1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <paths.h> 40 #include <stdint.h> 41 #include <string.h> 42 #include <setjmp.h> 43 #include <disk.h> 44 45 #include <efi.h> 46 #include <efilib.h> 47 #include <efichar.h> 48 49 #include <uuid.h> 50 51 #include <bootstrap.h> 52 #include <smbios.h> 53 54 #include "efizfs.h" 55 56 #include "loader_efi.h" 57 58 struct arch_switch archsw; /* MI/MD interface boundary */ 59 60 EFI_GUID acpi = ACPI_TABLE_GUID; 61 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 62 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 63 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 64 EFI_GUID mps = MPS_TABLE_GUID; 65 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 66 EFI_GUID smbios = SMBIOS_TABLE_GUID; 67 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 68 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 69 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 70 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 71 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 72 EFI_GUID esrt = ESRT_TABLE_GUID; 73 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 74 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 75 EFI_GUID fdtdtb = FDT_TABLE_GUID; 76 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 77 78 /* 79 * Number of seconds to wait for a keystroke before exiting with failure 80 * in the event no currdev is found. -2 means always break, -1 means 81 * never break, 0 means poll once and then reboot, > 0 means wait for 82 * that many seconds. "fail_timeout" can be set in the environment as 83 * well. 84 */ 85 static int fail_timeout = 5; 86 87 /* 88 * Current boot variable 89 */ 90 UINT16 boot_current; 91 92 /* 93 * Image that we booted from. 94 */ 95 EFI_LOADED_IMAGE *boot_img; 96 97 static bool 98 has_keyboard(void) 99 { 100 EFI_STATUS status; 101 EFI_DEVICE_PATH *path; 102 EFI_HANDLE *hin, *hin_end, *walker; 103 UINTN sz; 104 bool retval = false; 105 106 /* 107 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 108 * do the typical dance to get the right sized buffer. 109 */ 110 sz = 0; 111 hin = NULL; 112 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 113 if (status == EFI_BUFFER_TOO_SMALL) { 114 hin = (EFI_HANDLE *)malloc(sz); 115 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 116 hin); 117 if (EFI_ERROR(status)) 118 free(hin); 119 } 120 if (EFI_ERROR(status)) 121 return retval; 122 123 /* 124 * Look at each of the handles. If it supports the device path protocol, 125 * use it to get the device path for this handle. Then see if that 126 * device path matches either the USB device path for keyboards or the 127 * legacy device path for keyboards. 128 */ 129 hin_end = &hin[sz / sizeof(*hin)]; 130 for (walker = hin; walker < hin_end; walker++) { 131 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 132 if (EFI_ERROR(status)) 133 continue; 134 135 while (!IsDevicePathEnd(path)) { 136 /* 137 * Check for the ACPI keyboard node. All PNP3xx nodes 138 * are keyboards of different flavors. Note: It is 139 * unclear of there's always a keyboard node when 140 * there's a keyboard controller, or if there's only one 141 * when a keyboard is detected at boot. 142 */ 143 if (DevicePathType(path) == ACPI_DEVICE_PATH && 144 (DevicePathSubType(path) == ACPI_DP || 145 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 146 ACPI_HID_DEVICE_PATH *acpi; 147 148 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 149 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 150 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 151 retval = true; 152 goto out; 153 } 154 /* 155 * Check for USB keyboard node, if present. Unlike a 156 * PS/2 keyboard, these definitely only appear when 157 * connected to the system. 158 */ 159 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 160 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 161 USB_CLASS_DEVICE_PATH *usb; 162 163 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 164 if (usb->DeviceClass == 3 && /* HID */ 165 usb->DeviceSubClass == 1 && /* Boot devices */ 166 usb->DeviceProtocol == 1) { /* Boot keyboards */ 167 retval = true; 168 goto out; 169 } 170 } 171 path = NextDevicePathNode(path); 172 } 173 } 174 out: 175 free(hin); 176 return retval; 177 } 178 179 static void 180 set_currdev(const char *devname) 181 { 182 183 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 184 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 185 } 186 187 static void 188 set_currdev_devdesc(struct devdesc *currdev) 189 { 190 const char *devname; 191 192 devname = efi_fmtdev(currdev); 193 printf("Setting currdev to %s\n", devname); 194 set_currdev(devname); 195 } 196 197 static void 198 set_currdev_devsw(struct devsw *dev, int unit) 199 { 200 struct devdesc currdev; 201 202 currdev.d_dev = dev; 203 currdev.d_unit = unit; 204 205 set_currdev_devdesc(&currdev); 206 } 207 208 static void 209 set_currdev_pdinfo(pdinfo_t *dp) 210 { 211 212 /* 213 * Disks are special: they have partitions. if the parent 214 * pointer is non-null, we're a partition not a full disk 215 * and we need to adjust currdev appropriately. 