1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <paths.h> 40 #include <stdint.h> 41 #include <string.h> 42 #include <setjmp.h> 43 #include <disk.h> 44 45 #include <efi.h> 46 #include <efilib.h> 47 #include <efichar.h> 48 49 #include <uuid.h> 50 51 #include <bootstrap.h> 52 #include <smbios.h> 53 54 #include "efizfs.h" 55 56 #include "loader_efi.h" 57 58 struct arch_switch archsw; /* MI/MD interface boundary */ 59 60 EFI_GUID acpi = ACPI_TABLE_GUID; 61 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 62 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 63 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 64 EFI_GUID mps = MPS_TABLE_GUID; 65 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 66 EFI_GUID smbios = SMBIOS_TABLE_GUID; 67 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 68 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 69 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 70 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 71 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 72 EFI_GUID esrt = ESRT_TABLE_GUID; 73 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 74 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 75 EFI_GUID fdtdtb = FDT_TABLE_GUID; 76 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 77 78 /* 79 * Number of seconds to wait for a keystroke before exiting with failure 80 * in the event no currdev is found. -2 means always break, -1 means 81 * never break, 0 means poll once and then reboot, > 0 means wait for 82 * that many seconds. "fail_timeout" can be set in the environment as 83 * well. 84 */ 85 static int fail_timeout = 5; 86 87 /* 88 * Current boot variable 89 */ 90 UINT16 boot_current; 91 92 /* 93 * Image that we booted from. 94 */ 95 EFI_LOADED_IMAGE *boot_img; 96 97 static bool 98 has_keyboard(void) 99 { 100 EFI_STATUS status; 101 EFI_DEVICE_PATH *path; 102 EFI_HANDLE *hin, *hin_end, *walker; 103 UINTN sz; 104 bool retval = false; 105 106 /* 107 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 108 * do the typical dance to get the right sized buffer. 109 */ 110 sz = 0; 111 hin = NULL; 112 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 113 if (status == EFI_BUFFER_TOO_SMALL) { 114 hin = (EFI_HANDLE *)malloc(sz); 115 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 116 hin); 117 if (EFI_ERROR(status)) 118 free(hin); 119 } 120 if (EFI_ERROR(status)) 121 return retval; 122 123 /* 124 * Look at each of the handles. If it supports the device path protocol, 125 * use it to get the device path for this handle. Then see if that 126 * device path matches either the USB device path for keyboards or the 127 * legacy device path for keyboards. 128 */ 129 hin_end = &hin[sz / sizeof(*hin)]; 130 for (walker = hin; walker < hin_end; walker++) { 131 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 132 if (EFI_ERROR(status)) 133 continue; 134 135 while (!IsDevicePathEnd(path)) { 136 /* 137 * Check for the ACPI keyboard node. All PNP3xx nodes 138 * are keyboards of different flavors. Note: It is 139 * unclear of there's always a keyboard node when 140 * there's a keyboard controller, or if there's only one 141 * when a keyboard is detected at boot. 142 */ 143 if (DevicePathType(path) == ACPI_DEVICE_PATH && 144 (DevicePathSubType(path) == ACPI_DP || 145 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 146 ACPI_HID_DEVICE_PATH *acpi; 147 148 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 149 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 150 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 151 retval = true; 152 goto out; 153 } 154 /* 155 * Check for USB keyboard node, if present. Unlike a 156 * PS/2 keyboard, these definitely only appear when 157 * connected to the system. 158 */ 159 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 160 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 161 USB_CLASS_DEVICE_PATH *usb; 162 163 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 164 if (usb->DeviceClass == 3 && /* HID */ 165 usb->DeviceSubClass == 1 && /* Boot devices */ 166 usb->DeviceProtocol == 1) { /* Boot keyboards */ 167 retval = true; 168 goto out; 169 } 170 } 171 path = NextDevicePathNode(path); 172 } 173 } 174 out: 175 free(hin); 176 return retval; 177 } 178 179 static void 180 set_currdev(const char *devname) 181 { 182 183 /* 184 * Don't execute hooks here; we may need to try setting these more than 185 * once here if we're probing for the ZFS pool we're supposed to boot. 186 * The currdev hook is intended to just validate user input anyways, 187 * while the loaddev hook makes it immutable once we've determined what 188 * the proper currdev is. 189 */ 190 env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, 191 env_nounset); 192 env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, 193 env_nounset); 194 } 195 196 static void 197 set_currdev_devdesc(struct devdesc *currdev) 198 { 199 const char *devname; 200 201 devname = efi_fmtdev(currdev); 202 printf("Setting currdev to %s\n", devname); 203 set_currdev(devname); 204 } 205 206 static void 207 set_currdev_devsw(struct devsw *dev, int unit) 208 { 209 struct devdesc currdev; 210 211 currdev.d_dev = dev; 212 currdev.d_unit = unit; 213 214 set_currdev_devdesc(&currdev); 215 } 216 217 static void 218 set_currdev_pdinfo(pdinfo_t *dp) 219 { 220 221 /* 222 * Disks are special: they have partitions. if the parent 223 * pointer is non-null, we're a partition not a full disk 224 * and we need to adjust currdev appropriately. 