xref: /freebsd/stand/efi/loader/copy.c (revision 59f5f100b774de8824fb2fc1a8a11a93bbc2dafd)
1 /*-
2  * Copyright (c) 2013 The FreeBSD Foundation
3  *
4  * This software was developed by Benno Rice under sponsorship from
5  * the FreeBSD Foundation.
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 
30 #include <stand.h>
31 #include <bootstrap.h>
32 
33 #include <efi.h>
34 #include <efilib.h>
35 
36 #include "loader_efi.h"
37 
38 #define	M(x)	((x) * 1024 * 1024)
39 #define	G(x)	(1ULL * (x) * 1024 * 1024 * 1024)
40 
41 #if defined(__amd64__)
42 #include <machine/cpufunc.h>
43 #include <machine/specialreg.h>
44 #include <machine/vmparam.h>
45 
46 /*
47  * The code is excerpted from sys/x86/x86/identcpu.c: identify_cpu(),
48  * identify_hypervisor(), and dev/hyperv/vmbus/hyperv.c: hyperv_identify().
49  */
50 #define CPUID_LEAF_HV_MAXLEAF		0x40000000
51 #define CPUID_LEAF_HV_INTERFACE		0x40000001
52 #define CPUID_LEAF_HV_FEATURES		0x40000003
53 #define CPUID_LEAF_HV_LIMITS		0x40000005
54 #define CPUID_HV_IFACE_HYPERV		0x31237648	/* HV#1 */
55 #define CPUID_HV_MSR_TIME_REFCNT	0x0002	/* MSR_HV_TIME_REF_COUNT */
56 #define CPUID_HV_MSR_HYPERCALL		0x0020
57 
58 static int
59 running_on_hyperv(void)
60 {
61 	char hv_vendor[16];
62 	uint32_t regs[4];
63 
64 	do_cpuid(1, regs);
65 	if ((regs[2] & CPUID2_HV) == 0)
66 		return (0);
67 
68 	do_cpuid(CPUID_LEAF_HV_MAXLEAF, regs);
69 	if (regs[0] < CPUID_LEAF_HV_LIMITS)
70 		return (0);
71 
72 	((uint32_t *)&hv_vendor)[0] = regs[1];
73 	((uint32_t *)&hv_vendor)[1] = regs[2];
74 	((uint32_t *)&hv_vendor)[2] = regs[3];
75 	hv_vendor[12] = '\0';
76 	if (strcmp(hv_vendor, "Microsoft Hv") != 0)
77 		return (0);
78 
79 	do_cpuid(CPUID_LEAF_HV_INTERFACE, regs);
80 	if (regs[0] != CPUID_HV_IFACE_HYPERV)
81 		return (0);
82 
83 	do_cpuid(CPUID_LEAF_HV_FEATURES, regs);
84 	if ((regs[0] & CPUID_HV_MSR_HYPERCALL) == 0)
85 		return (0);
86 	if ((regs[0] & CPUID_HV_MSR_TIME_REFCNT) == 0)
87 		return (0);
88 
89 	return (1);
90 }
91 
92 static void
93 efi_verify_staging_size(unsigned long *nr_pages)
94 {
95 	UINTN sz;
96 	EFI_MEMORY_DESCRIPTOR *map = NULL, *p;
97 	EFI_PHYSICAL_ADDRESS start, end;
98 	UINTN key, dsz;
99 	UINT32 dver;
100 	EFI_STATUS status;
101 	int i, ndesc;
102 	unsigned long available_pages = 0;
103 
104 	sz = 0;
105 
106 	for (;;) {
107 		status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
108 		if (!EFI_ERROR(status))
109 			break;
110 
111 		if (status != EFI_BUFFER_TOO_SMALL) {
112 			printf("Can't read memory map: %lu\n",
113 			    EFI_ERROR_CODE(status));
114 			goto out;
115 		}
116 
117 		free(map);
118 
119 		/* Allocate 10 descriptors more than the size reported,
120 		 * to allow for any fragmentation caused by calling
121 		 * malloc */
122 		map = malloc(sz + (10 * dsz));
123 		if (map == NULL) {
124 			printf("Unable to allocate memory\n");
125 			goto out;
126 		}
127 	}
128 
129 	ndesc = sz / dsz;
130 	for (i = 0, p = map; i < ndesc;
131 	     i++, p = NextMemoryDescriptor(p, dsz)) {
132 		start = p->PhysicalStart;
133 		end = start + p->NumberOfPages * EFI_PAGE_SIZE;
134 
135 		if (KERNLOAD < start || KERNLOAD >= end)
136 			continue;
137 
138 		available_pages = p->NumberOfPages -
139 			((KERNLOAD - start) >> EFI_PAGE_SHIFT);
140 		break;
141 	}
142 
143 	if (available_pages == 0) {
144 		printf("Can't find valid memory map for staging area!\n");
145 		goto out;
146 	}
147 
148 	i++;
149 	p = NextMemoryDescriptor(p, dsz);
150 
151 	for ( ; i < ndesc;
152 	     i++, p = NextMemoryDescriptor(p, dsz)) {
153 		if (p->Type != EfiConventionalMemory &&
