1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2020 Toomas Soome 5 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 6 * Copyright 2020 RackTop Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI 34 * GOP Blt, and allows us to fill the rectangle on screen, copy 35 * rectangle from video to buffer and buffer to video and video to video. 36 * Such implementation does allow us to have almost identical implementation 37 * for both BIOS VBE and UEFI. 38 * 39 * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red, 40 * Alpha) format, this allows us to only handle RGB data and not to worry 41 * about mixing RGB with indexed colors. 42 * Data exchange between memory buffer and video will translate BGRA 43 * and native format as following: 44 * 45 * 32-bit to/from 32-bit is trivial case. 46 * 32-bit to/from 24-bit is also simple - we just drop the alpha channel. 47 * 32-bit to/from 16-bit is more complicated, because we nee to handle 48 * data loss from 32-bit to 16-bit. While reading/writing from/to video, we 49 * need to apply masks of 16-bit color components. This will preserve 50 * colors for terminal text. For 32-bit truecolor PMG images, we need to 51 * translate 32-bit colors to 15/16 bit colors and this means data loss. 52 * There are different algorithms how to perform such color space reduction, 53 * we are currently using bitwise right shift to reduce color space and so far 54 * this technique seems to be sufficient (see also gfx_fb_putimage(), the 55 * end of for loop). 56 * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are 57 * indexed. From video, we do get color indexes, and we do translate 58 * color index values to RGB. To write to video, we again need to translate 59 * RGB to color index. Additionally, we need to translate between VGA and 60 * console colors. 61 * 62 * Our internal color data is represented using BGRA format. But the hardware 63 * used indexed colors for 8-bit colors (0-255) and for this mode we do 64 * need to perform translation to/from BGRA and index values. 65 * 66 * - paletteentry RGB <-> index - 67 * BGRA BUFFER <----/ \ - VIDEO 68 * \ / 69 * - RGB (16/24/32) - 70 * 71 * To perform index to RGB translation, we use palette table generated 72 * from when we set up 8-bit mode video. We cannot read palette data from 73 * the hardware, because not all hardware supports reading it. 74 * 75 * BGRA to index is implemented in rgb_to_color_index() by searching 76 * palette array for closest match of RBG values. 77 * 78 * Note: In 8-bit mode, We do store first 16 colors to palette registers 79 * in VGA color order, this serves two purposes; firstly, 80 * if palette update is not supported, we still have correct 16 colors. 81 * Secondly, the kernel does get correct 16 colors when some other boot 82 * loader is used. However, the palette map for 8-bit colors is using 83 * console color ordering - this does allow us to skip translation 84 * from VGA colors to console colors, while we are reading RGB data. 85 */ 86 87 #include <sys/cdefs.h> 88 #include <sys/param.h> 89 #include <stand.h> 90 #include <teken.h> 91 #include <gfx_fb.h> 92 #include <sys/font.h> 93 #include <sys/stdint.h> 94 #include <sys/endian.h> 95 #include <pnglite.h> 96 #include <bootstrap.h> 97 #include <lz4.h> 98 #if defined(EFI) 99 #include <efi.h> 100 #include <efilib.h> 101 #else 102 #include <vbe.h> 103 #endif 104 105 /* VGA text mode does use bold font. */ 106 #if !defined(VGA_8X16_FONT) 107 #define VGA_8X16_FONT "/boot/fonts/8x16b.fnt" 108 #endif 109 #if !defined(DEFAULT_8X16_FONT) 110 #define DEFAULT_8X16_FONT "/boot/fonts/8x16.fnt" 111 #endif 112 113 /* 114 * Must be sorted by font size in descending order 115 */ 116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 117 118 #define DEFAULT_FONT_DATA font_data_8x16 119 extern vt_font_bitmap_data_t font_data_8x16; 120 teken_gfx_t gfx_state = { 0 }; 121 122 static struct { 123 unsigned char r; /* Red percentage value. */ 124 unsigned char g; /* Green percentage value. */ 125 unsigned char b; /* Blue percentage value. */ 126 } color_def[NCOLORS] = { 127 {0, 0, 0}, /* black */ 128 {50, 0, 0}, /* dark red */ 129 {0, 50, 0}, /* dark green */ 130 {77, 63, 0}, /* dark yellow */ 131 {20, 40, 64}, /* dark blue */ 132 {50, 0, 50}, /* dark magenta */ 133 {0, 50, 50}, /* dark cyan */ 134 {75, 75, 75}, /* light gray */ 135 136 {18, 20, 21}, /* dark gray */ 137 {100, 0, 0}, /* light red */ 138 {0, 100, 0}, /* light green */ 139 {100, 100, 0}, /* light yellow */ 140 {45, 62, 81}, /* light blue */ 141 {100, 0, 100}, /* light magenta */ 142 {0, 100, 100}, /* light cyan */ 143 {100, 100, 100}, /* white */ 144 }; 145 uint32_t cmap[NCMAP]; 146 147 /* 148 * Between console's palette and VGA's one: 149 * - blue and red are swapped (1 <-> 4) 150 * - yellow and cyan are swapped (3 <-> 6) 151 */ 152 const int cons_to_vga_colors[NCOLORS] = { 153 0, 4, 2, 6, 1, 5, 3, 7, 154 8, 12, 10, 14, 9, 13, 11, 15 155 }; 156 157 static const int vga_to_cons_colors[NCOLORS] = { 158 0, 1, 2, 3, 4, 5, 6, 7, 159 8, 9, 10, 11, 12, 13, 14, 15 160 }; 161 162 struct text_pixel *screen_buffer; 163 #if defined(EFI) 164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer; 165 #else 166 static struct paletteentry *GlyphBuffer; 167 #endif 168 static size_t GlyphBufferSize; 169 170 static bool insert_font(char *, FONT_FLAGS); 171 static int font_set(struct env_var *, int, const void *); 172 static void * allocate_glyphbuffer(uint32_t, uint32_t); 173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool); 174 175 /* 176 * Initialize gfx framework. 177 */ 178 void 179 gfx_framework_init(void) 180 { 181 /* 182 * Setup font list to have builtin font. 183 */ 184 (void) insert_font(NULL, FONT_BUILTIN); 185 } 186 187 static uint8_t * 188 gfx_get_fb_address(void) 189 { 190 return (ptov((uint32_t)gfx_state.tg_fb.fb_addr)); 191 } 192 193 /* 194 * Utility function to parse gfx mode line strings. 195 */ 196 bool 197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth) 198 { 199 char *p, *end; 200 201 errno = 0; 202 p = str; 203 *x = strtoul(p, &end, 0); 204 if (*x == 0 || errno != 0) 205 return (false); 206 if (*end != 'x') 207 return (false); 208 p = end + 1; 209 *y = strtoul(p, &end, 0); 210 if (*y == 0 || errno != 0) 211 return (false); 212 if (*end != 'x') { 213 *depth = -1; /* auto select */ 214 } else { 215 p = end + 1; 216 *depth = strtoul(p, &end, 0); 217 if (*depth == 0 || errno != 0 || *end != '\0') 218 return (false); 219 } 220 221 return (true); 222 } 223 224 static uint32_t 225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset, 226 uint32_t gmax, int goffset, uint32_t bmax, int boffset) 227 { 228 uint32_t color, code, gray, level; 229 230 if (index < NCOLORS) { 231 #define CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset) 232 return (CF(r, index) | CF(g, index) | CF(b, index)); 233 #undef CF 234 } 235 236 #define CF(_f, _c) ((_f ## max & _c) << _f ## offset) 237 /* 6x6x6 color cube */ 238 if (index > 15 && index < 232) { 239 uint32_t red, green, blue; 240 241 for (red = 0; red < 6; red++) { 242 for (green = 0; green < 6; green++) { 243 for (blue = 0; blue < 6; blue++) { 244 code = 16 + (red * 36) + 245 (green * 6) + blue; 246 if (code != index) 247 continue; 248 red = red ? (red * 40 + 55) : 0; 249 green = green ? (green * 40 + 55) : 0; 250 blue = blue ? (blue * 40 + 55) : 0; 251 color = CF(r, red); 252 color |= CF(g, green); 253 color |= CF(b, blue); 254 return (color); 255 } 256 } 257 } 258 } 259 260 /* colors 232-255 are a grayscale ramp */ 261 for (gray = 0; gray < 24; gray++) { 262 level = (gray * 10) + 8; 263 code = 232 + gray; 264 if (code == index) 265 break; 266 } 267 return (CF(r, level) | CF(g, level) | CF(b, level)); 268 #undef CF 269 } 270 271 /* 272 * Support for color mapping. 