225 */ 226 if (dp->pd_devsw->dv_type == DEVT_DISK) { 227 struct disk_devdesc currdev; 228 229 currdev.dd.d_dev = dp->pd_devsw; 230 if (dp->pd_parent == NULL) { 231 currdev.dd.d_unit = dp->pd_unit; 232 currdev.d_slice = D_SLICENONE; 233 currdev.d_partition = D_PARTNONE; 234 } else { 235 currdev.dd.d_unit = dp->pd_parent->pd_unit; 236 currdev.d_slice = dp->pd_unit; 237 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 238 } 239 set_currdev_devdesc((struct devdesc *)&currdev); 240 } else { 241 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 242 } 243 } 244 245 static bool 246 sanity_check_currdev(void) 247 { 248 struct stat st; 249 250 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 251 #ifdef PATH_BOOTABLE_TOKEN 252 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ 253 #endif 254 stat(PATH_KERNEL, &st) == 0); 255 } 256 257 #ifdef EFI_ZFS_BOOT 258 static bool 259 probe_zfs_currdev(uint64_t guid) 260 { 261 char *devname; 262 struct zfs_devdesc currdev; 263 char *buf = NULL; 264 bool rv; 265 266 currdev.dd.d_dev = &zfs_dev; 267 currdev.dd.d_unit = 0; 268 currdev.pool_guid = guid; 269 currdev.root_guid = 0; 270 set_currdev_devdesc((struct devdesc *)&currdev); 271 devname = efi_fmtdev(&currdev); 272 init_zfs_bootenv(devname); 273 274 rv = sanity_check_currdev(); 275 if (rv) { 276 buf = malloc(VDEV_PAD_SIZE); 277 if (buf != NULL) { 278 if (zfs_nextboot(&currdev, buf, VDEV_PAD_SIZE) == 0) { 279 printf("zfs nextboot: %s\n", buf); 280 set_currdev(buf); 281 } 282 free(buf); 283 } 284 } 285 return (rv); 286 } 287 #endif 288 289 static bool 290 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 291 { 292 uint64_t guid; 293 294 #ifdef EFI_ZFS_BOOT 295 /* 296 * If there's a zpool on this device, try it as a ZFS 297 * filesystem, which has somewhat different setup than all 298 * other types of fs due to imperfect loader integration. 299 * This all stems from ZFS being both a device (zpool) and 300 * a filesystem, plus the boot env feature. 301 */ 302 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 303 return (probe_zfs_currdev(guid)); 304 #endif 305 /* 306 * All other filesystems just need the pdinfo 307 * initialized in the standard way. 308 */ 309 set_currdev_pdinfo(pp); 310 return (sanity_check_currdev()); 311 } 312 313 /* 314 * Sometimes we get filenames that are all upper case 315 * and/or have backslashes in them. Filter all this out 316 * if it looks like we need to do so. 317 */ 318 static void 319 fix_dosisms(char *p) 320 { 321 while (*p) { 322 if (isupper(*p)) 323 *p = tolower(*p); 324 else if (*p == '\\') 325 *p = '/'; 326 p++; 327 } 328 } 329 330 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 331 332 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 333 static int 334 match_boot_info(char *boot_info, size_t bisz) 335 { 336 uint32_t attr; 337 uint16_t fplen; 338 size_t len; 339 char *walker, *ep; 340 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 341 pdinfo_t *pp; 342 CHAR16 *descr; 343 char *kernel = NULL; 344 FILEPATH_DEVICE_PATH *fp; 345 struct stat st; 346 CHAR16 *text; 347 348 /* 349 * FreeBSD encodes it's boot loading path into the boot loader 350 * BootXXXX variable. We look for the last one in the path 351 * and use that to load the kernel. However, if we only fine 352 * one DEVICE_PATH, then there's nothing specific and we should 353 * fall back. 354 * 355 * In an ideal world, we'd look at the image handle we were 356 * passed, match up with the loader we are and then return the 357 * next one in the path. This would be most flexible and cover 358 * many chain booting scenarios where you need to use this 359 * boot loader to get to the next boot loader. However, that 360 * doesn't work. We rarely have the path to the image booted 361 * (just the device) so we can't count on that. So, we do the 362 * enxt best thing, we look through the device path(s) passed 363 * in the BootXXXX varaible. If there's only one, we return 364 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 365 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 366 * return BAD_CHOICE for the caller to sort out. 367 */ 368 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 369 return NOT_SPECIFIC; 370 walker = boot_info; 371 ep = walker + bisz; 372 memcpy(&attr, walker, sizeof(attr)); 373 walker += sizeof(attr); 374 memcpy(&fplen, walker, sizeof(fplen)); 375 walker += sizeof(fplen); 376 descr = (CHAR16 *)(intptr_t)walker; 377 len = ucs2len(descr); 378 walker += (len + 1) * sizeof(CHAR16); 379 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 380 edp = (EFI_DEVICE_PATH *)(walker + fplen); 381 if ((char *)edp > ep) 382 return NOT_SPECIFIC; 383 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 384 text = efi_devpath_name(dp); 385 if (text != NULL) { 386 printf(" BootInfo Path: %S\n", text); 387 efi_free_devpath_name(text); 388 } 389 last_dp = dp; 390 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 391 } 392 393 /* 394 * If there's only one item in the list, then nothing was 395 * specified. Or if the last path doesn't have a media 396 * path in it. Those show up as various VenHw() nodes 397 * which are basically opaque to us. Don't count those 398 * as something specifc. 399 */ 400 if (last_dp == first_dp) { 401 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 402 return NOT_SPECIFIC; 403 } 404 if (efi_devpath_to_media_path(last_dp) == NULL) { 405 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 406 return NOT_SPECIFIC; 407 } 408 409 /* 410 * OK. At this point we either have a good path or a bad one. 411 * Let's check. 