216 */ 217 if (dp->pd_devsw->dv_type == DEVT_DISK) { 218 struct disk_devdesc currdev; 219 220 currdev.dd.d_dev = dp->pd_devsw; 221 if (dp->pd_parent == NULL) { 222 currdev.dd.d_unit = dp->pd_unit; 223 currdev.d_slice = D_SLICENONE; 224 currdev.d_partition = D_PARTNONE; 225 } else { 226 currdev.dd.d_unit = dp->pd_parent->pd_unit; 227 currdev.d_slice = dp->pd_unit; 228 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 229 } 230 set_currdev_devdesc((struct devdesc *)&currdev); 231 } else { 232 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 233 } 234 } 235 236 static bool 237 sanity_check_currdev(void) 238 { 239 struct stat st; 240 241 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 242 stat(PATH_KERNEL, &st) == 0); 243 } 244 245 #ifdef EFI_ZFS_BOOT 246 static bool 247 probe_zfs_currdev(uint64_t guid) 248 { 249 char *devname; 250 struct zfs_devdesc currdev; 251 252 currdev.dd.d_dev = &zfs_dev; 253 currdev.dd.d_unit = 0; 254 currdev.pool_guid = guid; 255 currdev.root_guid = 0; 256 set_currdev_devdesc((struct devdesc *)&currdev); 257 devname = efi_fmtdev(&currdev); 258 init_zfs_bootenv(devname); 259 260 return (sanity_check_currdev()); 261 } 262 #endif 263 264 static bool 265 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 266 { 267 uint64_t guid; 268 269 #ifdef EFI_ZFS_BOOT 270 /* 271 * If there's a zpool on this device, try it as a ZFS 272 * filesystem, which has somewhat different setup than all 273 * other types of fs due to imperfect loader integration. 274 * This all stems from ZFS being both a device (zpool) and 275 * a filesystem, plus the boot env feature. 276 */ 277 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 278 return (probe_zfs_currdev(guid)); 279 #endif 280 /* 281 * All other filesystems just need the pdinfo 282 * initialized in the standard way. 283 */ 284 set_currdev_pdinfo(pp); 285 return (sanity_check_currdev()); 286 } 287 288 /* 289 * Sometimes we get filenames that are all upper case 290 * and/or have backslashes in them. Filter all this out 291 * if it looks like we need to do so. 292 */ 293 static void 294 fix_dosisms(char *p) 295 { 296 while (*p) { 297 if (isupper(*p)) 298 *p = tolower(*p); 299 else if (*p == '\\') 300 *p = '/'; 301 p++; 302 } 303 } 304 305 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 306 307 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 308 static int 309 match_boot_info(char *boot_info, size_t bisz) 310 { 311 uint32_t attr; 312 uint16_t fplen; 313 size_t len; 314 char *walker, *ep; 315 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 316 pdinfo_t *pp; 317 CHAR16 *descr; 318 char *kernel = NULL; 319 FILEPATH_DEVICE_PATH *fp; 320 struct stat st; 321 CHAR16 *text; 322 323 /* 324 * FreeBSD encodes it's boot loading path into the boot loader 325 * BootXXXX variable. We look for the last one in the path 326 * and use that to load the kernel. However, if we only fine 327 * one DEVICE_PATH, then there's nothing specific and we should 328 * fall back. 329 * 330 * In an ideal world, we'd look at the image handle we were 331 * passed, match up with the loader we are and then return the 332 * next one in the path. This would be most flexible and cover 333 * many chain booting scenarios where you need to use this 334 * boot loader to get to the next boot loader. However, that 335 * doesn't work. We rarely have the path to the image booted 336 * (just the device) so we can't count on that. So, we do the 337 * enxt best thing, we look through the device path(s) passed 338 * in the BootXXXX varaible. If there's only one, we return 339 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 340 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 341 * return BAD_CHOICE for the caller to sort out. 342 */ 343 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 344 return NOT_SPECIFIC; 345 walker = boot_info; 346 ep = walker + bisz; 347 memcpy(&attr, walker, sizeof(attr)); 348 walker += sizeof(attr); 349 memcpy(&fplen, walker, sizeof(fplen)); 350 walker += sizeof(fplen); 351 descr = (CHAR16 *)(intptr_t)walker; 352 len = ucs2len(descr); 353 walker += (len + 1) * sizeof(CHAR16); 354 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 355 edp = (EFI_DEVICE_PATH *)(walker + fplen); 356 if ((char *)edp > ep) 357 return NOT_SPECIFIC; 358 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 359 text = efi_devpath_name(dp); 360 if (text != NULL) { 361 printf(" BootInfo Path: %S\n", text); 362 efi_free_devpath_name(text); 363 } 364 last_dp = dp; 365 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 366 } 367 368 /* 369 * If there's only one item in the list, then nothing was 370 * specified. Or if the last path doesn't have a media 371 * path in it. Those show up as various VenHw() nodes 372 * which are basically opaque to us. Don't count those 373 * as something specifc. 374 */ 375 if (last_dp == first_dp) { 376 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 377 return NOT_SPECIFIC; 378 } 379 if (efi_devpath_to_media_path(last_dp) == NULL) { 380 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 381 return NOT_SPECIFIC; 382 } 383 384 /* 385 * OK. At this point we either have a good path or a bad one. 386 * Let's check. 387 */ 388 pp = efiblk_get_pdinfo_by_device_path(last_dp); 389 if (pp == NULL) { 390 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 391 return BAD_CHOICE; 392 } 393 set_currdev_pdinfo(pp); 394 if (!sanity_check_currdev()) { 395 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 396 return BAD_CHOICE; 397 } 398 399 /* 400 * OK. We've found a device that matches, next we need to check the last 401 * component of the path. If it's a file, then we set the default kernel 402 * to that. Otherwise, just use this as the default root. 403 * 404 * Reminder: we're running very early, before we've parsed the defaults 405 * file, so we may need to have a hack override. 