273 * For 8, 24 and 32 bit depth, use mask size 8. 274 * 15/16 bit depth needs to use mask size from mode, 275 * or we will lose color information from 32-bit to 15/16 bit translation. 276 */ 277 uint32_t 278 gfx_fb_color_map(uint8_t index) 279 { 280 int rmask, gmask, bmask; 281 int roff, goff, boff, bpp; 282 283 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 284 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 285 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 286 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 287 288 if (bpp == 2) 289 rmask = gfx_state.tg_fb.fb_mask_red >> roff; 290 else 291 rmask = 0xff; 292 293 if (bpp == 2) 294 gmask = gfx_state.tg_fb.fb_mask_green >> goff; 295 else 296 gmask = 0xff; 297 298 if (bpp == 2) 299 bmask = gfx_state.tg_fb.fb_mask_blue >> boff; 300 else 301 bmask = 0xff; 302 303 return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0)); 304 } 305 306 /* 307 * Get indexed color from RGB. This function is used to write data to video 308 * memory when the adapter is set to use indexed colors. 309 * Since UEFI does only support 32-bit colors, we do not implement it for 310 * UEFI because there is no need for it and we do not have palette array 311 * for UEFI. 312 */ 313 static uint8_t 314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b) 315 { 316 #if !defined(EFI) 317 uint32_t color, best, dist, k; 318 int diff; 319 320 color = 0; 321 best = 255 * 255 * 255; 322 for (k = 0; k < NCMAP; k++) { 323 diff = r - pe8[k].Red; 324 dist = diff * diff; 325 diff = g - pe8[k].Green; 326 dist += diff * diff; 327 diff = b - pe8[k].Blue; 328 dist += diff * diff; 329 330 /* Exact match, exit the loop */ 331 if (dist == 0) 332 break; 333 334 if (dist < best) { 335 color = k; 336 best = dist; 337 } 338 } 339 if (k == NCMAP) 340 k = color; 341 return (k); 342 #else 343 (void) r; 344 (void) g; 345 (void) b; 346 return (0); 347 #endif 348 } 349 350 int 351 generate_cons_palette(uint32_t *palette, int format, 352 uint32_t rmax, int roffset, uint32_t gmax, int goffset, 353 uint32_t bmax, int boffset) 354 { 355 int i; 356 357 switch (format) { 358 case COLOR_FORMAT_VGA: 359 for (i = 0; i < NCOLORS; i++) 360 palette[i] = cons_to_vga_colors[i]; 361 for (; i < NCMAP; i++) 362 palette[i] = i; 363 break; 364 case COLOR_FORMAT_RGB: 365 for (i = 0; i < NCMAP; i++) 366 palette[i] = rgb_color_map(i, rmax, roffset, 367 gmax, goffset, bmax, boffset); 368 break; 369 default: 370 return (ENODEV); 371 } 372 373 return (0); 374 } 375 376 static void 377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v) 378 { 379 380 if (o >= size) 381 return; 382 *(uint8_t *)(base + o) = v; 383 } 384 385 static void 386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v) 387 { 388 389 if (o >= size) 390 return; 391 *(uint16_t *)(base + o) = v; 392 } 393 394 static void 395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v) 396 { 397 398 if (o >= size) 399 return; 400 *(uint32_t *)(base + o) = v; 401 } 402 403 static int gfxfb_blt_fill(void *BltBuffer, 404 uint32_t DestinationX, uint32_t DestinationY, 405 uint32_t Width, uint32_t Height) 406 { 407 #if defined(EFI) 408 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 409 #else 410 struct paletteentry *p; 411 #endif 412 uint32_t data, bpp, pitch, y, x; 413 int roff, goff, boff; 414 size_t size; 415 off_t off; 416 uint8_t *destination; 417 418 if (BltBuffer == NULL) 419 return (EINVAL); 420 421 if (DestinationY + Height > gfx_state.tg_fb.fb_height) 422 return (EINVAL); 423 424 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 425 return (EINVAL); 426 427 if (Width == 0 || Height == 0) 428 return (EINVAL); 429 430 p = BltBuffer; 431 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 432 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 433 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 434 435 if (gfx_state.tg_fb.fb_bpp == 8) { 436 data = rgb_to_color_index(p->Red, p->Green, p->Blue); 437 } else { 438 data = (p->Red & 439 (gfx_state.tg_fb.fb_mask_red >> roff)) << roff; 440 data |= (p->Green & 441 (gfx_state.tg_fb.fb_mask_green >> goff)) << goff; 442 data |= (p->Blue & 443 (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff; 444 } 445 446 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 447 pitch = gfx_state.tg_fb.fb_stride * bpp; 448 destination = gfx_get_fb_address(); 449 size = gfx_state.tg_fb.fb_size; 450 451 for (y = DestinationY; y < Height + DestinationY; y++) { 452 off = y * pitch + DestinationX * bpp; 453 for (x = 0; x < Width; x++) { 454 switch (bpp) { 455 case 1: 456 gfx_mem_wr1(destination, size, off, 457 (data < NCOLORS) ? 458 cons_to_vga_colors[data] : data); 459 break; 460 case 2: 461 gfx_mem_wr2(destination, size, off, data); 462 break; 463 case 3: 464 gfx_mem_wr1(destination, size, off, 465 (data >> 16) & 0xff); 466 gfx_mem_wr1(destination, size, off + 1, 467 (data >> 8) & 0xff); 468 gfx_mem_wr1(destination, size, off + 2, 469 data & 0xff); 470 break; 471 case 4: 472 gfx_mem_wr4(destination, size, off, data); 473 break; 474 default: 475 return (EINVAL); 476 } 477 off += bpp; 478 } 479 } 480 481 return (0); 482 } 483 484 static int 485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 486 uint32_t DestinationX, uint32_t DestinationY, 487 uint32_t Width, uint32_t Height, uint32_t Delta) 488 { 489 #if defined(EFI) 490 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 491 #else 492 struct paletteentry *p; 493 #endif 494 uint32_t x, sy, dy; 495 uint32_t bpp, pitch, copybytes; 496 off_t off; 497 uint8_t *source, *destination, *sb; 498 uint8_t rm, rp, gm, gp, bm, bp; 499 bool bgra; 500 501 if (BltBuffer == NULL) 502 return (EINVAL); 503 504 if (SourceY + Height > 505 gfx_state.tg_fb.fb_height) 506 return (EINVAL); 507 508 if (SourceX + Width > gfx_state.tg_fb.fb_width) 509 return (EINVAL); 510 511 if (Width == 0 || Height == 0) 512 return (EINVAL); 513 514 if (Delta == 0) 515 Delta = Width * sizeof (*p); 516 517 