154 		    p->Type != EfiLoaderData)
155 			break;
156 
157 		if (p->PhysicalStart != end)
158 			break;
159 
160 		end = p->PhysicalStart + p->NumberOfPages * EFI_PAGE_SIZE;
161 
162 		available_pages += p->NumberOfPages;
163 	}
164 
165 	if (*nr_pages > available_pages) {
166 		printf("Staging area's size is reduced: %ld -> %ld!\n",
167 		    *nr_pages, available_pages);
168 		*nr_pages = available_pages;
169 	}
170 out:
171 	free(map);
172 }
173 #endif /* __amd64__ */
174 
175 #if defined(__arm__)
176 #define	DEFAULT_EFI_STAGING_SIZE	32
177 #else
178 #define	DEFAULT_EFI_STAGING_SIZE	64
179 #endif
180 #ifndef EFI_STAGING_SIZE
181 #define	EFI_STAGING_SIZE	DEFAULT_EFI_STAGING_SIZE
182 #endif
183 
184 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
185     defined(__riscv) || defined(__i386__)
186 #define	EFI_STAGING_2M_ALIGN	1
187 #else
188 #define	EFI_STAGING_2M_ALIGN	0
189 #endif
190 
191 #if defined(__amd64__) || defined(__i386__)
192 #define	EFI_STAGING_SLOP	M(8)
193 #else
194 #define	EFI_STAGING_SLOP	0
195 #endif
196 
197 static u_long staging_slop = EFI_STAGING_SLOP;
198 
199 EFI_PHYSICAL_ADDRESS	staging, staging_end, staging_base;
200 bool			stage_offset_set = false;
201 ssize_t			stage_offset;
202 
203 static void
204 efi_copy_free(void)
205 {
206 	BS->FreePages(staging_base, (staging_end - staging_base) /
207 	    EFI_PAGE_SIZE);
208 	stage_offset_set = false;
209 	stage_offset = 0;
210 }
211 
212 #if defined(__amd64__) || defined(__i386__)
213 int copy_staging = COPY_STAGING_AUTO;
214 
215 static int
216 command_copy_staging(int argc, char *argv[])
217 {
218 	static const char *const mode[3] = {
219 		[COPY_STAGING_ENABLE] = "enable",
220 		[COPY_STAGING_DISABLE] = "disable",
221 		[COPY_STAGING_AUTO] = "auto",
222 	};
223 	int prev;
224 
225 	if (argc > 2) {
226 		goto usage;
227 	} else if (argc == 2) {
228 		prev = copy_staging;
229 		if (strcmp(argv[1], "enable") == 0)
230 			copy_staging = COPY_STAGING_ENABLE;
231 		else if (strcmp(argv[1], "disable") == 0)
232 			copy_staging = COPY_STAGING_DISABLE;
233 		else if (strcmp(argv[1], "auto") == 0)
234 			copy_staging = COPY_STAGING_AUTO;
235 		else
236 			goto usage;
237 		if (prev != copy_staging) {
238 			printf("changed copy_staging, unloading kernel\n");
239 			unload();
240 			efi_copy_free();
241 			efi_copy_init();
242 		}
243 	} else {
244 		printf("copy staging: %s\n", mode[copy_staging]);
245 	}
246 	return (CMD_OK);
247 
248 usage:
249 	command_errmsg = "usage: copy_staging enable|disable|auto";
250 	return (CMD_ERROR);
251 }
252 COMMAND_SET(copy_staging, "copy_staging", "copy staging", command_copy_staging);
253 #endif
254 
255 static int
256 command_staging_slop(int argc, char *argv[])
257 {
258 	char *endp;
259 	u_long new, prev;
260 
261 	if (argc > 2) {
262 		goto err;
263 	} else if (argc == 2) {
264 		new = strtoul(argv[1], &endp, 0);
265 		if (*endp != '\0')
266 			goto err;
267 		if (staging_slop != new) {
268 			staging_slop = new;
269 			printf("changed slop, unloading kernel\n");
270 
271 			unload();
272 			efi_copy_free();
273 			efi_copy_init();
274 		}
275 	} else {
276 		printf("staging slop %#lx\n", staging_slop);
277 	}
278 	return (CMD_OK);
279 
280 err:
281 	command_errmsg = "invalid slop value";
282 	return (CMD_ERROR);
283 }
284 COMMAND_SET(staging_slop, "staging_slop", "set staging slop",
285     command_staging_slop);
286 
287 #if defined(__amd64__) || defined(__i386__)
288 /*
289  * The staging area must reside in the first 1GB or 4GB physical
290  * memory: see elf64_exec() in
291  * boot/efi/loader/arch/amd64/elf64_freebsd.c.