412 */ 413 pp = efiblk_get_pdinfo_by_device_path(last_dp); 414 if (pp == NULL) { 415 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 416 return BAD_CHOICE; 417 } 418 set_currdev_pdinfo(pp); 419 if (!sanity_check_currdev()) { 420 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 421 return BAD_CHOICE; 422 } 423 424 /* 425 * OK. We've found a device that matches, next we need to check the last 426 * component of the path. If it's a file, then we set the default kernel 427 * to that. Otherwise, just use this as the default root. 428 * 429 * Reminder: we're running very early, before we've parsed the defaults 430 * file, so we may need to have a hack override. 431 */ 432 dp = efi_devpath_last_node(last_dp); 433 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 434 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 435 printf("Using Boot%04x for root partition\n", boot_current); 436 return (BOOT_INFO_OK); /* use currdir, default kernel */ 437 } 438 fp = (FILEPATH_DEVICE_PATH *)dp; 439 ucs2_to_utf8(fp->PathName, &kernel); 440 if (kernel == NULL) { 441 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 442 return (BAD_CHOICE); 443 } 444 if (*kernel == '\\' || isupper(*kernel)) 445 fix_dosisms(kernel); 446 if (stat(kernel, &st) != 0) { 447 free(kernel); 448 printf("Not using Boot%04x: can't find %s\n", boot_current, 449 kernel); 450 return (BAD_CHOICE); 451 } 452 setenv("kernel", kernel, 1); 453 free(kernel); 454 text = efi_devpath_name(last_dp); 455 if (text) { 456 printf("Using Boot%04x %S + %s\n", boot_current, text, 457 kernel); 458 efi_free_devpath_name(text); 459 } 460 461 return (BOOT_INFO_OK); 462 } 463 464 /* 465 * Look at the passed-in boot_info, if any. If we find it then we need 466 * to see if we can find ourselves in the boot chain. If we can, and 467 * there's another specified thing to boot next, assume that the file 468 * is loaded from / and use that for the root filesystem. If can't 469 * find the specified thing, we must fail the boot. If we're last on 470 * the list, then we fallback to looking for the first available / 471 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 472 * partition that has either /boot/defaults/loader.conf on it or 473 * /boot/kernel/kernel (the default kernel) that we can use. 474 * 475 * We always fail if we can't find the right thing. However, as 476 * a concession to buggy UEFI implementations, like u-boot, if 477 * we have determined that the host is violating the UEFI boot 478 * manager protocol, we'll signal the rest of the program that 479 * a drop to the OK boot loader prompt is possible. 480 */ 481 static int 482 find_currdev(bool do_bootmgr, bool is_last, 483 char *boot_info, size_t boot_info_sz) 484 { 485 pdinfo_t *dp, *pp; 486 EFI_DEVICE_PATH *devpath, *copy; 487 EFI_HANDLE h; 488 CHAR16 *text; 489 struct devsw *dev; 490 int unit; 491 uint64_t extra; 492 int rv; 493 char *rootdev; 494 495 /* 496 * First choice: if rootdev is already set, use that, even if 497 * it's wrong. 498 */ 499 rootdev = getenv("rootdev"); 500 if (rootdev != NULL) { 501 printf(" Setting currdev to configured rootdev %s\n", 502 rootdev); 503 set_currdev(rootdev); 504 return (0); 505 } 506 507 /* 508 * Second choice: If uefi_rootdev is set, translate that UEFI device 509 * path to the loader's internal name and use that. 510 */ 511 do { 512 rootdev = getenv("uefi_rootdev"); 513 if (rootdev == NULL) 514 break; 515 devpath = efi_name_to_devpath(rootdev); 516 if (devpath == NULL) 517 break; 518 dp = efiblk_get_pdinfo_by_device_path(devpath); 519 efi_devpath_free(devpath); 520 if (dp == NULL) 521 break; 522 printf(" Setting currdev to UEFI path %s\n", 523 rootdev); 524 set_currdev_pdinfo(dp); 525 return (0); 526 } while (0); 527 528 /* 529 * Third choice: If we can find out image boot_info, and there's 530 * a follow-on boot image in that boot_info, use that. In this 531 * case root will be the partition specified in that image and 532 * we'll load the kernel specified by the file path. Should there 533 * not be a filepath, we use the default. This filepath overrides 534 * loader.conf. 535 */ 536 if (do_bootmgr) { 537 rv = match_boot_info(boot_info, boot_info_sz); 538 switch (rv) { 539 case BOOT_INFO_OK: /* We found it */ 540 return (0); 541 case BAD_CHOICE: /* specified file not found -> error */ 542 /* XXX do we want to have an escape hatch for last in boot order? */ 543 return (ENOENT); 544 } /* Nothing specified, try normal match */ 545 } 546 547 #ifdef EFI_ZFS_BOOT 548 /* 549 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 550 * it found, if it's sane. ZFS is the only thing that looks for 551 * disks and pools to boot. This may change in the future, however, 552 * if we allow specifying which pool to boot from via UEFI variables 553 * rather than the bootenv stuff that FreeBSD uses today. 554 */ 555 if (pool_guid != 0) { 556 printf("Trying ZFS pool\n"); 557 if (probe_zfs_currdev(pool_guid)) 558 return (0); 559 } 560 #endif /* EFI_ZFS_BOOT */ 561 562 /* 563 * Try to find the block device by its handle based on the 564 * image we're booting. If we can't find a sane partition, 565 * search all the other partitions of the disk. We do not 566 * search other disks because it's a violation of the UEFI 567 * boot protocol to do so. We fail and let UEFI go on to 568 * the next candidate. 569 */ 570 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 571 if (dp != NULL) { 572 text = efi_devpath_name(dp->pd_devpath); 573 if (text != NULL) { 574 printf("Trying ESP: %S\n", text); 575 efi_free_devpath_name(text); 576 } 577 set_currdev_pdinfo(dp); 578 if (sanity_check_currdev()) 579 return (0); 580 if (dp->pd_parent != NULL) { 581 pdinfo_t *espdp = dp; 582 dp = dp->pd_parent; 583 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 584 /* Already tried the ESP */ 585 if (espdp == pp) 586 continue; 587 /* 588 * Roll up the ZFS special case 589 * for those partitions that have 590 * zpools on them. 591 */ 592 text = efi_devpath_name(pp->pd_devpath); 593 if (text != NULL) { 594 printf("Trying: %S\n", text); 595 efi_free_devpath_name(text); 596 } 597 if (try_as_currdev(dp, pp)) 598 return (0); 599 } 600 } 601 } 602 603 /* 604 * Try the device handle from our loaded image first. If that 605 * fails, use the device path from the loaded image and see if 606 * any of the nodes in that path match one of the enumerated 607 * handles. Currently, this handle list is only for netboot. 