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 518 pitch = gfx_state.tg_fb.fb_stride * bpp; 519 520 copybytes = Width * bpp; 521 522 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 523 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 524 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 525 rm = gfx_state.tg_fb.fb_mask_red >> rp; 526 gm = gfx_state.tg_fb.fb_mask_green >> gp; 527 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 528 529 /* If FB pixel format is BGRA, we can use direct copy. */ 530 bgra = bpp == 4 && 531 ffs(rm) - 1 == 8 && rp == 16 && 532 ffs(gm) - 1 == 8 && gp == 8 && 533 ffs(bm) - 1 == 8 && bp == 0; 534 535 for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY; 536 sy++, dy++) { 537 off = sy * pitch + SourceX * bpp; 538 source = gfx_get_fb_address() + off; 539 destination = (uint8_t *)BltBuffer + dy * Delta + 540 DestinationX * sizeof (*p); 541 542 if (bgra) { 543 bcopy(source, destination, copybytes); 544 } else { 545 for (x = 0; x < Width; x++) { 546 uint32_t c = 0; 547 548 p = (void *)(destination + x * sizeof (*p)); 549 sb = source + x * bpp; 550 switch (bpp) { 551 case 1: 552 c = *sb; 553 break; 554 case 2: 555 c = *(uint16_t *)sb; 556 break; 557 case 3: 558 c = sb[0] << 16 | sb[1] << 8 | sb[2]; 559 break; 560 case 4: 561 c = *(uint32_t *)sb; 562 break; 563 default: 564 return (EINVAL); 565 } 566 567 if (bpp == 1) { 568 *(uint32_t *)p = gfx_fb_color_map( 569 (c < 16) ? 570 vga_to_cons_colors[c] : c); 571 } else { 572 p->Red = (c >> rp) & rm; 573 p->Green = (c >> gp) & gm; 574 p->Blue = (c >> bp) & bm; 575 p->Reserved = 0; 576 } 577 } 578 } 579 } 580 581 return (0); 582 } 583 584 static int 585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 586 uint32_t DestinationX, uint32_t DestinationY, 587 uint32_t Width, uint32_t Height, uint32_t Delta) 588 { 589 #if defined(EFI) 590 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 591 #else 592 struct paletteentry *p; 593 #endif 594 uint32_t x, sy, dy; 595 uint32_t bpp, pitch, copybytes; 596 off_t off; 597 uint8_t *source, *destination; 598 uint8_t rm, rp, gm, gp, bm, bp; 599 bool bgra; 600 601 if (BltBuffer == NULL) 602 return (EINVAL); 603 604 if (DestinationY + Height > 605 gfx_state.tg_fb.fb_height) 606 return (EINVAL); 607 608 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 609 return (EINVAL); 610 611 if (Width == 0 || Height == 0) 612 return (EINVAL); 613 614 if (Delta == 0) 615 Delta = Width * sizeof (*p); 616 617 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 618 pitch = gfx_state.tg_fb.fb_stride * bpp; 619 620 copybytes = Width * bpp; 621 622 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 623 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 624 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 625 rm = gfx_state.tg_fb.fb_mask_red >> rp; 626 gm = gfx_state.tg_fb.fb_mask_green >> gp; 627 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 628 629 /* If FB pixel format is BGRA, we can use direct copy. */ 630 bgra = bpp == 4 && 631 ffs(rm) - 1 == 8 && rp == 16 && 632 ffs(gm) - 1 == 8 && gp == 8 && 633 ffs(bm) - 1 == 8 && bp == 0; 634 635 for (sy = SourceY, dy = DestinationY; sy < Height + SourceY; 636 sy++, dy++) { 637 off = dy * pitch + DestinationX * bpp; 638 destination = gfx_get_fb_address() + off; 639 640 if (bgra) { 641 source = (uint8_t *)BltBuffer + sy * Delta + 642 SourceX * sizeof (*p); 643 bcopy(source, destination, copybytes); 644 } else { 645 for (x = 0; x < Width; x++) { 646 uint32_t c; 647 648 p = (void *)((uint8_t *)BltBuffer + 649 sy * Delta + 650 (SourceX + x) * sizeof (*p)); 651 if (bpp == 1) { 652 c = rgb_to_color_index(p->Red, 653 p->Green, p->Blue); 654 } else { 655 c = (p->Red & rm) << rp | 656 (p->Green & gm) << gp | 657 (p->Blue & bm) << bp; 658 } 659 off = x * bpp; 660 switch (bpp) { 661 case 1: 662 gfx_mem_wr1(destination, copybytes, 663 off, (c < 16) ? 664 cons_to_vga_colors[c] : c); 665 break; 666 case 2: 667 gfx_mem_wr2(destination, copybytes, 668 off, c); 669 break; 670 case 3: 671 gfx_mem_wr1(destination, copybytes, 672 off, (c >> 16) & 0xff); 673 gfx_mem_wr1(destination, copybytes, 674 off + 1, (c >> 8) & 0xff); 675 gfx_mem_wr1(destination, copybytes, 676 off + 2, c & 0xff); 677 break; 678 case 4: 679 gfx_mem_wr4(destination, copybytes, 680 x * bpp, c); 681 break; 682 default: 683 return (EINVAL); 684 } 685 } 686 } 687 } 688 689 return (0); 690 } 691 692 static int 693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY, 694 uint32_t DestinationX, uint32_t DestinationY, 695 uint32_t Width, uint32_t Height) 696 { 697 uint32_t bpp, copybytes; 698 int pitch; 699 uint8_t *source, *destination; 700 off_t off; 701 702 if (SourceY + Height > 703 gfx_state.tg_fb.fb_height) 704 return (EINVAL); 705 706 if (SourceX + Width > gfx_state.tg_fb.fb_width) 707 return (EINVAL); 708 709 if (DestinationY + Height > 710 gfx_state.tg_fb.fb_height) 711 return (EINVAL); 712 713 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 714 return (EINVAL); 715 716 if (Width == 0 || Height == 0) 717 return (EINVAL); 718 719 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 720 pitch = gfx_state.tg_fb.fb_stride * bpp; 721 722 copybytes = Width * bpp; 723 724 off = SourceY * pitch + SourceX * bpp; 725 source = gfx_get_fb_address() + off; 726 off = DestinationY * pitch + DestinationX * bpp; 727 destination = gfx_get_fb_address() + off; 728 729 if ((uintptr_t)destination > (uintptr_t)source) { 730 source += Height * pitch; 731 destination += Height * pitch; 732 pitch = -pitch; 733 } 734 735 while (Height-- > 0) { 736 bcopy(source, destination, copybytes); 737 source += pitch; 738 destination += pitch; 739 } 740 741 return (0); 742 } 743 744 int 745 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation, 746 uint32_t SourceX, uint32_t SourceY, 747 uint32_t DestinationX, uint32_t DestinationY, 748 uint32_t Width, uint32_t Height, uint32_t Delta) 749 { 750 int rv; 751 #if defined(EFI) 752 EFI_STATUS status; 753 EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private; 754 755 /* 756 * We assume Blt() does work, if not, we will need to build 757 * exception list case by case. 758 */ 759 if (gop != NULL) { 760 switch (BltOperation) { 761 case GfxFbBltVideoFill: 762 status = gop->Blt(gop, BltBuffer, EfiBltVideoFill, 763 SourceX, SourceY, DestinationX, DestinationY, 764 Width, Height, Delta); 765 break; 766 767 case GfxFbBltVideoToBltBuffer: 768 status = gop->Blt(gop, BltBuffer, 769 EfiBltVideoToBltBuffer, 770 SourceX, SourceY, DestinationX, DestinationY, 771 Width, Height, Delta); 772 break; 773 774 case GfxFbBltBufferToVideo: 775 status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo, 776 SourceX, SourceY, DestinationX, DestinationY, 777 Width, Height, Delta); 778 break; 779 780 case GfxFbBltVideoToVideo: 781 status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo, 782 