292  */
293 static EFI_PHYSICAL_ADDRESS
294 get_staging_max(void)
295 {
296 	EFI_PHYSICAL_ADDRESS res;
297 
298 	res = copy_staging == COPY_STAGING_ENABLE ? G(1) : G(4);
299 	return (res);
300 }
301 #define	EFI_ALLOC_METHOD	AllocateMaxAddress
302 #else
303 #define	EFI_ALLOC_METHOD	AllocateAnyPages
304 #endif
305 
306 int
307 efi_copy_init(void)
308 {
309 	EFI_STATUS	status;
310 	unsigned long nr_pages;
311 	vm_offset_t ess;
312 
313 	ess = EFI_STAGING_SIZE;
314 	if (ess < DEFAULT_EFI_STAGING_SIZE)
315 		ess = DEFAULT_EFI_STAGING_SIZE;
316 	nr_pages = EFI_SIZE_TO_PAGES(M(1) * ess);
317 
318 #if defined(__amd64__)
319 	/*
320 	 * We'll decrease nr_pages, if it's too big. Currently we only
321 	 * apply this to FreeBSD VM running on Hyper-V. Why? Please see
322 	 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=211746#c28
323 	 */
324 	if (running_on_hyperv())
325 		efi_verify_staging_size(&nr_pages);
326 #endif
327 #if defined(__amd64__) || defined(__i386__)
328 	staging = get_staging_max();
329 #endif
330 	status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderCode,
331 	    nr_pages, &staging);
332 	if (EFI_ERROR(status)) {
333 		printf("failed to allocate staging area: %lu\n",
334 		    EFI_ERROR_CODE(status));
335 		return (status);
336 	}
337 	staging_base = staging;
338 	staging_end = staging + nr_pages * EFI_PAGE_SIZE;
339 
340 #if EFI_STAGING_2M_ALIGN
341 	/*
342 	 * Round the kernel load address to a 2MiB value. This is needed
343 	 * because the kernel builds a page table based on where it has
344 	 * been loaded in physical address space. As the kernel will use
345 	 * either a 1MiB or 2MiB page for this we need to make sure it
346 	 * is correctly aligned for both cases.
347 	 */
348 	staging = roundup2(staging, M(2));
349 #endif
350 
351 	return (0);
352 }
353 
354 static bool
355 efi_check_space(vm_offset_t end)
356 {
357 	EFI_PHYSICAL_ADDRESS addr, new_base, new_staging;
358 	EFI_STATUS status;
359 	unsigned long nr_pages;
360 
361 	end = roundup2(end, EFI_PAGE_SIZE);
362 
363 	/* There is already enough space */
364 	if (end + staging_slop <= staging_end)
365 		return (true);
366 
367 	if (!boot_services_active) {
368 		if (end <= staging_end)
369 			return (true);
370 		panic("efi_check_space: cannot expand staging area "
371 		    "after boot services were exited\n");
372 	}
373 
374 	/*
375 	 * Add slop at the end:
376 	 * 1. amd64 kernel expects to do some very early allocations
377 	 *    by carving out memory after kernend.  Slop guarantees
378 	 *    that it does not ovewrite anything useful.
379 	 * 2. It seems that initial calculation of the staging size
380 	 *    could be somewhat smaller than actually copying in after
381 	 *    boot services are exited.  Slop avoids calling
382 	 *    BS->AllocatePages() when it cannot work.
383 	 */
384 	end += staging_slop;
385 
386 	nr_pages = EFI_SIZE_TO_PAGES(end - staging_end);
387 #if defined(__amd64__) || defined(__i386__)
388 	/*
389 	 * The amd64 kernel needs all memory to be allocated under the 1G or
390 	 * 4G boundary.
