(name, O_RDONLY)) < 0) {
1437 		command_errmsg = "no such file";
1438 		return (CMD_ERROR);
1439 	}
1440 
1441 	if (fstat(fd, &st) < -1) {
1442 		command_errmsg = "stat failed";
1443 		close(fd);
1444 		return (CMD_ERROR);
1445 	}
1446 
1447 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1448 	if (status != EFI_SUCCESS) {
1449 		command_errmsg = "failed to allocate buffer";
1450 		close(fd);
1451 		return (CMD_ERROR);
1452 	}
1453 	if (read(fd, buf, st.st_size) != st.st_size) {
1454 		command_errmsg = "error while reading the file";
1455 		(void)BS->FreePool(buf);
1456 		close(fd);
1457 		return (CMD_ERROR);
1458 	}
1459 	close(fd);
1460 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1461 	(void)BS->FreePool(buf);
1462 	if (status != EFI_SUCCESS) {
1463 		command_errmsg = "LoadImage failed";
1464 		return (CMD_ERROR);
1465 	}
1466 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1467 	    (void **)&loaded_image);
1468 
1469 	if (argc > 2) {
1470 		int i, len = 0;
1471 		CHAR16 *argp;
1472 
1473 		for (i = 2; i < argc; i++)
1474 			len += strlen(argv[i]) + 1;
1475 
1476 		len *= sizeof (*argp);
1477 		loaded_image->LoadOptions = argp = malloc (len);
1478 		loaded_image->LoadOptionsSize = len;
1479 		for (i = 2; i < argc; i++) {
1480 			char *ptr = argv[i];
1481 			while (*ptr)
1482 				*(argp++) = *(ptr++);
1483 			*(argp++) = ' ';
1484 		}
1485 		*(--argv) = 0;
1486 	}
1487 
1488 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1489 #ifdef EFI_ZFS_BOOT
1490 		struct zfs_devdesc *z_dev;
1491 #endif
1492 		struct disk_devdesc *d_dev;
1493 		pdinfo_t *hd, *pd;
1494 
1495 		switch (dev->d_dev->dv_type) {
1496 #ifdef EFI_ZFS_BOOT
1497 		case DEVT_ZFS:
1498 			z_dev = (struct zfs_devdesc *)dev;
1499 			loaded_image->DeviceHandle =
1500 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1501 			break;
1502 #endif
1503 		case DEVT_NET:
1504 			loaded_image->DeviceHandle =
1505 			    efi_find_handle(dev->d_dev, dev->d_unit);
1506 			break;
1507 		default:
1508 			hd = efiblk_get_pdinfo(dev);
1509 			if (STAILQ_EMPTY(&hd->pd_part)) {
1510 				loaded_image->DeviceHandle = hd->pd_handle;
1511 				break;
1512 			}
1513 			d_dev = (struct disk_devdesc *)dev;
1514 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1515 				/*
1516 				 * d_partition should be 255
1517 				 */
1518 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1519 					loaded_image->DeviceHandle =
1520 					    pd->pd_handle;
1521 					break;
1522 				}
1523 			}
1524 			break;
1525 		}
1526 	}
1527 
1528 	dev_cleanup();
1529 	status = BS->StartImage(loaderhandle, NULL, NULL);
1530 	if (status != EFI_SUCCESS) {
1531 		command_errmsg = "StartImage failed";
1532 		free(loaded_image->LoadOptions);
1533 		loaded_image->LoadOptions = NULL;
1534 		status = BS->UnloadImage(loaded_image);
1535 		return (CMD_ERROR);
1536 	}
1537 
1538 	return (CMD_ERROR);	/* not reached */
1539 }
1540 
1541 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1542