SourceX, SourceY, DestinationX, DestinationY, 783 Width, Height, Delta); 784 break; 785 786 default: 787 status = EFI_INVALID_PARAMETER; 788 break; 789 } 790 791 switch (status) { 792 case EFI_SUCCESS: 793 rv = 0; 794 break; 795 796 case EFI_INVALID_PARAMETER: 797 rv = EINVAL; 798 break; 799 800 case EFI_DEVICE_ERROR: 801 default: 802 rv = EIO; 803 break; 804 } 805 806 return (rv); 807 } 808 #endif 809 810 switch (BltOperation) { 811 case GfxFbBltVideoFill: 812 rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY, 813 Width, Height); 814 break; 815 816 case GfxFbBltVideoToBltBuffer: 817 rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY, 818 DestinationX, DestinationY, Width, Height, Delta); 819 break; 820 821 case GfxFbBltBufferToVideo: 822 rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY, 823 DestinationX, DestinationY, Width, Height, Delta); 824 break; 825 826 case GfxFbBltVideoToVideo: 827 rv = gfxfb_blt_video_to_video(SourceX, SourceY, 828 DestinationX, DestinationY, Width, Height); 829 break; 830 831 default: 832 rv = EINVAL; 833 break; 834 } 835 return (rv); 836 } 837 838 void 839 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph, 840 const teken_attr_t *a, uint32_t alpha, bool cursor) 841 { 842 uint32_t width, height; 843 uint32_t fgc, bgc, bpl, cc, o; 844 int bpp, bit, byte; 845 bool invert = false; 846 847 bpp = 4; /* We only generate BGRA */ 848 width = state->tg_font.vf_width; 849 height = state->tg_font.vf_height; 850 bpl = (width + 7) / 8; /* Bytes per source line. */ 851 852 fgc = a->ta_fgcolor; 853 bgc = a->ta_bgcolor; 854 if (a->ta_format & TF_BOLD) 855 fgc |= TC_LIGHT; 856 if (a->ta_format & TF_BLINK) 857 bgc |= TC_LIGHT; 858 859 fgc = gfx_fb_color_map(fgc); 860 bgc = gfx_fb_color_map(bgc); 861 862 if (a->ta_format & TF_REVERSE) 863 invert = !invert; 864 if (cursor) 865 invert = !invert; 866 if (invert) { 867 uint32_t tmp; 868 869 tmp = fgc; 870 fgc = bgc; 871 bgc = tmp; 872 } 873 874 alpha = alpha << 24; 875 fgc |= alpha; 876 bgc |= alpha; 877 878 for (uint32_t y = 0; y < height; y++) { 879 for (uint32_t x = 0; x < width; x++) { 880 byte = y * bpl + x / 8; 881 bit = 0x80 >> (x % 8); 882 o = y * width * bpp + x * bpp; 883 cc = glyph[byte] & bit ? fgc : bgc; 884 885 gfx_mem_wr4(state->tg_glyph, 886 state->tg_glyph_size, o, cc); 887 } 888 } 889 } 890 891 /* 892 * Draw prepared glyph on terminal point p. 893 */ 894 static void 895 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p) 896 { 897 unsigned x, y, width, height; 898 899 width = state->tg_font.vf_width; 900 height = state->tg_font.vf_height; 901 x = state->tg_origin.tp_col + p->tp_col * width; 902 y = state->tg_origin.tp_row + p->tp_row * height; 903 904 gfx_fb_cons_display(x, y, width, height, state->tg_glyph); 905 } 906 907 /* 908 * Store char with its attribute to buffer and put it on screen. 909 */ 910 void 911 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c, 912 const teken_attr_t *a) 913 { 914 teken_gfx_t *state = arg; 915 const uint8_t *glyph; 916 int idx; 917 918 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 919 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 920 return; 921 922 /* remove the cursor */ 923 if (state->tg_cursor_visible) 924 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 925 926 screen_buffer[idx].c = c; 927 screen_buffer[idx].a = *a; 928 929 glyph = font_lookup(&state->tg_font, c, a); 930 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 931 gfx_fb_printchar(state, p); 932 933 /* display the cursor */ 934 if (state->tg_cursor_visible) { 935 const teken_pos_t *c; 936 937 c = teken_get_cursor(&state->tg_teken); 938 gfx_fb_cursor_draw(state, c, true); 939 } 940 } 941 942 void 943 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c, 944 const teken_attr_t *a) 945 { 946 teken_gfx_t *state = arg; 947 const uint8_t *glyph; 948 teken_pos_t p; 949 struct text_pixel *row; 950 951 /* remove the cursor */ 952 if (state->tg_cursor_visible) 953 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 954 955 glyph = font_lookup(&state->tg_font, c, a); 956 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 957 958 for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row; 959 p.tp_row++) { 960 row = &screen_buffer[p.tp_row * state->tg_tp.tp_col]; 961 for (p.tp_col = r->tr_begin.tp_col; 962 p.tp_col < r->tr_end.tp_col; p.tp_col++) { 963 row[p.tp_col].c = c; 964 row[p.tp_col].a = *a; 965 gfx_fb_printchar(state, &p); 966 } 967 } 968 969 /* display the cursor */ 970 if (state->tg_cursor_visible) { 971 const teken_pos_t *c; 972 973 c = teken_get_cursor(&state->tg_teken); 974 gfx_fb_cursor_draw(state, c, true); 975 } 976 } 977 978 static void 979 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *pos, bool on) 980 { 981 unsigned x, y, width, height; 982 const uint8_t *glyph; 983 teken_pos_t p; 984 int idx; 985 986 p = *pos; 987 if (p.tp_col >= state->tg_tp.tp_col) 988 p.tp_col = state->tg_tp.tp_col - 1; 989 if (p.tp_row >= state->tg_tp.tp_row) 990 p.tp_row = state->tg_tp.tp_row - 1; 991 idx = p.tp_col + p.tp_row * state->tg_tp.tp_col; 992 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 993 return; 994 995 width = state->tg_font.vf_width; 996 height = state->tg_font.vf_height; 997 x = state->tg_origin.tp_col + p.tp_col * width; 998 y = state->tg_origin.tp_row + p.tp_row * height; 999 1000 /* 1001 * Save original display content to preserve image data. 1002 */ 1003 if (on) { 1004 if (state->tg_cursor_image == NULL || 1005 state->tg_cursor_size != width * height * 4) { 1006 free(state->tg_cursor_image); 1007 state->tg_cursor_size = width * height * 4; 1008 state->tg_cursor_image = malloc(state->tg_cursor_size); 1009 } 1010 if (state->tg_cursor_image != NULL) { 1011 if (gfxfb_blt(state->tg_cursor_image, 1012 GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1013 width, height, 0) != 0) { 1014 free(state->tg_cursor_image); 1015 state->tg_cursor_image = NULL; 1016 } 1017 } 1018 } else { 1019 /* 1020 * Restore display from tg_cursor_image. 1021 * If there is no image, restore char from screen_buffer. 1022 */ 1023 if (state->tg_cursor_image != NULL && 1024 gfxfb_blt(state->tg_cursor_image, GfxFbBltBufferToVideo, 1025 0, 0, x, y, width, height, 0) == 0) { 1026 state->tg_cursor = p; 1027 return; 1028 } 1029 } 1030 1031 glyph = font_lookup(&state->tg_font, screen_buffer[idx].c, 1032 &screen_buffer[idx].a); 1033 gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on); 1034 gfx_fb_printchar(state, &p); 1035 1036 state->tg_cursor = p; 1037 } 1038 1039 void 1040 gfx_fb_cursor(void *arg, const teken_pos_t *p) 1041 { 1042 teken_gfx_t *state = arg; 1043 #if defined(EFI) 1044 EFI_TPL tpl; 1045 1046 tpl = BS->RaiseTPL(TPL_NOTIFY); 1047 #endif 1048 1049 /* Switch cursor off in old location and back on in new. */ 1050 if (state->tg_cursor_visible) { 1051 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1052 gfx_fb_cursor_draw(state, p, true); 1053 } 1054 #if defined(EFI) 1055 BS->RestoreTPL(tpl); 1056 #endif 1057 } 1058 1059 void 1060 gfx_fb_param(void *arg, int cmd, unsigned int value) 1061 { 1062 teken_gfx_t *state = arg; 1063 const teken_pos_t *c; 1064 1065 switch (cmd) { 1066 case TP_SETLOCALCURSOR: 1067 /* 1068 * 0 means normal (usually block), 1 means hidden, and 1069 * 2 means blinking (always block) for compatibility with 1070 * syscons. We don't support any changes except hiding, 1071 * so must map 2 to 0. 