608 */ 609 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 610 set_currdev_devsw(dev, unit); 611 if (sanity_check_currdev()) 612 return (0); 613 } 614 615 copy = NULL; 616 devpath = efi_lookup_image_devpath(IH); 617 while (devpath != NULL) { 618 h = efi_devpath_handle(devpath); 619 if (h == NULL) 620 break; 621 622 free(copy); 623 copy = NULL; 624 625 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 626 set_currdev_devsw(dev, unit); 627 if (sanity_check_currdev()) 628 return (0); 629 } 630 631 devpath = efi_lookup_devpath(h); 632 if (devpath != NULL) { 633 copy = efi_devpath_trim(devpath); 634 devpath = copy; 635 } 636 } 637 free(copy); 638 639 return (ENOENT); 640 } 641 642 static bool 643 interactive_interrupt(const char *msg) 644 { 645 time_t now, then, last; 646 647 last = 0; 648 now = then = getsecs(); 649 printf("%s\n", msg); 650 if (fail_timeout == -2) /* Always break to OK */ 651 return (true); 652 if (fail_timeout == -1) /* Never break to OK */ 653 return (false); 654 do { 655 if (last != now) { 656 printf("press any key to interrupt reboot in %d seconds\r", 657 fail_timeout - (int)(now - then)); 658 last = now; 659 } 660 661 /* XXX no pause or timeout wait for char */ 662 if (ischar()) 663 return (true); 664 now = getsecs(); 665 } while (now - then < fail_timeout); 666 return (false); 667 } 668 669 static int 670 parse_args(int argc, CHAR16 *argv[]) 671 { 672 int i, j, howto; 673 bool vargood; 674 char var[128]; 675 676 /* 677 * Parse the args to set the console settings, etc 678 * boot1.efi passes these in, if it can read /boot.config or /boot/config 679 * or iPXE may be setup to pass these in. Or the optional argument in the 680 * boot environment was used to pass these arguments in (in which case 681 * neither /boot.config nor /boot/config are consulted). 682 * 683 * Loop through the args, and for each one that contains an '=' that is 684 * not the first character, add it to the environment. This allows 685 * loader and kernel env vars to be passed on the command line. Convert 686 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 687 * method is flawed for non-ASCII characters). 688 */ 689 howto = 0; 690 for (i = 1; i < argc; i++) { 691 cpy16to8(argv[i], var, sizeof(var)); 692 howto |= boot_parse_arg(var); 693 } 694 695 return (howto); 696 } 697 698 static void 699 setenv_int(const char *key, int val) 700 { 701 char buf[20]; 702 703 snprintf(buf, sizeof(buf), "%d", val); 704 setenv(key, buf, 1); 705 } 706 707 /* 708 * Parse ConOut (the list of consoles active) and see if we can find a 709 * serial port and/or a video port. It would be nice to also walk the 710 * ACPI name space to map the UID for the serial port to a port. The 711 * latter is especially hard. 712 */ 713 int 714 parse_uefi_con_out(void) 715 { 716 int how, rv; 717 int vid_seen = 0, com_seen = 0, seen = 0; 718 size_t sz; 719 char buf[4096], *ep; 720 EFI_DEVICE_PATH *node; 721 ACPI_HID_DEVICE_PATH *acpi; 722 UART_DEVICE_PATH *uart; 723 bool pci_pending; 724 725 how = 0; 726 sz = sizeof(buf); 727 rv = efi_global_getenv("ConOut", buf, &sz); 728 if (rv != EFI_SUCCESS) { 729 /* If we don't have any ConOut default to serial */ 730 how = RB_SERIAL; 731 goto out; 732 } 733 ep = buf + sz; 734 node = (EFI_DEVICE_PATH *)buf; 735 while ((char *)node < ep) { 736 pci_pending = false; 737 if (DevicePathType(node) == ACPI_DEVICE_PATH && 738 (DevicePathSubType(node) == ACPI_DP || 739 DevicePathSubType(node) == ACPI_EXTENDED_DP)) { 740 /* Check for Serial node */ 741 acpi = (void *)node; 742 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 743 setenv_int("efi_8250_uid", acpi->UID); 744 com_seen = ++seen; 745 } 746 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 747 DevicePathSubType(node) == MSG_UART_DP) { 748 com_seen = ++seen; 749 uart = (void *)node; 750 setenv_int("efi_com_speed", uart->BaudRate); 751 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 752 DevicePathSubType(node) == ACPI_ADR_DP) { 753 /* Check for AcpiAdr() Node for video */ 754 vid_seen = ++seen; 755 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 756 DevicePathSubType(node) == HW_PCI_DP) { 757 /* 758 * Note, vmware fusion has a funky console device 759 * PciRoot(0x0)/Pci(0xf,0x0) 760 * which we can only detect at the end since we also 761 * have to cope with: 762 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 763 * so only match it if it's last. 764 */ 765 pci_pending = true; 766 } 767 node = NextDevicePathNode(node); 768 } 769 if (pci_pending && vid_seen == 0) 770 vid_seen = ++seen; 771 772 /* 773 * Truth table for RB_MULTIPLE | RB_SERIAL 774 * Value Result 775 * 0 Use only video console 776 * RB_SERIAL Use only serial console 777 * RB_MULTIPLE Use both video and serial console 778 * (but video is primary so gets rc messages) 779 * both Use both video and serial console 780 * (but serial is primary so gets rc messages) 781 * 782 * Try to honor this as best we can. If only one of serial / video 783 * found, then use that. Otherwise, use the first one we found. 784 * This also implies if we found nothing, default to video. 