406 */ 407 dp = efi_devpath_last_node(last_dp); 408 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 409 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 410 printf("Using Boot%04x for root partition\n", boot_current); 411 return (BOOT_INFO_OK); /* use currdir, default kernel */ 412 } 413 fp = (FILEPATH_DEVICE_PATH *)dp; 414 ucs2_to_utf8(fp->PathName, &kernel); 415 if (kernel == NULL) { 416 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 417 return (BAD_CHOICE); 418 } 419 if (*kernel == '\\' || isupper(*kernel)) 420 fix_dosisms(kernel); 421 if (stat(kernel, &st) != 0) { 422 free(kernel); 423 printf("Not using Boot%04x: can't find %s\n", boot_current, 424 kernel); 425 return (BAD_CHOICE); 426 } 427 setenv("kernel", kernel, 1); 428 free(kernel); 429 text = efi_devpath_name(last_dp); 430 if (text) { 431 printf("Using Boot%04x %S + %s\n", boot_current, text, 432 kernel); 433 efi_free_devpath_name(text); 434 } 435 436 return (BOOT_INFO_OK); 437 } 438 439 /* 440 * Look at the passed-in boot_info, if any. If we find it then we need 441 * to see if we can find ourselves in the boot chain. If we can, and 442 * there's another specified thing to boot next, assume that the file 443 * is loaded from / and use that for the root filesystem. If can't 444 * find the specified thing, we must fail the boot. If we're last on 445 * the list, then we fallback to looking for the first available / 446 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 447 * partition that has either /boot/defaults/loader.conf on it or 448 * /boot/kernel/kernel (the default kernel) that we can use. 449 * 450 * We always fail if we can't find the right thing. However, as 451 * a concession to buggy UEFI implementations, like u-boot, if 452 * we have determined that the host is violating the UEFI boot 453 * manager protocol, we'll signal the rest of the program that 454 * a drop to the OK boot loader prompt is possible. 455 */ 456 static int 457 find_currdev(bool do_bootmgr, bool is_last, 458 char *boot_info, size_t boot_info_sz) 459 { 460 pdinfo_t *dp, *pp; 461 EFI_DEVICE_PATH *devpath, *copy; 462 EFI_HANDLE h; 463 CHAR16 *text; 464 struct devsw *dev; 465 int unit; 466 uint64_t extra; 467 int rv; 468 char *rootdev; 469 470 /* 471 * First choice: if rootdev is already set, use that, even if 472 * it's wrong. 473 */ 474 rootdev = getenv("rootdev"); 475 if (rootdev != NULL) { 476 printf(" Setting currdev to configured rootdev %s\n", 477 rootdev); 478 set_currdev(rootdev); 479 return (0); 480 } 481 482 /* 483 * Second choice: If uefi_rootdev is set, translate that UEFI device 484 * path to the loader's internal name and use that. 485 */ 486 do { 487 rootdev = getenv("uefi_rootdev"); 488 if (rootdev == NULL) 489 break; 490 devpath = efi_name_to_devpath(rootdev); 491 if (devpath == NULL) 492 break; 493 dp = efiblk_get_pdinfo_by_device_path(devpath); 494 efi_devpath_free(devpath); 495 if (dp == NULL) 496 break; 497 printf(" Setting currdev to UEFI path %s\n", 498 rootdev); 499 set_currdev_pdinfo(dp); 500 return (0); 501 } while (0); 502 503 /* 504 * Third choice: If we can find out image boot_info, and there's 505 * a follow-on boot image in that boot_info, use that. In this 506 * case root will be the partition specified in that image and 507 * we'll load the kernel specified by the file path. Should there 508 * not be a filepath, we use the default. This filepath overrides 509 * loader.conf. 510 */ 511 if (do_bootmgr) { 512 rv = match_boot_info(boot_info, boot_info_sz); 513 switch (rv) { 514 case BOOT_INFO_OK: /* We found it */ 515 return (0); 516 case BAD_CHOICE: /* specified file not found -> error */ 517 /* XXX do we want to have an escape hatch for last in boot order? */ 518 return (ENOENT); 519 } /* Nothing specified, try normal match */ 520 } 521 522 #ifdef EFI_ZFS_BOOT 523 /* 524 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 525 * it found, if it's sane. ZFS is the only thing that looks for 526 * disks and pools to boot. This may change in the future, however, 527 * if we allow specifying which pool to boot from via UEFI variables 528 * rather than the bootenv stuff that FreeBSD uses today. 529 */ 530 if (pool_guid != 0) { 531 printf("Trying ZFS pool\n"); 532 if (probe_zfs_currdev(pool_guid)) 533 return (0); 534 } 535 #endif /* EFI_ZFS_BOOT */ 536 537 /* 538 * Try to find the block device by its handle based on the 539 * image we're booting. If we can't find a sane partition, 540 * search all the other partitions of the disk. We do not 541 * search other disks because it's a violation of the UEFI 542 * boot protocol to do so. We fail and let UEFI go on to 543 * the next candidate. 544 */ 545 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 546 if (dp != NULL) { 547 text = efi_devpath_name(dp->pd_devpath); 548 if (text != NULL) { 549 printf("Trying ESP: %S\n", text); 550 efi_free_devpath_name(text); 551 } 552 set_currdev_pdinfo(dp); 553 if (sanity_check_currdev()) 554 return (0); 555 if (dp->pd_parent != NULL) { 556 pdinfo_t *espdp = dp; 557 dp = dp->pd_parent; 558 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 559 /* Already tried the ESP */ 560 if (espdp == pp) 561 continue; 562 /* 563 * Roll up the ZFS special case 564 * for those partitions that have 565 * zpools on them. 566 */ 567 text = efi_devpath_name(pp->pd_devpath); 568 if (text != NULL) { 569 printf("Trying: %S\n", text); 570 efi_free_devpath_name(text); 571 } 572 if (try_as_currdev(dp, pp)) 573 return (0); 574 } 575 } 576 } 577 578 /* 579 * Try the device handle from our loaded image first. If that 580 * fails, use the device path from the loaded image and see if 581 * any of the nodes in that path match one of the enumerated 582 * handles. Currently, this handle list is only for netboot. 