1072 */ 1073 value = (value == 1) ? 0 : 1; 1074 /* FALLTHROUGH */ 1075 case TP_SHOWCURSOR: 1076 c = teken_get_cursor(&state->tg_teken); 1077 gfx_fb_cursor_draw(state, c, true); 1078 if (value != 0) 1079 state->tg_cursor_visible = true; 1080 else 1081 state->tg_cursor_visible = false; 1082 break; 1083 default: 1084 /* Not yet implemented */ 1085 break; 1086 } 1087 } 1088 1089 bool 1090 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2) 1091 { 1092 if (px1->c != px2->c) 1093 return (false); 1094 1095 /* Is there image stored? */ 1096 if ((px1->a.ta_format & TF_IMAGE) || 1097 (px2->a.ta_format & TF_IMAGE)) 1098 return (false); 1099 1100 if (px1->a.ta_format != px2->a.ta_format) 1101 return (false); 1102 if (px1->a.ta_fgcolor != px2->a.ta_fgcolor) 1103 return (false); 1104 if (px1->a.ta_bgcolor != px2->a.ta_bgcolor) 1105 return (false); 1106 1107 return (true); 1108 } 1109 1110 static void 1111 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s, 1112 const teken_pos_t *d) 1113 { 1114 uint32_t sx, sy, dx, dy, width, height; 1115 1116 width = state->tg_font.vf_width; 1117 height = state->tg_font.vf_height; 1118 1119 sx = state->tg_origin.tp_col + s->tr_begin.tp_col * width; 1120 sy = state->tg_origin.tp_row + s->tr_begin.tp_row * height; 1121 dx = state->tg_origin.tp_col + d->tp_col * width; 1122 dy = state->tg_origin.tp_row + d->tp_row * height; 1123 1124 width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1); 1125 1126 (void) gfxfb_blt(NULL, GfxFbBltVideoToVideo, sx, sy, dx, dy, 1127 width, height, 0); 1128 } 1129 1130 static void 1131 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d) 1132 { 1133 teken_rect_t sr; 1134 teken_pos_t dp; 1135 unsigned soffset, doffset; 1136 bool mark = false; 1137 int x; 1138 1139 soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col; 1140 doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col; 1141 1142 for (x = 0; x < ncol; x++) { 1143 if (is_same_pixel(&screen_buffer[soffset + x], 1144 &screen_buffer[doffset + x])) { 1145 if (mark) { 1146 gfx_fb_copy_area(state, &sr, &dp); 1147 mark = false; 1148 } 1149 } else { 1150 screen_buffer[doffset + x] = screen_buffer[soffset + x]; 1151 if (mark) { 1152 /* update end point */ 1153 sr.tr_end.tp_col = s->tp_col + x;; 1154 } else { 1155 /* set up new rectangle */ 1156 mark = true; 1157 sr.tr_begin.tp_col = s->tp_col + x; 1158 sr.tr_begin.tp_row = s->tp_row; 1159 sr.tr_end.tp_col = s->tp_col + x; 1160 sr.tr_end.tp_row = s->tp_row; 1161 dp.tp_col = d->tp_col + x; 1162 dp.tp_row = d->tp_row; 1163 } 1164 } 1165 } 1166 if (mark) { 1167 gfx_fb_copy_area(state, &sr, &dp); 1168 } 1169 } 1170 1171 void 1172 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p) 1173 { 1174 teken_gfx_t *state = arg; 1175 unsigned doffset, soffset; 1176 teken_pos_t d, s; 1177 int nrow, ncol, y; /* Has to be signed - >= 0 comparison */ 1178 1179 /* 1180 * Copying is a little tricky. We must make sure we do it in 1181 * correct order, to make sure we don't overwrite our own data. 1182 */ 1183 1184 nrow = r->tr_end.tp_row - r->tr_begin.tp_row; 1185 ncol = r->tr_end.tp_col - r->tr_begin.tp_col; 1186 1187 if (p->tp_row + nrow > state->tg_tp.tp_row || 1188 p->tp_col + ncol > state->tg_tp.tp_col) 1189 return; 1190 1191 soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col; 1192 doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col; 1193 1194 /* remove the cursor */ 1195 if (state->tg_cursor_visible) 1196 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1197 1198 /* 1199 * Copy line by line. 1200 */ 1201 if (doffset <= soffset) { 1202 s = r->tr_begin; 1203 d = *p; 1204 for (y = 0; y < nrow; y++) { 1205 s.tp_row = r->tr_begin.tp_row + y; 1206 d.tp_row = p->tp_row + y; 1207 1208 gfx_fb_copy_line(state, ncol, &s, &d); 1209 } 1210 } else { 1211 for (y = nrow - 1; y >= 0; y--) { 1212 s.tp_row = r->tr_begin.tp_row + y; 1213 d.tp_row = p->tp_row + y; 1214 1215 gfx_fb_copy_line(state, ncol, &s, &d); 1216 } 1217 } 1218 1219 /* display the cursor */ 1220 if (state->tg_cursor_visible) { 1221 const teken_pos_t *c; 1222 1223 c = teken_get_cursor(&state->tg_teken); 1224 gfx_fb_cursor_draw(state, c, true); 1225 } 1226 } 1227 1228 /* 1229 * Implements alpha blending for RGBA data, could use pixels for arguments, 1230 * but byte stream seems more generic. 1231 * The generic alpha blending is: 1232 * blend = alpha * fg + (1.0 - alpha) * bg. 1233 * Since our alpha is not from range [0..1], we scale appropriately. 1234 */ 1235 static uint8_t 1236 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha) 1237 { 1238 uint16_t blend, h, l; 1239 1240 /* trivial corner cases */ 1241 if (alpha == 0) 1242 return (bg); 1243 if (alpha == 0xFF) 1244 return (fg); 1245 blend = (alpha * fg + (0xFF - alpha) * bg); 1246 /* Division by 0xFF */ 1247 h = blend >> 8; 1248 l = blend & 0xFF; 1249 if (h + l >= 0xFF) 1250 h++; 1251 return (h); 1252 } 1253 1254 /* 1255 * Implements alpha blending for RGBA data, could use pixels for arguments, 1256 * but byte stream seems more generic. 1257 * The generic alpha blending is: 1258 * blend = alpha * fg + (1.0 - alpha) * bg. 1259 * Since our alpha is not from range [0..1], we scale appropriately. 1260 */ 1261 static void 1262 bitmap_cpy(void *dst, void *src, uint32_t size) 1263 { 1264 #if defined(EFI) 1265 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd; 1266 #else 1267 struct paletteentry *ps, *pd; 1268 #endif 1269 uint32_t i; 1270 uint8_t a; 1271 1272 ps = src; 1273 pd = dst; 1274 1275 /* 1276 * we only implement alpha blending for depth 32. 1277 */ 1278 for (i = 0; i < size; i ++) { 1279 a = ps[i].Reserved; 1280 pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a); 1281 pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a); 1282 pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a); 1283 pd[i].Reserved = a; 1284 } 1285 } 1286 1287 static void * 1288 allocate_glyphbuffer(uint32_t width, uint32_t height) 1289 { 1290 size_t size; 1291 1292 size = sizeof (*GlyphBuffer) * width * height; 1293 if (size != GlyphBufferSize) { 1294 free(GlyphBuffer); 1295 GlyphBuffer = malloc(size); 1296 if (GlyphBuffer == NULL) 1297 return (NULL); 1298 GlyphBufferSize = size; 1299 } 1300 return (GlyphBuffer); 1301 } 1302 1303 void 1304 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height, 1305 void *data) 1306 { 1307 #if defined(EFI) 1308 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf; 1309 #else 1310 struct paletteentry *buf; 1311 #endif 1312 size_t size; 1313 1314 size = width * height * sizeof(*buf); 1315 1316 /* 1317 * Common data to display is glyph, use preallocated 1318 * glyph buffer. 