785 */ 786 how = 0; 787 if (vid_seen && com_seen) { 788 how |= RB_MULTIPLE; 789 if (com_seen < vid_seen) 790 how |= RB_SERIAL; 791 } else if (com_seen) 792 how |= RB_SERIAL; 793 out: 794 return (how); 795 } 796 797 void 798 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 799 { 800 pdinfo_t *dp; 801 struct stat st; 802 int fd = -1; 803 char *env = NULL; 804 805 dp = efiblk_get_pdinfo_by_handle(h); 806 if (dp == NULL) 807 return; 808 set_currdev_pdinfo(dp); 809 if (stat(env_fn, &st) != 0) 810 return; 811 fd = open(env_fn, O_RDONLY); 812 if (fd == -1) 813 return; 814 env = malloc(st.st_size + 1); 815 if (env == NULL) 816 goto out; 817 if (read(fd, env, st.st_size) != st.st_size) 818 goto out; 819 env[st.st_size] = '\0'; 820 boot_parse_cmdline(env); 821 out: 822 free(env); 823 close(fd); 824 } 825 826 static void 827 read_loader_env(const char *name, char *def_fn, bool once) 828 { 829 UINTN len; 830 char *fn, *freeme = NULL; 831 832 len = 0; 833 fn = def_fn; 834 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 835 freeme = fn = malloc(len + 1); 836 if (fn != NULL) { 837 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 838 free(fn); 839 fn = NULL; 840 printf( 841 "Can't fetch FreeBSD::%s we know is there\n", name); 842 } else { 843 /* 844 * if tagged as 'once' delete the env variable so we 845 * only use it once. 846 */ 847 if (once) 848 efi_freebsd_delenv(name); 849 /* 850 * We malloced 1 more than len above, then redid the call. 851 * so now we have room at the end of the string to NUL terminate 852 * it here, even if the typical idium would have '- 1' here to 853 * not overflow. len should be the same on return both times. 854 */ 855 fn[len] = '\0'; 856 } 857 } else { 858 printf( 859 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 860 len, name); 861 } 862 } 863 if (fn) { 864 printf(" Reading loader env vars from %s\n", fn); 865 parse_loader_efi_config(boot_img->DeviceHandle, fn); 866 } 867 } 868 869 caddr_t 870 ptov(uintptr_t x) 871 { 872 return ((caddr_t)x); 873 } 874 875 EFI_STATUS 876 main(int argc, CHAR16 *argv[]) 877 { 878 EFI_GUID *guid; 879 int howto, i, uhowto; 880 UINTN k; 881 bool has_kbd, is_last; 882 char *s; 883 EFI_DEVICE_PATH *imgpath; 884 CHAR16 *text; 885 EFI_STATUS rv; 886 size_t sz, bosz = 0, bisz = 0; 887 UINT16 boot_order[100]; 888 char boot_info[4096]; 889 char buf[32]; 890 bool uefi_boot_mgr; 891 892 archsw.arch_autoload = efi_autoload; 893 archsw.arch_getdev = efi_getdev; 894 archsw.arch_copyin = efi_copyin; 895 archsw.arch_copyout = efi_copyout; 896 #ifdef __amd64__ 897 archsw.arch_hypervisor = x86_hypervisor; 898 #endif 899 archsw.arch_readin = efi_readin; 900 archsw.arch_zfs_probe = efi_zfs_probe; 901 902 /* Get our loaded image protocol interface structure. */ 903 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 904 905 /* 906 * Chicken-and-egg problem; we want to have console output early, but 907 * some console attributes may depend on reading from eg. the boot 908 * device, which we can't do yet. We can use printf() etc. once this is 909 * done. So, we set it to the efi console, then call console init. This 910 * gets us printf early, but also primes the pump for all future console 911 * changes to take effect, regardless of where they come from. 912 */ 913 setenv("console", "efi", 1); 914 uhowto = parse_uefi_con_out(); 915 #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) 916 if ((uhowto & RB_SERIAL) != 0) 917 setenv("console", "comconsole", 1); 918 #endif 919 cons_probe(); 920 921 /* Init the time source */ 922 efi_time_init(); 923 924 /* 925 * Initialise the block cache. Set the upper limit. 926 */ 927 bcache_init(32768, 512); 928 929 /* 930 * Scan the BLOCK IO MEDIA handles then 931 * march through the device switch probing for things. 932 */ 933 i = efipart_inithandles(); 934 if (i != 0 && i != ENOENT) { 935 printf("efipart_inithandles failed with ERRNO %d, expect " 936 "failures\n", i); 937 } 938 939 for (i = 0; devsw[i] != NULL; i++) 940 if (devsw[i]->dv_init != NULL) 941 (devsw[i]->dv_init)(); 942 943 /* 944 * Detect console settings two different ways: one via the command 945 * args (eg -h) or via the UEFI ConOut variable. 946 */ 947 has_kbd = has_keyboard(); 948 howto = parse_args(argc, argv); 949 if (!has_kbd && (howto & RB_PROBE)) 950 howto |= RB_SERIAL | RB_MULTIPLE; 951 howto &= ~RB_PROBE; 952 953 /* 954 * Read additional environment variables from the boot device's 955 * "LoaderEnv" file. Any boot loader environment variable may be set 956 * there, which are subtly different than loader.conf variables. Only 957 * the 'simple' ones may be set so things like foo_load="YES" won't work 958 * for two reasons. First, the parser is simplistic and doesn't grok 959 * quotes. Second, because the variables that cause an action to happen 960 * are parsed by the lua, 4th or whatever code that's not yet 961 * loaded. This is relative to the root directory when loader.efi is 962 * loaded off the UFS root drive (when chain booted), or from the ESP 963 * when directly loaded by the BIOS. 964 * 965 * We also read in NextLoaderEnv if it was specified. This allows next boot 966 * functionality to be implemented and to override anything in LoaderEnv. 967 */ 968 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 969 read_loader_env("NextLoaderEnv", NULL, true); 970 971 /* 972 * We now have two notions of console. howto should be viewed as 973 * overrides. If console is already set, don't set it again. 