583 */ 584 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 585 set_currdev_devsw(dev, unit); 586 if (sanity_check_currdev()) 587 return (0); 588 } 589 590 copy = NULL; 591 devpath = efi_lookup_image_devpath(IH); 592 while (devpath != NULL) { 593 h = efi_devpath_handle(devpath); 594 if (h == NULL) 595 break; 596 597 free(copy); 598 copy = NULL; 599 600 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 601 set_currdev_devsw(dev, unit); 602 if (sanity_check_currdev()) 603 return (0); 604 } 605 606 devpath = efi_lookup_devpath(h); 607 if (devpath != NULL) { 608 copy = efi_devpath_trim(devpath); 609 devpath = copy; 610 } 611 } 612 free(copy); 613 614 return (ENOENT); 615 } 616 617 static bool 618 interactive_interrupt(const char *msg) 619 { 620 time_t now, then, last; 621 622 last = 0; 623 now = then = getsecs(); 624 printf("%s\n", msg); 625 if (fail_timeout == -2) /* Always break to OK */ 626 return (true); 627 if (fail_timeout == -1) /* Never break to OK */ 628 return (false); 629 do { 630 if (last != now) { 631 printf("press any key to interrupt reboot in %d seconds\r", 632 fail_timeout - (int)(now - then)); 633 last = now; 634 } 635 636 /* XXX no pause or timeout wait for char */ 637 if (ischar()) 638 return (true); 639 now = getsecs(); 640 } while (now - then < fail_timeout); 641 return (false); 642 } 643 644 static int 645 parse_args(int argc, CHAR16 *argv[]) 646 { 647 int i, j, howto; 648 bool vargood; 649 char var[128]; 650 651 /* 652 * Parse the args to set the console settings, etc 653 * boot1.efi passes these in, if it can read /boot.config or /boot/config 654 * or iPXE may be setup to pass these in. Or the optional argument in the 655 * boot environment was used to pass these arguments in (in which case 656 * neither /boot.config nor /boot/config are consulted). 657 * 658 * Loop through the args, and for each one that contains an '=' that is 659 * not the first character, add it to the environment. This allows 660 * loader and kernel env vars to be passed on the command line. Convert 661 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 662 * method is flawed for non-ASCII characters). 663 */ 664 howto = 0; 665 for (i = 1; i < argc; i++) { 666 cpy16to8(argv[i], var, sizeof(var)); 667 howto |= boot_parse_arg(var); 668 } 669 670 return (howto); 671 } 672 673 static void 674 setenv_int(const char *key, int val) 675 { 676 char buf[20]; 677 678 snprintf(buf, sizeof(buf), "%d", val); 679 setenv(key, buf, 1); 680 } 681 682 /* 683 * Parse ConOut (the list of consoles active) and see if we can find a 684 * serial port and/or a video port. It would be nice to also walk the 685 * ACPI name space to map the UID for the serial port to a port. The 686 * latter is especially hard. 687 */ 688 static int 689 parse_uefi_con_out(void) 690 { 691 int how, rv; 692 int vid_seen = 0, com_seen = 0, seen = 0; 693 size_t sz; 694 char buf[4096], *ep; 695 EFI_DEVICE_PATH *node; 696 ACPI_HID_DEVICE_PATH *acpi; 697 UART_DEVICE_PATH *uart; 698 bool pci_pending; 699 700 how = 0; 701 sz = sizeof(buf); 702 rv = efi_global_getenv("ConOut", buf, &sz); 703 if (rv != EFI_SUCCESS) 704 goto out; 705 ep = buf + sz; 706 node = (EFI_DEVICE_PATH *)buf; 707 while ((char *)node < ep) { 708 pci_pending = false; 709 if (DevicePathType(node) == ACPI_DEVICE_PATH && 710 DevicePathSubType(node) == ACPI_DP) { 711 /* Check for Serial node */ 712 acpi = (void *)node; 713 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 714 setenv_int("efi_8250_uid", acpi->UID); 715 com_seen = ++seen; 716 } 717 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 718 DevicePathSubType(node) == MSG_UART_DP) { 719 720 uart = (void *)node; 721 setenv_int("efi_com_speed", uart->BaudRate); 722 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 723 DevicePathSubType(node) == ACPI_ADR_DP) { 724 /* Check for AcpiAdr() Node for video */ 725 vid_seen = ++seen; 726 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 727 DevicePathSubType(node) == HW_PCI_DP) { 728 /* 729 * Note, vmware fusion has a funky console device 730 * PciRoot(0x0)/Pci(0xf,0x0) 731 * which we can only detect at the end since we also 732 * have to cope with: 733 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 734 * so only match it if it's last. 735 */ 736 pci_pending = true; 737 } 738 node = NextDevicePathNode(node); /* Skip the end node */ 739 } 740 if (pci_pending && vid_seen == 0) 741 vid_seen = ++seen; 742 743 /* 744 * Truth table for RB_MULTIPLE | RB_SERIAL 745 * Value Result 746 * 0 Use only video console 747 * RB_SERIAL Use only serial console 748 * RB_MULTIPLE Use both video and serial console 749 * (but video is primary so gets rc messages) 750 * both Use both video and serial console 751 * (but serial is primary so gets rc messages) 752 * 753 * Try to honor this as best we can. If only one of serial / video 754 * found, then use that. Otherwise, use the first one we found. 755 * This also implies if we found nothing, default to video. 