391 	 */
392 	if (end > get_staging_max())
393 		goto before_staging;
394 #endif
395 
396 	/* Try to allocate more space after the previous allocation */
397 	addr = staging_end;
398 	status = BS->AllocatePages(AllocateAddress, EfiLoaderCode, nr_pages,
399 	    &addr);
400 	if (!EFI_ERROR(status)) {
401 		staging_end = staging_end + nr_pages * EFI_PAGE_SIZE;
402 		return (true);
403 	}
404 
405 before_staging:
406 	/* Try allocating space before the previous allocation */
407 	if (staging < nr_pages * EFI_PAGE_SIZE)
408 		goto expand;
409 	addr = staging - nr_pages * EFI_PAGE_SIZE;
410 #if EFI_STAGING_2M_ALIGN
411 	/* See efi_copy_init for why this is needed */
412 	addr = rounddown2(addr, M(2));
413 #endif
414 	nr_pages = EFI_SIZE_TO_PAGES(staging_base - addr);
415 	status = BS->AllocatePages(AllocateAddress, EfiLoaderCode, nr_pages,
416 	    &addr);
417 	if (!EFI_ERROR(status)) {
418 		/*
419 		 * Move the old allocation and update the state so
420 		 * translation still works.
421 		 */
422 		staging_base = addr;
423 		memmove((void *)(uintptr_t)staging_base,
424 		    (void *)(uintptr_t)staging, staging_end - staging);
425 		stage_offset -= staging - staging_base;
426 		staging = staging_base;
427 		return (true);
428 	}
429 
430 expand:
431 	nr_pages = EFI_SIZE_TO_PAGES(end - (vm_offset_t)staging);
432 #if EFI_STAGING_2M_ALIGN
433 	nr_pages += M(2) / EFI_PAGE_SIZE;
434 #endif
435 #if defined(__amd64__) || defined(__i386__)
436 	new_base = get_staging_max();
437 #endif
438 	status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderCode,
439 	    nr_pages, &new_base);
440 	if (!EFI_ERROR(status)) {
441 #if EFI_STAGING_2M_ALIGN
442 		new_staging = roundup2(new_base, M(2));
443 #else
444 		new_staging = new_base;
445 #endif
446 		/*
447 		 * Move the old allocation and update the state so
448 		 * translation still works.
449 		 */
450 		memcpy((void *)(uintptr_t)new_staging,
451 		    (void *)(uintptr_t)staging, staging_end - staging);
452 		BS->FreePages(staging_base, (staging_end - staging_base) /
453 		    EFI_PAGE_SIZE);
454 		stage_offset -= staging - new_staging;
455 		staging = new_staging;
456 		staging_end = new_base + nr_pages * EFI_PAGE_SIZE;
457 		staging_base = new_base;
458 		return (true);
459 	}
460 
461 	printf("efi_check_space: Unable to expand staging area\n");
462 	return (false);
463 }
464 
465 void *
466 efi_translate(vm_offset_t ptr)
467 {
468 
469 	return ((void *)(ptr + stage_offset));
470 }
471 
472 ssize_t
473 efi_copyin(const void *src, vm_offset_t dest, const size_t len)
474 {
475 
476 	if (!stage_offset_set) {
477 		stage_offset = (vm_offset_t)staging - dest;
478 		stage_offset_set = true;
479 	}
480 
481 	/* XXX: Callers do not check for failure. */
482 	if (!efi_check_space(dest + stage_offset + len)) {
483 		errno = ENOMEM;
484 		return (-1);
485 	}
486 	bcopy(src, (void *)(dest + stage_offset), len);
487 	return (len);
488 }
489 
490 ssize_t
491 efi_copyout(const vm_offset_t src, void *dest, const size_t len)
492 {
493 
494 	/* XXX: Callers do not check for failure. */
495 	if (src + stage_offset + len > staging_end) {
496 		errno = ENOMEM;
497 		return (-1);
498 	}
499 	bcopy((void *)(src + stage_offset), dest, len);
500 	return (len);
501 }
502 
503 ssize_t
504 efi_readin(readin_handle_t fd, vm_offset_t dest, const size_t len)
505 {
506 
507 	if (!stage_offset_set) {
508 		stage_offset = (vm_offset_t)staging - dest;
509 		stage_offset_set = true;
510 	}
511 
512 	if (!efi_check_space(dest + stage_offset + len)) {
513 		errno = ENOMEM;
514 		return (-1);
515 	}
516 	return (VECTX_READ(fd, (void *)(dest + stage_offset), len));
517 }
518 
519 void
520 efi_copy_finish(void)
521 {
522 	uint64_t	*src, *dst, *last;
523 
524 	src = (uint64_t *)(uintptr_t)staging;
525 	dst = (uint64_t *)(uintptr_t)(staging - stage_offset);
526 	last = (uint64_t *)(uintptr_t)staging_end;
527 
528 	while (src < last)
529 		*dst++ = *src++;
530 }
531 
532 void
533 efi_copy_finish_nop(void)
534 {
535 }
536