974 */ 975 #define VIDEO_ONLY 0 976 #define SERIAL_ONLY RB_SERIAL 977 #define VID_SER_BOTH RB_MULTIPLE 978 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 979 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 980 if (strcmp(getenv("console"), "efi") == 0) { 981 if ((howto & CON_MASK) == 0) { 982 /* No override, uhowto is controlling and efi cons is perfect */ 983 howto = howto | (uhowto & CON_MASK); 984 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 985 /* override matches what UEFI told us, efi console is perfect */ 986 } else if ((uhowto & (CON_MASK)) != 0) { 987 /* 988 * We detected a serial console on ConOut. All possible 989 * overrides include serial. We can't really override what efi 990 * gives us, so we use it knowing it's the best choice. 991 */ 992 /* Do nothing */ 993 } else { 994 /* 995 * We detected some kind of serial in the override, but ConOut 996 * has no serial, so we have to sort out which case it really is. 997 */ 998 switch (howto & CON_MASK) { 999 case SERIAL_ONLY: 1000 setenv("console", "comconsole", 1); 1001 break; 1002 case VID_SER_BOTH: 1003 setenv("console", "efi comconsole", 1); 1004 break; 1005 case SER_VID_BOTH: 1006 setenv("console", "comconsole efi", 1); 1007 break; 1008 /* case VIDEO_ONLY can't happen -- it's the first if above */ 1009 } 1010 } 1011 } 1012 1013 /* 1014 * howto is set now how we want to export the flags to the kernel, so 1015 * set the env based on it. 1016 */ 1017 boot_howto_to_env(howto); 1018 1019 if (efi_copy_init()) { 1020 printf("failed to allocate staging area\n"); 1021 return (EFI_BUFFER_TOO_SMALL); 1022 } 1023 1024 if ((s = getenv("fail_timeout")) != NULL) 1025 fail_timeout = strtol(s, NULL, 10); 1026 1027 printf("%s\n", bootprog_info); 1028 printf(" Command line arguments:"); 1029 for (i = 0; i < argc; i++) 1030 printf(" %S", argv[i]); 1031 printf("\n"); 1032 1033 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); 1034 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1035 ST->Hdr.Revision & 0xffff); 1036 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1037 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1038 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1039 1040 /* Determine the devpath of our image so we can prefer it. */ 1041 text = efi_devpath_name(boot_img->FilePath); 1042 if (text != NULL) { 1043 printf(" Load Path: %S\n", text); 1044 efi_setenv_freebsd_wcs("LoaderPath", text); 1045 efi_free_devpath_name(text); 1046 } 1047 1048 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1049 (void **)&imgpath); 1050 if (rv == EFI_SUCCESS) { 1051 text = efi_devpath_name(imgpath); 1052 if (text != NULL) { 1053 printf(" Load Device: %S\n", text); 1054 efi_setenv_freebsd_wcs("LoaderDev", text); 1055 efi_free_devpath_name(text); 1056 } 1057 } 1058 1059 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1060 printf(" Ignoring UEFI boot manager\n"); 1061 uefi_boot_mgr = false; 1062 } else { 1063 uefi_boot_mgr = true; 1064 boot_current = 0; 1065 sz = sizeof(boot_current); 1066 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1067 if (rv == EFI_SUCCESS) 1068 printf(" BootCurrent: %04x\n", boot_current); 1069 else { 1070 boot_current = 0xffff; 1071 uefi_boot_mgr = false; 1072 } 1073 1074 sz = sizeof(boot_order); 1075 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1076 if (rv == EFI_SUCCESS) { 1077 printf(" BootOrder:"); 1078 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1079 printf(" %04x%s", boot_order[i], 1080 boot_order[i] == boot_current ? "[*]" : ""); 1081 printf("\n"); 1082 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1083 bosz = sz; 1084 } else if (uefi_boot_mgr) { 1085 /* 1086 * u-boot doesn't set BootOrder, but otherwise participates in the 1087 * boot manager protocol. So we fake it here and don't consider it 1088 * a failure. 1089 */ 1090 bosz = sizeof(boot_order[0]); 1091 boot_order[0] = boot_current; 1092 is_last = true; 1093 } 1094 } 1095 1096 /* 1097 * Next, find the boot info structure the UEFI boot manager is 1098 * supposed to setup. We need this so we can walk through it to 1099 * find where we are in the booting process and what to try to 1100 * boot next. 1101 */ 1102 if (uefi_boot_mgr) { 1103 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1104 sz = sizeof(boot_info); 1105 rv = efi_global_getenv(buf, &boot_info, &sz); 1106 if (rv == EFI_SUCCESS) 1107 bisz = sz; 1108 else 1109 uefi_boot_mgr = false; 1110 } 1111 1112 /* 1113 * Disable the watchdog timer. By default the boot manager sets 1114 * the timer to 5 minutes before invoking a boot option. If we 1115 * want to return to the boot manager, we have to disable the 1116 * watchdog timer and since we're an interactive program, we don't 1117 * want to wait until the user types "quit". The timer may have 1118 * fired by then. We don't care if this fails. It does not prevent 1119 * normal functioning in any way... 1120 */ 1121 BS->SetWatchdogTimer(0, 0, 0, NULL); 1122 1123 /* 1124 * Initialize the trusted/forbidden certificates from UEFI. 1125 * They will be later used to verify the manifest(s), 1126 * which should contain hashes of verified files. 1127 * This needs to be initialized before any configuration files 1128 * are loaded. 1129 */ 1130 #ifdef EFI_SECUREBOOT 1131 ve_efi_init(); 1132 #endif 1133 1134 /* 1135 * Try and find a good currdev based on the image that was booted. 1136 * It might be desirable here to have a short pause to allow falling 1137 * through to the boot loader instead of returning instantly to follow 1138 * the boot protocol and also allow an escape hatch for users wishing 1139 * to try something different. 