756 */ 757 how = 0; 758 if (vid_seen && com_seen) { 759 how |= RB_MULTIPLE; 760 if (com_seen < vid_seen) 761 how |= RB_SERIAL; 762 } else if (com_seen) 763 how |= RB_SERIAL; 764 out: 765 return (how); 766 } 767 768 void 769 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 770 { 771 pdinfo_t *dp; 772 struct stat st; 773 int fd = -1; 774 char *env = NULL; 775 776 dp = efiblk_get_pdinfo_by_handle(h); 777 if (dp == NULL) 778 return; 779 set_currdev_pdinfo(dp); 780 if (stat(env_fn, &st) != 0) 781 return; 782 fd = open(env_fn, O_RDONLY); 783 if (fd == -1) 784 return; 785 env = malloc(st.st_size + 1); 786 if (env == NULL) 787 goto out; 788 if (read(fd, env, st.st_size) != st.st_size) 789 goto out; 790 env[st.st_size] = '\0'; 791 boot_parse_cmdline(env); 792 out: 793 free(env); 794 close(fd); 795 } 796 797 static void 798 read_loader_env(const char *name, char *def_fn, bool once) 799 { 800 UINTN len; 801 char *fn, *freeme = NULL; 802 803 len = 0; 804 fn = def_fn; 805 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 806 freeme = fn = malloc(len + 1); 807 if (fn != NULL) { 808 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 809 free(fn); 810 fn = NULL; 811 printf( 812 "Can't fetch FreeBSD::%s we know is there\n", name); 813 } else { 814 /* 815 * if tagged as 'once' delete the env variable so we 816 * only use it once. 817 */ 818 if (once) 819 efi_freebsd_delenv(name); 820 /* 821 * We malloced 1 more than len above, then redid the call. 822 * so now we have room at the end of the string to NUL terminate 823 * it here, even if the typical idium would have '- 1' here to 824 * not overflow. len should be the same on return both times. 825 */ 826 fn[len] = '\0'; 827 } 828 } else { 829 printf( 830 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 831 len, name); 832 } 833 } 834 if (fn) { 835 printf(" Reading loader env vars from %s\n", fn); 836 parse_loader_efi_config(boot_img->DeviceHandle, fn); 837 } 838 } 839 840 841 842 EFI_STATUS 843 main(int argc, CHAR16 *argv[]) 844 { 845 EFI_GUID *guid; 846 int howto, i, uhowto; 847 UINTN k; 848 bool has_kbd, is_last; 849 char *s; 850 EFI_DEVICE_PATH *imgpath; 851 CHAR16 *text; 852 EFI_STATUS rv; 853 size_t sz, bosz = 0, bisz = 0; 854 UINT16 boot_order[100]; 855 char boot_info[4096]; 856 char buf[32]; 857 bool uefi_boot_mgr; 858 859 archsw.arch_autoload = efi_autoload; 860 archsw.arch_getdev = efi_getdev; 861 archsw.arch_copyin = efi_copyin; 862 archsw.arch_copyout = efi_copyout; 863 archsw.arch_readin = efi_readin; 864 archsw.arch_zfs_probe = efi_zfs_probe; 865 866 /* Get our loaded image protocol interface structure. */ 867 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 868 869 /* 870 * Chicken-and-egg problem; we want to have console output early, but 871 * some console attributes may depend on reading from eg. the boot 872 * device, which we can't do yet. We can use printf() etc. once this is 873 * done. So, we set it to the efi console, then call console init. This 874 * gets us printf early, but also primes the pump for all future console 875 * changes to take effect, regardless of where they come from. 876 */ 877 setenv("console", "efi", 1); 878 cons_probe(); 879 880 /* Init the time source */ 881 efi_time_init(); 882 883 /* 884 * Initialise the block cache. Set the upper limit. 885 */ 886 bcache_init(32768, 512); 887 888 /* 889 * Scan the BLOCK IO MEDIA handles then 890 * march through the device switch probing for things. 891 */ 892 i = efipart_inithandles(); 893 if (i != 0 && i != ENOENT) { 894 printf("efipart_inithandles failed with ERRNO %d, expect " 895 "failures\n", i); 896 } 897 898 for (i = 0; devsw[i] != NULL; i++) 899 if (devsw[i]->dv_init != NULL) 900 (devsw[i]->dv_init)(); 901 902 /* 903 * Detect console settings two different ways: one via the command 904 * args (eg -h) or via the UEFI ConOut variable. 905 */ 906 has_kbd = has_keyboard(); 907 howto = parse_args(argc, argv); 908 if (!has_kbd && (howto & RB_PROBE)) 909 howto |= RB_SERIAL | RB_MULTIPLE; 910 howto &= ~RB_PROBE; 911 uhowto = parse_uefi_con_out(); 912 913 /* 914 * Read additional environment variables from the boot device's 915 * "LoaderEnv" file. Any boot loader environment variable may be set 916 * there, which are subtly different than loader.conf variables. Only 917 * the 'simple' ones may be set so things like foo_load="YES" won't work 918 * for two reasons. First, the parser is simplistic and doesn't grok 919 * quotes. Second, because the variables that cause an action to happen 920 * are parsed by the lua, 4th or whatever code that's not yet 921 * loaded. This is relative to the root directory when loader.efi is 922 * loaded off the UFS root drive (when chain booted), or from the ESP 923 * when directly loaded by the BIOS. 924 * 925 * We also read in NextLoaderEnv if it was specified. This allows next boot 926 * functionality to be implemented and to override anything in LoaderEnv. 927 */ 928 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 929 read_loader_env("NextLoaderEnv", NULL, true); 930 931 /* 932 * We now have two notions of console. howto should be viewed as 933 * overrides. If console is already set, don't set it again. 934 */ 935 #define VIDEO_ONLY 0 936 #define SERIAL_ONLY RB_SERIAL 937 #define VID_SER_BOTH RB_MULTIPLE 938 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 939 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 940 if (strcmp(getenv("console"), "efi") == 0) { 941 if ((howto & CON_MASK) == 0) { 942 /* No override, uhowto is controlling and efi cons is perfect */ 943 howto = howto | (uhowto & CON_MASK); 944 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 945 /* override matches what UEFI told us, efi console is perfect */ 946 } else if ((uhowto & (CON_MASK)) != 0) { 947 /* 948 * We detected a serial console on ConOut. All possible 949 * overrides include serial. We can't really override what efi 950 * gives us, so we use it knowing it's the best choice. 