1319 */ 1320 if (gfx_state.tg_glyph_size != GlyphBufferSize) 1321 (void) allocate_glyphbuffer(width, height); 1322 1323 if (size == GlyphBufferSize) 1324 buf = GlyphBuffer; 1325 else 1326 buf = malloc(size); 1327 if (buf == NULL) 1328 return; 1329 1330 if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1331 width, height, 0) == 0) { 1332 bitmap_cpy(buf, data, width * height); 1333 (void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y, 1334 width, height, 0); 1335 } 1336 if (buf != GlyphBuffer) 1337 free(buf); 1338 } 1339 1340 /* 1341 * Public graphics primitives. 1342 */ 1343 1344 static int 1345 isqrt(int num) 1346 { 1347 int res = 0; 1348 int bit = 1 << 30; 1349 1350 /* "bit" starts at the highest power of four <= the argument. */ 1351 while (bit > num) 1352 bit >>= 2; 1353 1354 while (bit != 0) { 1355 if (num >= res + bit) { 1356 num -= res + bit; 1357 res = (res >> 1) + bit; 1358 } else { 1359 res >>= 1; 1360 } 1361 bit >>= 2; 1362 } 1363 return (res); 1364 } 1365 1366 static uint32_t 1367 gfx_fb_getcolor(void) 1368 { 1369 uint32_t c; 1370 const teken_attr_t *ap; 1371 1372 ap = teken_get_curattr(&gfx_state.tg_teken); 1373 if (ap->ta_format & TF_REVERSE) { 1374 c = ap->ta_bgcolor; 1375 if (ap->ta_format & TF_BLINK) 1376 c |= TC_LIGHT; 1377 } else { 1378 c = ap->ta_fgcolor; 1379 if (ap->ta_format & TF_BOLD) 1380 c |= TC_LIGHT; 1381 } 1382 1383 return (gfx_fb_color_map(c)); 1384 } 1385 1386 /* set pixel in framebuffer using gfx coordinates */ 1387 void 1388 gfx_fb_setpixel(uint32_t x, uint32_t y) 1389 { 1390 uint32_t c; 1391 1392 if (gfx_state.tg_fb_type == FB_TEXT) 1393 return; 1394 1395 c = gfx_fb_getcolor(); 1396 1397 if (x >= gfx_state.tg_fb.fb_width || 1398 y >= gfx_state.tg_fb.fb_height) 1399 return; 1400 1401 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0); 1402 } 1403 1404 /* 1405 * draw rectangle in framebuffer using gfx coordinates. 1406 */ 1407 void 1408 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2, 1409 uint32_t fill) 1410 { 1411 uint32_t c; 1412 1413 if (gfx_state.tg_fb_type == FB_TEXT) 1414 return; 1415 1416 c = gfx_fb_getcolor(); 1417 1418 if (fill != 0) { 1419 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1420 y2 - y1, 0); 1421 } else { 1422 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1, 0); 1423 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y2, x2 - x1, 1, 0); 1424 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, 1, y2 - y1, 0); 1425 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x2, y1, 1, y2 - y1, 0); 1426 } 1427 } 1428 1429 void 1430 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd) 1431 { 1432 int dx, sx, dy, sy; 1433 int err, e2, x2, y2, ed, width; 1434 1435 if (gfx_state.tg_fb_type == FB_TEXT) 1436 return; 1437 1438 width = wd; 1439 sx = x0 < x1? 1 : -1; 1440 sy = y0 < y1? 1 : -1; 1441 dx = x1 > x0? x1 - x0 : x0 - x1; 1442 dy = y1 > y0? y1 - y0 : y0 - y1; 1443 err = dx + dy; 1444 ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy); 1445 1446 for (;;) { 1447 gfx_fb_setpixel(x0, y0); 1448 e2 = err; 1449 x2 = x0; 1450 if ((e2 << 1) >= -dx) { /* x step */ 1451 e2 += dy; 1452 y2 = y0; 1453 while (e2 < ed * width && 1454 (y1 != (uint32_t)y2 || dx > dy)) { 1455 y2 += sy; 1456 gfx_fb_setpixel(x0, y2); 1457 e2 += dx; 1458 } 1459 if (x0 == x1) 1460 break; 1461 e2 = err; 1462 err -= dy; 1463 x0 += sx; 1464 } 1465 if ((e2 << 1) <= dy) { /* y step */ 1466 e2 = dx-e2; 1467 while (e2 < ed * width && 1468 (x1 != (uint32_t)x2 || dx < dy)) { 1469 x2 += sx; 1470 gfx_fb_setpixel(x2, y0); 1471 e2 += dy; 1472 } 1473 if (y0 == y1) 1474 break; 1475 err += dx; 1476 y0 += sy; 1477 } 1478 } 1479 } 1480 1481 /* 1482 * quadratic Bézier curve limited to gradients without sign change. 1483 */ 1484 void 1485 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2, 1486 uint32_t y2, uint32_t wd) 1487 { 1488 int sx, sy, xx, yy, xy, width; 1489 int dx, dy, err, curvature; 1490 int i; 1491 1492 if (gfx_state.tg_fb_type == FB_TEXT) 1493 return; 1494 1495 width = wd; 1496 sx = x2 - x1; 1497 sy = y2 - y1; 1498 xx = x0 - x1; 1499 yy = y0 - y1; 1500 curvature = xx*sy - yy*sx; 1501 1502 if (sx*sx + sy*sy > xx*xx+yy*yy) { 1503 x2 = x0; 1504 x0 = sx + x1; 1505 y2 = y0; 1506 y0 = sy + y1; 1507 curvature = -curvature; 1508 } 1509 if (curvature != 0) { 1510 xx += sx; 1511 sx = x0 < x2? 1 : -1; 1512 xx *= sx; 1513 yy += sy; 1514 sy = y0 < y2? 1 : -1; 1515 yy *= sy; 1516 xy = (xx*yy) << 1; 1517 xx *= xx; 1518 yy *= yy; 1519 if (curvature * sx * sy < 0) { 1520 xx = -xx; 1521 yy = -yy; 1522 xy = -xy; 1523 curvature = -curvature; 1524 } 1525 dx = 4 * sy * curvature * (x1 - x0) + xx - xy; 1526 dy = 4 * sx * curvature * (y0 - y1) + yy - xy; 1527 xx += xx; 1528 yy += yy; 1529 err = dx + dy + xy; 1530 do { 1531 for (i = 0; i <= width; i++) 1532 gfx_fb_setpixel(x0 + i, y0); 1533 if (x0 == x2 && y0 == y2) 1534 return; /* last pixel -> curve finished */ 1535 y1 = 2 * err < dx; 1536 if (2 * err > dy) { 1537 x0 += sx; 1538 dx -= xy; 1539 dy += yy; 1540 err += dy; 1541 } 1542 if (y1 != 0) { 1543 y0 += sy; 1544 dy -= xy; 1545 dx += xx; 1546 err += dx; 1547 } 1548 } while (dy < dx); /* gradient negates -> algorithm fails */ 1549 } 1550 gfx_fb_line(x0, y0, x2, y2, width); 1551 } 1552 1553 /* 1554 * draw rectangle using terminal coordinates and current foreground color. 1555 */ 1556 void 1557 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2) 1558 { 1559 int x1, y1, x2, y2; 1560 int xshift, yshift; 1561 int width, i; 1562 uint32_t vf_width, vf_height; 1563 teken_rect_t r; 1564 1565 if (gfx_state.tg_fb_type == FB_TEXT) 1566 return; 1567 1568 vf_width = gfx_state.tg_font.vf_width; 1569 vf_height = gfx_state.tg_font.vf_height; 1570 width = vf_width / 4; /* line width */ 1571 xshift = (vf_width - width) / 2; 1572 yshift = (vf_height - width) / 2; 1573 1574 /* Shift coordinates */ 1575 if (ux1 != 0) 1576 ux1--; 1577 if (uy1 != 0) 1578 uy1--; 1579 ux2--; 1580 uy2--; 1581 1582 /* mark area used in terminal */ 1583 r.tr_begin.tp_col = ux1; 1584 r.tr_begin.tp_row = uy1; 1585 r.tr_end.tp_col = ux2 + 1; 1586 r.tr_end.tp_row = uy2 + 1; 1587 1588 term_image_display(&gfx_state, &r); 1589 1590 /* 1591 * Draw horizontal lines width points thick, shifted from outer edge. 1592 */ 1593 x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col; 1594 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1595 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1596 gfx_fb_drawrect(x1, y1, x2, y1 + width, 1); 1597 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1598 y2 += vf_height - yshift - width; 1599 gfx_fb_drawrect(x1, y2, x2, y2 + width, 1); 1600 1601 /* 1602 * Draw