1140 */ 1141 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1142 if (uefi_boot_mgr && 1143 !interactive_interrupt("Failed to find bootable partition")) 1144 return (EFI_NOT_FOUND); 1145 1146 efi_init_environment(); 1147 1148 #if !defined(__arm__) 1149 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1150 guid = &ST->ConfigurationTable[k].VendorGuid; 1151 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1152 char buf[40]; 1153 1154 snprintf(buf, sizeof(buf), "%p", 1155 ST->ConfigurationTable[k].VendorTable); 1156 setenv("hint.smbios.0.mem", buf, 1); 1157 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1158 break; 1159 } 1160 } 1161 #endif 1162 1163 interact(); /* doesn't return */ 1164 1165 return (EFI_SUCCESS); /* keep compiler happy */ 1166 } 1167 1168 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1169 1170 static int 1171 command_poweroff(int argc __unused, char *argv[] __unused) 1172 { 1173 int i; 1174 1175 for (i = 0; devsw[i] != NULL; ++i) 1176 if (devsw[i]->dv_cleanup != NULL) 1177 (devsw[i]->dv_cleanup)(); 1178 1179 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1180 1181 /* NOTREACHED */ 1182 return (CMD_ERROR); 1183 } 1184 1185 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1186 1187 static int 1188 command_reboot(int argc, char *argv[]) 1189 { 1190 int i; 1191 1192 for (i = 0; devsw[i] != NULL; ++i) 1193 if (devsw[i]->dv_cleanup != NULL) 1194 (devsw[i]->dv_cleanup)(); 1195 1196 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1197 1198 /* NOTREACHED */ 1199 return (CMD_ERROR); 1200 } 1201 1202 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1203 1204 static int 1205 command_quit(int argc, char *argv[]) 1206 { 1207 exit(0); 1208 return (CMD_OK); 1209 } 1210 1211 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1212 1213 static int 1214 command_memmap(int argc __unused, char *argv[] __unused) 1215 { 1216 UINTN sz; 1217 EFI_MEMORY_DESCRIPTOR *map, *p; 1218 UINTN key, dsz; 1219 UINT32 dver; 1220 EFI_STATUS status; 1221 int i, ndesc; 1222 char line[80]; 1223 1224 sz = 0; 1225 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1226 if (status != EFI_BUFFER_TOO_SMALL) { 1227 printf("Can't determine memory map size\n"); 1228 return (CMD_ERROR); 1229 } 1230 map = malloc(sz); 1231 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1232 if (EFI_ERROR(status)) { 1233 printf("Can't read memory map\n"); 1234 return (CMD_ERROR); 1235 } 1236 1237 ndesc = sz / dsz; 1238 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1239 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1240 pager_open(); 1241 if (pager_output(line)) { 1242 pager_close(); 1243 return (CMD_OK); 1244 } 1245 1246 for (i = 0, p = map; i < ndesc; 1247 i++, p = NextMemoryDescriptor(p, dsz)) { 1248 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1249 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1250 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1251 if (pager_output(line)) 1252 break; 1253 1254 if (p->Attribute & EFI_MEMORY_UC) 1255 printf("UC "); 1256 if (p->Attribute & EFI_MEMORY_WC) 1257 printf("WC "); 1258 if (p->Attribute & EFI_MEMORY_WT) 1259 printf("WT "); 1260 if (p->Attribute & EFI_MEMORY_WB) 1261 printf("WB "); 1262 if (p->Attribute & EFI_MEMORY_UCE) 1263 printf("UCE "); 1264 if (p->Attribute & EFI_MEMORY_WP) 1265 printf("WP "); 1266 if (p->Attribute & EFI_MEMORY_RP) 1267 printf("RP "); 1268 if (p->Attribute & EFI_MEMORY_XP) 1269 printf("XP "); 1270 if (p->Attribute & EFI_MEMORY_NV) 1271 printf("NV "); 1272 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1273 printf("MR "); 1274 if (p->Attribute & EFI_MEMORY_RO) 1275 printf("RO "); 1276 if (pager_output("\n")) 1277 break; 1278 } 1279 1280 pager_close(); 1281 return (CMD_OK); 1282 } 1283 1284 COMMAND_SET(configuration, "configuration", "print configuration tables", 1285 command_configuration); 1286 1287 static int 1288 command_configuration(int argc, char *argv[]) 1289 { 1290 UINTN i; 1291 char *name; 1292 1293 printf("NumberOfTableEntries=%lu\n", 1294 (unsigned long)ST->NumberOfTableEntries); 1295 1296 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1297 EFI_GUID *guid; 1298 1299 printf(" "); 1300 guid = &ST->ConfigurationTable[i].VendorGuid; 1301 1302 if (efi_guid_to_name(guid, &name) == true) { 1303 printf(name); 1304 free(name); 1305 } else { 1306 printf("Error while translating UUID to name"); 1307 } 1308 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1309 } 1310 1311 return (CMD_OK); 1312 } 1313 1314 1315 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1316 1317 static int 1318 command_mode(int argc, char *argv[]) 1319 { 1320 UINTN cols, rows; 1321 unsigned int mode; 1322 int i; 1323 char *cp; 1324 EFI_STATUS status; 1325 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1326 1327 conout = ST->ConOut; 1328 1329 if (argc > 1) { 1330 mode = strtol(argv[1], &cp, 0); 1331 if (cp[0] != '\0') { 1332 printf("Invalid mode\n"); 1333 return (CMD_ERROR); 1334 } 1335 status = conout->QueryMode(conout, mode, &cols, &rows); 1336 if (EFI_ERROR(status)) { 1337 printf("invalid mode %d\n", mode); 1338 return (CMD_ERROR); 1339 } 1340 status = conout->SetMode(conout, mode); 1341 if (EFI_ERROR(status)) { 1342 printf("couldn't set mode %d\n", mode); 1343 return (CMD_ERROR); 1344 } 1345 (void) efi_cons_update_mode(); 1346 return (CMD_OK); 1347 } 1348 1349 printf("Current mode: %d\n", conout->Mode->Mode); 1350 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1351 status = conout->QueryMode(conout, i, &cols, &rows); 1352 if (EFI_ERROR(status)) 1353 continue; 1354 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1355 (unsigned)rows); 1356 } 1357 1358 if (i != 0) 1359 printf("Select a mode with the command \"mode <number>\"\n"); 1360 1361 return (CMD_OK); 1362 } 1363 1364 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1365 1366 static int 1367 command_lsefi(int argc __unused, char *argv[] __unused) 1368 { 1369 char *name; 1370 EFI_HANDLE *buffer = NULL; 1371 EFI_HANDLE handle; 