951 */ 952 /* Do nothing */ 953 } else { 954 /* 955 * We detected some kind of serial in the override, but ConOut 956 * has no serial, so we have to sort out which case it really is. 957 */ 958 switch (howto & CON_MASK) { 959 case SERIAL_ONLY: 960 setenv("console", "comconsole", 1); 961 break; 962 case VID_SER_BOTH: 963 setenv("console", "efi comconsole", 1); 964 break; 965 case SER_VID_BOTH: 966 setenv("console", "comconsole efi", 1); 967 break; 968 /* case VIDEO_ONLY can't happen -- it's the first if above */ 969 } 970 } 971 } 972 973 /* 974 * howto is set now how we want to export the flags to the kernel, so 975 * set the env based on it. 976 */ 977 boot_howto_to_env(howto); 978 979 if (efi_copy_init()) { 980 printf("failed to allocate staging area\n"); 981 return (EFI_BUFFER_TOO_SMALL); 982 } 983 984 if ((s = getenv("fail_timeout")) != NULL) 985 fail_timeout = strtol(s, NULL, 10); 986 987 printf("%s\n", bootprog_info); 988 printf(" Command line arguments:"); 989 for (i = 0; i < argc; i++) 990 printf(" %S", argv[i]); 991 printf("\n"); 992 993 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 994 ST->Hdr.Revision & 0xffff); 995 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 996 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 997 printf(" Console: %s (%#x)\n", getenv("console"), howto); 998 999 /* Determine the devpath of our image so we can prefer it. */ 1000 text = efi_devpath_name(boot_img->FilePath); 1001 if (text != NULL) { 1002 printf(" Load Path: %S\n", text); 1003 efi_setenv_freebsd_wcs("LoaderPath", text); 1004 efi_free_devpath_name(text); 1005 } 1006 1007 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1008 (void **)&imgpath); 1009 if (rv == EFI_SUCCESS) { 1010 text = efi_devpath_name(imgpath); 1011 if (text != NULL) { 1012 printf(" Load Device: %S\n", text); 1013 efi_setenv_freebsd_wcs("LoaderDev", text); 1014 efi_free_devpath_name(text); 1015 } 1016 } 1017 1018 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1019 printf(" Ignoring UEFI boot manager\n"); 1020 uefi_boot_mgr = false; 1021 } else { 1022 uefi_boot_mgr = true; 1023 boot_current = 0; 1024 sz = sizeof(boot_current); 1025 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1026 if (rv == EFI_SUCCESS) 1027 printf(" BootCurrent: %04x\n", boot_current); 1028 else { 1029 boot_current = 0xffff; 1030 uefi_boot_mgr = false; 1031 } 1032 1033 sz = sizeof(boot_order); 1034 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1035 if (rv == EFI_SUCCESS) { 1036 printf(" BootOrder:"); 1037 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1038 printf(" %04x%s", boot_order[i], 1039 boot_order[i] == boot_current ? "[*]" : ""); 1040 printf("\n"); 1041 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1042 bosz = sz; 1043 } else if (uefi_boot_mgr) { 1044 /* 1045 * u-boot doesn't set BootOrder, but otherwise participates in the 1046 * boot manager protocol. So we fake it here and don't consider it 1047 * a failure. 1048 */ 1049 bosz = sizeof(boot_order[0]); 1050 boot_order[0] = boot_current; 1051 is_last = true; 1052 } 1053 } 1054 1055 /* 1056 * Next, find the boot info structure the UEFI boot manager is 1057 * supposed to setup. We need this so we can walk through it to 1058 * find where we are in the booting process and what to try to 1059 * boot next. 1060 */ 1061 if (uefi_boot_mgr) { 1062 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1063 sz = sizeof(boot_info); 1064 rv = efi_global_getenv(buf, &boot_info, &sz); 1065 if (rv == EFI_SUCCESS) 1066 bisz = sz; 1067 else 1068 uefi_boot_mgr = false; 1069 } 1070 1071 /* 1072 * Disable the watchdog timer. By default the boot manager sets 1073 * the timer to 5 minutes before invoking a boot option. If we 1074 * want to return to the boot manager, we have to disable the 1075 * watchdog timer and since we're an interactive program, we don't 1076 * want to wait until the user types "quit". The timer may have 1077 * fired by then. We don't care if this fails. It does not prevent 1078 * normal functioning in any way... 1079 */ 1080 BS->SetWatchdogTimer(0, 0, 0, NULL); 1081 1082 /* 1083 * Initialize the trusted/forbidden certificates from UEFI. 1084 * They will be later used to verify the manifest(s), 1085 * which should contain hashes of verified files. 1086 * This needs to be initialized before any configuration files 1087 * are loaded. 1088 */ 1089 #ifdef EFI_SECUREBOOT 1090 ve_efi_init(); 1091 #endif 1092 1093 /* 1094 * Try and find a good currdev based on the image that was booted. 1095 * It might be desirable here to have a short pause to allow falling 1096 * through to the boot loader instead of returning instantly to follow 1097 * the boot protocol and also allow an escape hatch for users wishing 1098 * to try something different. 