vertical lines width points thick, shifted from outer edge. 1603 */ 1604 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1605 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1606 y1 += vf_height; 1607 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1608 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1609 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1610 x1 += vf_width - xshift - width; 1611 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1612 1613 /* Draw upper left corner. */ 1614 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1615 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1616 y1 += vf_height; 1617 1618 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1619 x2 += vf_width; 1620 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1621 for (i = 0; i <= width; i++) 1622 gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i); 1623 1624 /* Draw lower left corner. */ 1625 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1626 x1 += vf_width; 1627 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1628 y1 += vf_height - yshift; 1629 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1630 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1631 for (i = 0; i <= width; i++) 1632 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1633 1634 /* Draw upper right corner. */ 1635 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1636 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1637 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1638 x2 += vf_width - xshift - width; 1639 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1640 y2 += vf_height; 1641 for (i = 0; i <= width; i++) 1642 gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i); 1643 1644 /* Draw lower right corner. */ 1645 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1646 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1647 y1 += vf_height - yshift; 1648 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1649 x2 += vf_width - xshift - width; 1650 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1651 for (i = 0; i <= width; i++) 1652 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1653 } 1654 1655 int 1656 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2, 1657 uint32_t uy2, uint32_t flags) 1658 { 1659 #if defined(EFI) 1660 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 1661 #else 1662 struct paletteentry *p; 1663 #endif 1664 uint8_t *data; 1665 uint32_t i, j, x, y, fheight, fwidth; 1666 int rs, gs, bs; 1667 uint8_t r, g, b, a; 1668 bool scale = false; 1669 bool trace = false; 1670 teken_rect_t rect; 1671 1672 trace = (flags & FL_PUTIMAGE_DEBUG) != 0; 1673 1674 if (gfx_state.tg_fb_type == FB_TEXT) { 1675 if (trace) 1676 printf("Framebuffer not active.\n"); 1677 return (1); 1678 } 1679 1680 if (png->color_type != PNG_TRUECOLOR_ALPHA) { 1681 if (trace) 1682 printf("Not truecolor image.\n"); 1683 return (1); 1684 } 1685 1686 if (ux1 > gfx_state.tg_fb.fb_width || 1687 uy1 > gfx_state.tg_fb.fb_height) { 1688 if (trace) 1689 printf("Top left coordinate off screen.\n"); 1690 return (1); 1691 } 1692 1693 if (png->width > UINT16_MAX || png->height > UINT16_MAX) { 1694 if (trace) 1695 printf("Image too large.\n"); 1696 return (1); 1697 } 1698 1699 if (png->width < 1 || png->height < 1) { 1700 if (trace) 1701 printf("Image too small.\n"); 1702 return (1); 1703 } 1704 1705 /* 1706 * If 0 was passed for either ux2 or uy2, then calculate the missing 1707 * part of the bottom right coordinate. 1708 */ 1709 scale = true; 1710 if (ux2 == 0 && uy2 == 0) { 1711 /* Both 0, use the native resolution of the image */ 1712 ux2 = ux1 + png->width; 1713 uy2 = uy1 + png->height; 1714 scale = false; 1715 } else if (ux2 == 0) { 1716 /* Set ux2 from uy2/uy1 to maintain aspect ratio */ 1717 ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height; 1718 } else if (uy2 == 0) { 1719 /* Set uy2 from ux2/ux1 to maintain aspect ratio */ 1720 uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width; 1721 } 1722 1723 if (ux2 > gfx_state.tg_fb.fb_width || 1724 uy2 > gfx_state.tg_fb.fb_height) { 1725 if (trace) 1726 printf("Bottom right coordinate off screen.\n"); 1727 return (1); 1728 } 1729 1730 fwidth = ux2 - ux1; 1731 fheight = uy2 - uy1; 1732 1733 /* 1734 * If the original image dimensions have been passed explicitly, 1735 * disable scaling. 1736 */ 1737 if (fwidth == png->width && fheight == png->height) 1738 scale = false; 1739 1740 if (ux1 == 0) { 1741 /* 1742 * No top left X co-ordinate (real coordinates start at 1), 1743 * place as far right as it will fit. 1744 */ 1745 ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col; 1746 ux1 = ux2 - fwidth; 1747 } 1748 1749 if (uy1 == 0) { 1750 /* 1751 * No top left Y co-ordinate (real coordinates start at 1), 1752 * place as far down as it will fit. 1753 */ 1754 uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row; 1755 uy1 = uy2 - fheight; 1756 } 1757 1758 if (ux1 >= ux2 || uy1 >= uy2) { 1759 if (trace) 1760 printf("Image dimensions reversed.\n"); 1761 return (1); 1762 } 1763 1764 if (fwidth < 2 || fheight < 2) { 1765 if (trace) 1766 printf("Target area too small\n"); 1767 return (1); 1768 } 1769 1770 if (trace) 1771 printf("Image %ux%u -> %ux%u @%ux%u\n", 1772 png->width, png->height, fwidth, fheight, ux1, uy1); 1773 1774 rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width; 1775 rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height; 1776 rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width; 1777 rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height; 1778 1779 /* 1780 * mark area used in terminal 1781 */ 1782 if (!(flags & FL_PUTIMAGE_NOSCROLL)) 1783 term_image_display(&gfx_state, &rect); 1784 1785 if ((flags & FL_PUTIMAGE_BORDER)) 1786 gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0); 1787 1788 data = malloc(fwidth * fheight * sizeof(*p)); 1789 p = (void *)data; 1790 if (data == NULL) { 1791 if (trace) 1792 printf("Out of memory.\n"); 1793 return (1); 1794 } 1795 1796 /* 1797 * Build image for our framebuffer. 1798 */ 1799 1800 /* Helper to calculate the pixel index from the source png */ 1801 #define GETPIXEL(xx, yy) (((yy) * png->width + (xx)) * png->bpp) 1802 1803 /* 1804 * For each of the x and y directions, calculate the number of pixels 1805 * in the source image that correspond to a single pixel in the target. 1806 * Use fixed-point arithmetic with 16-bits for each of the integer and 1807 * fractional parts. 