1372 UINTN bufsz = 0, i, j; 1373 EFI_STATUS status; 1374 int ret = 0; 1375 1376 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1377 if (status != EFI_BUFFER_TOO_SMALL) { 1378 snprintf(command_errbuf, sizeof (command_errbuf), 1379 "unexpected error: %lld", (long long)status); 1380 return (CMD_ERROR); 1381 } 1382 if ((buffer = malloc(bufsz)) == NULL) { 1383 sprintf(command_errbuf, "out of memory"); 1384 return (CMD_ERROR); 1385 } 1386 1387 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1388 if (EFI_ERROR(status)) { 1389 free(buffer); 1390 snprintf(command_errbuf, sizeof (command_errbuf), 1391 "LocateHandle() error: %lld", (long long)status); 1392 return (CMD_ERROR); 1393 } 1394 1395 pager_open(); 1396 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1397 UINTN nproto = 0; 1398 EFI_GUID **protocols = NULL; 1399 1400 handle = buffer[i]; 1401 printf("Handle %p", handle); 1402 if (pager_output("\n")) 1403 break; 1404 /* device path */ 1405 1406 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1407 if (EFI_ERROR(status)) { 1408 snprintf(command_errbuf, sizeof (command_errbuf), 1409 "ProtocolsPerHandle() error: %lld", 1410 (long long)status); 1411 continue; 1412 } 1413 1414 for (j = 0; j < nproto; j++) { 1415 if (efi_guid_to_name(protocols[j], &name) == true) { 1416 printf(" %s", name); 1417 free(name); 1418 } else { 1419 printf("Error while translating UUID to name"); 1420 } 1421 if ((ret = pager_output("\n")) != 0) 1422 break; 1423 } 1424 BS->FreePool(protocols); 1425 if (ret != 0) 1426 break; 1427 } 1428 pager_close(); 1429 free(buffer); 1430 return (CMD_OK); 1431 } 1432 1433 #ifdef LOADER_FDT_SUPPORT 1434 extern int command_fdt_internal(int argc, char *argv[]); 1435 1436 /* 1437 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1438 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1439 * (which uses static pointer), we're defining wrapper function, which 1440 * calls the proper fdt handling routine. 1441 */ 1442 static int 1443 command_fdt(int argc, char *argv[]) 1444 { 1445 1446 return (command_fdt_internal(argc, argv)); 1447 } 1448 1449 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1450 #endif 1451 1452 /* 1453 * Chain load another efi loader. 1454 */ 1455 static int 1456 command_chain(int argc, char *argv[]) 1457 { 1458 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1459 EFI_HANDLE loaderhandle; 1460 EFI_LOADED_IMAGE *loaded_image; 1461 EFI_STATUS status; 1462 struct stat st; 1463 struct devdesc *dev; 1464 char *name, *path; 1465 void *buf; 1466 int fd; 1467 1468 if (argc < 2) { 1469 command_errmsg = "wrong number of arguments"; 1470 return (CMD_ERROR); 1471 } 1472 1473 name = argv[1]; 1474 1475 if ((fd = open(name, O_RDONLY)) < 0) { 1476 command_errmsg = "no such file"; 1477 return (CMD_ERROR); 1478 } 1479 1480 #ifdef LOADER_VERIEXEC 1481 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) { 1482 sprintf(command_errbuf, "can't verify: %s", name); 1483 close(fd); 1484 return (CMD_ERROR); 1485 } 1486 #endif 1487 1488 if (fstat(fd, &st) < -1) { 1489 command_errmsg = "stat failed"; 1490 close(fd); 1491 return (CMD_ERROR); 1492 } 1493 1494 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1495 if (status != EFI_SUCCESS) { 1496 command_errmsg = "failed to allocate buffer"; 1497 close(fd); 1498 return (CMD_ERROR); 1499 } 1500 if (read(fd, buf, st.st_size) != st.st_size) { 1501 command_errmsg = "error while reading the file"; 1502 (void)BS->FreePool(buf); 1503 close(fd); 1504 return (CMD_ERROR); 1505 } 1506 close(fd); 1507 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1508 (void)BS->FreePool(buf); 1509 if (status != EFI_SUCCESS) { 1510 command_errmsg = "LoadImage failed"; 1511 return (CMD_ERROR); 1512 } 1513 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1514 (void **)&loaded_image); 1515 1516 if (argc > 2) { 1517 int i, len = 0; 1518 CHAR16 *argp; 1519 1520 for (i = 2; i < argc; i++) 1521 len += strlen(argv[i]) + 1; 1522 1523 len *= sizeof (*argp); 1524 loaded_image->LoadOptions = argp = malloc (len); 1525 loaded_image->LoadOptionsSize = len; 1526 for (i = 2; i < argc; i++) { 1527 char *ptr = argv[i]; 1528 while (*ptr) 1529 *(argp++) = *(ptr++); 1530 *(argp++) = ' '; 1531 } 1532 *(--argv) = 0; 1533 } 1534 1535 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1536 #ifdef EFI_ZFS_BOOT 1537 struct zfs_devdesc *z_dev; 1538 #endif 1539 struct disk_devdesc *d_dev; 1540 pdinfo_t *hd, *pd; 1541 1542 switch (dev->d_dev->dv_type) { 1543 #ifdef EFI_ZFS_BOOT 1544 case DEVT_ZFS: 1545 z_dev = (struct zfs_devdesc *)dev; 1546 loaded_image->DeviceHandle = 1547 efizfs_get_handle_by_guid(z_dev->pool_guid); 1548 break; 1549 #endif 1550 case DEVT_NET: 1551 loaded_image->DeviceHandle = 1552 efi_find_handle(dev->d_dev, dev->d_unit); 1553 break; 1554 default: 1555 hd = efiblk_get_pdinfo(dev); 1556 if (STAILQ_EMPTY(&hd->pd_part)) { 1557 loaded_image->DeviceHandle = hd->pd_handle; 1558 break; 1559 } 1560 d_dev = (struct disk_devdesc *)dev; 1561 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1562 /* 1563 * d_partition should be 255 1564 */ 1565 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1566 loaded_image->DeviceHandle = 1567 pd->pd_handle; 1568 break; 1569 } 1570 } 1571 break; 1572 } 1573 } 1574 1575 dev_cleanup(); 1576 status = BS->StartImage(loaderhandle, NULL, NULL); 1577 if (status != EFI_SUCCESS) { 1578 command_errmsg = "StartImage failed"; 1579 free(loaded_image->LoadOptions); 1580 loaded_image->LoadOptions = NULL; 1581 status = BS->UnloadImage(loaded_image); 1582 return (CMD_ERROR); 1583 } 1584 1585 return (CMD_ERROR); /* not reached */ 1586 } 1587 1588 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1589