1099 */ 1100 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1101 if (uefi_boot_mgr && 1102 !interactive_interrupt("Failed to find bootable partition")) 1103 return (EFI_NOT_FOUND); 1104 1105 efi_init_environment(); 1106 1107 #if !defined(__arm__) 1108 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1109 guid = &ST->ConfigurationTable[k].VendorGuid; 1110 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1111 char buf[40]; 1112 1113 snprintf(buf, sizeof(buf), "%p", 1114 ST->ConfigurationTable[k].VendorTable); 1115 setenv("hint.smbios.0.mem", buf, 1); 1116 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1117 break; 1118 } 1119 } 1120 #endif 1121 1122 interact(); /* doesn't return */ 1123 1124 return (EFI_SUCCESS); /* keep compiler happy */ 1125 } 1126 1127 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1128 1129 static int 1130 command_poweroff(int argc __unused, char *argv[] __unused) 1131 { 1132 int i; 1133 1134 for (i = 0; devsw[i] != NULL; ++i) 1135 if (devsw[i]->dv_cleanup != NULL) 1136 (devsw[i]->dv_cleanup)(); 1137 1138 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1139 1140 /* NOTREACHED */ 1141 return (CMD_ERROR); 1142 } 1143 1144 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1145 1146 static int 1147 command_reboot(int argc, char *argv[]) 1148 { 1149 int i; 1150 1151 for (i = 0; devsw[i] != NULL; ++i) 1152 if (devsw[i]->dv_cleanup != NULL) 1153 (devsw[i]->dv_cleanup)(); 1154 1155 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1156 1157 /* NOTREACHED */ 1158 return (CMD_ERROR); 1159 } 1160 1161 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1162 1163 static int 1164 command_quit(int argc, char *argv[]) 1165 { 1166 exit(0); 1167 return (CMD_OK); 1168 } 1169 1170 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1171 1172 static int 1173 command_memmap(int argc __unused, char *argv[] __unused) 1174 { 1175 UINTN sz; 1176 EFI_MEMORY_DESCRIPTOR *map, *p; 1177 UINTN key, dsz; 1178 UINT32 dver; 1179 EFI_STATUS status; 1180 int i, ndesc; 1181 char line[80]; 1182 1183 sz = 0; 1184 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1185 if (status != EFI_BUFFER_TOO_SMALL) { 1186 printf("Can't determine memory map size\n"); 1187 return (CMD_ERROR); 1188 } 1189 map = malloc(sz); 1190 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1191 if (EFI_ERROR(status)) { 1192 printf("Can't read memory map\n"); 1193 return (CMD_ERROR); 1194 } 1195 1196 ndesc = sz / dsz; 1197 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1198 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1199 pager_open(); 1200 if (pager_output(line)) { 1201 pager_close(); 1202 return (CMD_OK); 1203 } 1204 1205 for (i = 0, p = map; i < ndesc; 1206 i++, p = NextMemoryDescriptor(p, dsz)) { 1207 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1208 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1209 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1210 if (pager_output(line)) 1211 break; 1212 1213 if (p->Attribute & EFI_MEMORY_UC) 1214 printf("UC "); 1215 if (p->Attribute & EFI_MEMORY_WC) 1216 printf("WC "); 1217 if (p->Attribute & EFI_MEMORY_WT) 1218 printf("WT "); 1219 if (p->Attribute & EFI_MEMORY_WB) 1220 printf("WB "); 1221 if (p->Attribute & EFI_MEMORY_UCE) 1222 printf("UCE "); 1223 if (p->Attribute & EFI_MEMORY_WP) 1224 printf("WP "); 1225 if (p->Attribute & EFI_MEMORY_RP) 1226 printf("RP "); 1227 if (p->Attribute & EFI_MEMORY_XP) 1228 printf("XP "); 1229 if (p->Attribute & EFI_MEMORY_NV) 1230 printf("NV "); 1231 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1232 printf("MR "); 1233 if (p->Attribute & EFI_MEMORY_RO) 1234 printf("RO "); 1235 if (pager_output("\n")) 1236 break; 1237 } 1238 1239 pager_close(); 1240 return (CMD_OK); 1241 } 1242 1243 COMMAND_SET(configuration, "configuration", "print configuration tables", 1244 command_configuration); 1245 1246 static int 1247 command_configuration(int argc, char *argv[]) 1248 { 1249 UINTN i; 1250 char *name; 1251 1252 printf("NumberOfTableEntries=%lu\n", 1253 (unsigned long)ST->NumberOfTableEntries); 1254 1255 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1256 EFI_GUID *guid; 1257 1258 printf(" "); 1259 guid = &ST->ConfigurationTable[i].VendorGuid; 1260 1261 if (efi_guid_to_name(guid, &name) == true) { 1262 printf(name); 1263 free(name); 1264 } else { 1265 printf("Error while translating UUID to name"); 1266 } 1267 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1268 } 1269 1270 return (CMD_OK); 1271 } 1272 1273 1274 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1275 1276 static int 1277 command_mode(int argc, char *argv[]) 1278 { 1279 UINTN cols, rows; 1280 unsigned int mode; 1281 int i; 1282 char *cp; 1283 EFI_STATUS status; 1284 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1285 1286 conout = ST->ConOut; 1287 1288 if (argc > 1) { 1289 mode = strtol(argv[1], &cp, 0); 1290 if (cp[0] != '\0') { 1291 printf("Invalid mode\n"); 1292 return (CMD_ERROR); 1293 } 1294 status = conout->QueryMode(conout, mode, &cols, &rows); 1295 if (EFI_ERROR(status)) { 1296 printf("invalid mode %d\n", mode); 1297 return (CMD_ERROR); 1298 } 1299 status = conout->SetMode(conout, mode); 1300 if (EFI_ERROR(status)) { 1301 printf("couldn't set mode %d\n", mode); 1302 return (CMD_ERROR); 1303 } 1304 (void) efi_cons_update_mode(); 1305 return (CMD_OK); 1306 } 1307 1308 printf("Current mode: %d\n", conout->Mode->Mode); 1309 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1310 status = conout->QueryMode(conout, i, &cols, &rows); 1311 if (EFI_ERROR(status)) 1312 continue; 1313 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1314 (unsigned)rows); 1315 } 1316 1317 if (i != 0) 1318 printf("Select a mode with the command \"mode <number>\"\n"); 1319 1320 return (CMD_OK); 1321 } 1322 1323 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1324 1325 static int 1326 command_lsefi(int argc __unused, char *argv[] __unused) 1327 { 1328 char *name; 1329 EFI_HANDLE *buffer = NULL; 1330 EFI_HANDLE handle; 1331 UINTN bufsz = 0, i, j; 1332 EFI_STATUS status; 1333 int ret = 0; 1334 1335 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1336 if (status != EFI_BUFFER_TOO_SMALL) { 1337 snprintf(command_errbuf, sizeof (command_errbuf), 1338 "unexpected error: %lld", (long long)status); 1339 return (CMD_ERROR); 1340 } 1341 if ((buffer = malloc(bufsz)) == NULL) { 1342 sprintf(command_errbuf, "out of memory"); 1343 return (CMD_ERROR); 1344 } 1345 1346 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1347 if (EFI_ERROR(status)) { 1348 free(buffer); 1349 snprintf(command_errbuf, sizeof (command_errbuf), 1350 "LocateHandle() error: %lld", (long long)status); 1351 return (CMD_ERROR); 1352 } 1353 1354 pager_open(); 1355 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1356 UINTN nproto = 0; 1357 EFI_GUID **protocols = NULL; 1358 1359 handle = buffer[i]; 1360 printf("Handle %p", handle); 1361 if (pager_output("\n")) 1362 break; 1363 /* device path */ 1364 1365 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1366 if (EFI_ERROR(status)) { 1367 snprintf(command_errbuf, sizeof (command_errbuf), 1368 "ProtocolsPerHandle() error: %lld", 1369 (long long)status); 1370 continue; 1371 } 1372 1373 for (j = 0; j < nproto; j++) { 1374 if (efi_guid_to_name(protocols[j], &name) == true) { 1375 printf(" %s", name); 1376 free(name); 1377 } else { 1378 printf("Error while translating UUID to name"); 1379 } 1380 if ((ret = pager_output("\n")) != 0) 1381 break; 1382 } 1383 BS->FreePool(protocols); 1384 if (ret != 0) 1385 break; 1386 } 1387 pager_close(); 1388 free(buffer); 1389 return (CMD_OK); 1390 } 1391 1392 #ifdef LOADER_FDT_SUPPORT 1393 extern int command_fdt_internal(int argc, char *argv[]); 1394 1395 /* 1396 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1397 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1398 * (which uses static pointer), we're defining wrapper function, which 1399 * calls the proper fdt handling routine. 1400 */ 1401 static int 1402 command_fdt(int argc, char *argv[]) 1403 { 1404 1405 return (command_fdt_internal(argc, argv)); 1406 } 1407 1408 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1409 #endif 1410 1411 /* 1412 * Chain load another efi loader. 1413 */ 1414 static int 1415 command_chain(int argc, char *argv[]) 1416 { 1417 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1418 EFI_HANDLE loaderhandle; 1419 EFI_LOADED_IMAGE *loaded_image; 1420 EFI_STATUS status; 1421 struct stat st; 1422 struct devdesc *dev; 1423 char *name, *path; 1424 void *buf; 1425 int fd; 1426 1427 if (argc < 2) { 1428 command_errmsg = "wrong number of arguments"; 1429 return (CMD_ERROR); 1430 } 1431 1432 name = argv[1]; 1433 1434 if ((fd = open(name, O_RDONLY)) < 0) { 1435 command_errmsg = "no such file"; 1436 return (CMD_ERROR); 1437 } 1438 1439 #ifdef LOADER_VERIEXEC 1440 if (verify_file(fd, name, 0, VE_MUST) < 0) { 1441 sprintf(command_errbuf, "can't verify: %s", name); 1442 close(fd); 1443 return (CMD_ERROR); 1444 } 1445 #endif 1446 1447 if (fstat(fd, &st) < -1) { 1448 command_errmsg = "stat failed"; 1449 close(fd); 1450 return (CMD_ERROR); 1451 } 1452 1453 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1454 if (status != EFI_SUCCESS) { 1455 command_errmsg = "failed to allocate buffer"; 1456 close(fd); 1457 return (CMD_ERROR); 1458 } 1459 if (read(fd, buf, st.st_size) != st.st_size) { 1460 command_errmsg = "error while reading the file"; 1461 (void)BS->FreePool(buf); 1462 close(fd); 1463 return (CMD_ERROR); 1464 } 1465 close(fd); 1466 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1467 (void)BS->FreePool(buf); 1468 if (status != EFI_SUCCESS) { 1469 command_errmsg = "LoadImage failed"; 1470 return (CMD_ERROR); 1471 } 1472 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1473 (void **)&loaded_image); 1474 1475 if (argc > 2) { 1476 int i, len = 0; 1477 CHAR16 *argp; 1478 1479 for (i = 2; i < argc; i++) 1480 len += strlen(argv[i]) + 1; 1481 1482 len *= sizeof (*argp); 1483 loaded_image->LoadOptions = argp = malloc (len); 1484 loaded_image->LoadOptionsSize = len; 1485 for (i = 2; i < argc; i++) { 1486 char *ptr = argv[i]; 1487 while (*ptr) 1488 *(argp++) = *(ptr++); 1489 *(argp++) = ' '; 1490 } 1491 *(--argv) = 0; 1492 } 1493 1494 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1495 #ifdef EFI_ZFS_BOOT 1496 struct zfs_devdesc *z_dev; 1497 #endif 1498 struct disk_devdesc *d_dev; 1499 pdinfo_t *hd, *pd; 1500 1501 switch (dev->d_dev->dv_type) { 1502 #ifdef EFI_ZFS_BOOT 1503 case DEVT_ZFS: 1504 z_dev = (struct zfs_devdesc *)dev; 1505 loaded_image->DeviceHandle = 1506 efizfs_get_handle_by_guid(z_dev->pool_guid); 1507 break; 1508 #endif 1509 case DEVT_NET: 1510 loaded_image->DeviceHandle = 1511 efi_find_handle(dev->d_dev, dev->d_unit); 1512 break; 1513 default: 1514 hd = efiblk_get_pdinfo(dev); 1515 if (STAILQ_EMPTY(&hd->pd_part)) { 1516 loaded_image->DeviceHandle = hd->pd_handle; 1517 break; 1518 } 1519 d_dev = (struct disk_devdesc *)dev; 1520 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1521 /* 1522 * d_partition should be 255 1523 */ 1524 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1525 loaded_image->DeviceHandle = 1526 pd->pd_handle; 1527 break; 1528 } 1529 } 1530 break; 1531 } 1532 } 1533 1534 dev_cleanup(); 1535 status = BS->StartImage(loaderhandle, NULL, NULL); 1536 if (status != EFI_SUCCESS) { 1537 command_errmsg = "StartImage failed"; 1538 free(loaded_image->LoadOptions); 1539 loaded_image->LoadOptions = NULL; 1540 status = BS->UnloadImage(loaded_image); 1541 return (CMD_ERROR); 1542 } 1543 1544 return (CMD_ERROR); /* not reached */ 1545 } 1546 1547 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1548