1808 */ 1809 const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1); 1810 const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1); 1811 1812 rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) - 1813 ffs(gfx_state.tg_fb.fb_mask_red) + 1); 1814 gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) - 1815 ffs(gfx_state.tg_fb.fb_mask_green) + 1); 1816 bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) - 1817 ffs(gfx_state.tg_fb.fb_mask_blue) + 1); 1818 1819 uint32_t hc = 0; 1820 for (y = 0; y < fheight; y++) { 1821 uint32_t hc2 = (hc >> 9) & 0x7f; 1822 uint32_t hc1 = 0x80 - hc2; 1823 1824 uint32_t offset_y = hc >> 16; 1825 uint32_t offset_y1 = offset_y + 1; 1826 1827 uint32_t wc = 0; 1828 for (x = 0; x < fwidth; x++) { 1829 uint32_t wc2 = (wc >> 9) & 0x7f; 1830 uint32_t wc1 = 0x80 - wc2; 1831 1832 uint32_t offset_x = wc >> 16; 1833 uint32_t offset_x1 = offset_x + 1; 1834 1835 /* Target pixel index */ 1836 j = y * fwidth + x; 1837 1838 if (!scale) { 1839 i = GETPIXEL(x, y); 1840 r = png->image[i]; 1841 g = png->image[i + 1]; 1842 b = png->image[i + 2]; 1843 a = png->image[i + 3]; 1844 } else { 1845 uint8_t pixel[4]; 1846 1847 uint32_t p00 = GETPIXEL(offset_x, offset_y); 1848 uint32_t p01 = GETPIXEL(offset_x, offset_y1); 1849 uint32_t p10 = GETPIXEL(offset_x1, offset_y); 1850 uint32_t p11 = GETPIXEL(offset_x1, offset_y1); 1851 1852 /* 1853 * Given a 2x2 array of pixels in the source 1854 * image, combine them to produce a single 1855 * value for the pixel in the target image. 1856 * Each column of pixels is combined using 1857 * a weighted average where the top and bottom 1858 * pixels contribute hc1 and hc2 respectively. 1859 * The calculation for bottom pixel pB and 1860 * top pixel pT is: 1861 * (pT * hc1 + pB * hc2) / (hc1 + hc2) 1862 * Once the values are determined for the two 1863 * columns of pixels, then the columns are 1864 * averaged together in the same way but using 1865 * wc1 and wc2 for the weightings. 1866 * 1867 * Since hc1 and hc2 are chosen so that 1868 * hc1 + hc2 == 128 (and same for wc1 + wc2), 1869 * the >> 14 below is a quick way to divide by 1870 * (hc1 + hc2) * (wc1 + wc2) 1871 */ 1872 for (i = 0; i < 4; i++) 1873 pixel[i] = ( 1874 (png->image[p00 + i] * hc1 + 1875 png->image[p01 + i] * hc2) * wc1 + 1876 (png->image[p10 + i] * hc1 + 1877 png->image[p11 + i] * hc2) * wc2) 1878 >> 14; 1879 1880 r = pixel[0]; 1881 g = pixel[1]; 1882 b = pixel[2]; 1883 a = pixel[3]; 1884 } 1885 1886 if (trace) 1887 printf("r/g/b: %x/%x/%x\n", r, g, b); 1888 /* 1889 * Rough colorspace reduction for 15/16 bit colors. 1890 */ 1891 p[j].Red = r >> rs; 1892 p[j].Green = g >> gs; 1893 p[j].Blue = b >> bs; 1894 p[j].Reserved = a; 1895 1896 wc += wcstep; 1897 } 1898 hc += hcstep; 1899 } 1900 1901 gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data); 1902 free(data); 1903 return (0); 1904 } 1905 1906 /* 1907 * Reset font flags to FONT_AUTO. 1908 */ 1909 void 1910 reset_font_flags(void) 1911 { 1912 struct fontlist *fl; 1913 1914 STAILQ_FOREACH(fl, &fonts, font_next) { 1915 fl->font_flags = FONT_AUTO; 1916 } 1917 } 1918 1919 /* Return w^2 + h^2 or 0, if the dimensions are unknown */ 1920 static unsigned 1921 edid_diagonal_squared(void) 1922 { 1923 unsigned w, h; 1924 1925 if (edid_info == NULL) 1926 return (0); 1927 1928 w = edid_info->display.max_horizontal_image_size; 1929 h = edid_info->display.max_vertical_image_size; 1930 1931 /* If either one is 0, we have aspect ratio, not size */ 1932 if (w == 0 || h == 0) 1933 return (0); 1934 1935 /* 1936 * some monitors encode the aspect ratio instead of the physical size. 1937 */ 1938 if ((w == 16 && h == 9) || (w == 16 && h == 10) || 1939 (w == 4 && h == 3) || (w == 5 && h == 4)) 1940 return (0); 1941 1942 /* 1943 * translate cm to inch, note we scale by 100 here. 1944 */ 1945 w = w * 100 / 254; 1946 h = h * 100 / 254; 1947 1948 /* Return w^2 + h^2 */ 1949 return (w * w + h * h); 1950 } 1951 1952 /* 1953 * calculate pixels per inch. 1954 */ 1955 static unsigned 1956 gfx_get_ppi(void) 1957 { 1958 unsigned dp, di; 1959 1960 di = edid_diagonal_squared(); 1961 if (di == 0) 1962 return (0); 1963 1964 dp = gfx_state.tg_fb.fb_width * 1965 gfx_state.tg_fb.fb_width + 1966 gfx_state.tg_fb.fb_height * 1967 gfx_state.tg_fb.fb_height; 1968 1969 return (isqrt(dp / di)); 1970 } 1971 1972 /* 1973 * Calculate font size from density independent pixels (dp): 1974 * ((16dp * ppi) / 160) * display_factor. 1975 * Here we are using fixed constants: 1dp == 160 ppi and 1976 * display_factor 2. 1977 * 1978 * We are rounding font size up and are searching for font which is 1979 * not smaller than calculated size value. 1980 */ 1981 static vt_font_bitmap_data_t * 1982 gfx_get_font(void) 1983 { 1984 unsigned ppi, size; 1985 vt_font_bitmap_data_t *font = NULL; 1986 struct fontlist *fl, *next; 1987 1988 /* Text mode is not supported here. */ 1989 if (gfx_state.tg_fb_type == FB_TEXT) 1990 return (NULL); 1991 1992 ppi = gfx_get_ppi(); 1993 if (ppi == 0) 1994 return (NULL); 1995 1996 /* 1997 * We will search for 16dp font. 1998 * We are using scale up by 10 for roundup. 1999 */ 2000 size = (16 * ppi * 10) / 160; 2001 /* Apply display factor 2. */ 2002 size = roundup(size * 2, 10) / 10; 2003 2004 STAILQ_FOREACH(fl, &fonts, font_next) { 2005 next = STAILQ_NEXT(fl, font_next); 2006 2007 /* 2008 * If this is last font or, if next font is smaller, 2009 * we have our font. Make sure, it actually is loaded. 2010 */ 2011 if (next == NULL || next->font_data->vfbd_height < size) { 2012 font = fl->font_data; 2013 if (font->vfbd_font == NULL || 2014 fl->font_flags == FONT_RELOAD) { 2015 if (fl->font_load != NULL && 2016 fl->font_name != NULL) 2017 font = fl->font_load(fl->font_name); 2018 } 2019 break; 2020 } 2021 } 2022 2023 return (font); 2024 } 2025 2026 static vt_font_bitmap_data_t * 2027 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w) 2028 { 2029 vt_font_bitmap_data_t *font = NULL; 2030 struct fontlist *fl; 2031 unsigned height = h; 2032 unsigned width = w; 2033 2034 /* 2035 * First check for manually loaded font. 2036 */ 2037 STAILQ_FOREACH(fl, &fonts, font_next) { 2038 if (fl->font_flags == FONT_MANUAL) { 2039 font = fl->font_data; 2040 if (font->vfbd_font == NULL && fl->font_load != NULL && 2041 fl->font_name != NULL) { 2042 font = fl->font_load(fl->font_name); 2043 } 2044 if (font == NULL || font->vfbd_font == NULL) 2045 font = NULL; 2046 break; 2047 } 2048 } 2049 2050 if (font == NULL) 2051 font = gfx_get_font(); 2052 2053 if (font != NULL) { 2054 *rows = height / font->vfbd_height; 2055 *cols = width / font->vfbd_width; 2056 return (font); 2057 } 2058 2059 /* 2060 * Find best font for these dimensions, or use default. 2061 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH, 2062 * do not use smaller font than our DEFAULT_FONT_DATA. 2063 */ 2064 STAILQ_FOREACH(fl, &fonts, font_next) { 2065 font = fl->font_data; 2066 if ((*rows * font->vfbd_height <= height && 2067 *cols * font->vfbd_width <= width) || 2068 (height >= VT_FB_MAX_HEIGHT && 2069 width >= VT_FB_MAX_WIDTH && 2070 font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height && 2071 font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) { 2072 if (font->vfbd_font == NULL || 2073 fl->font_flags == FONT_RELOAD) { 2074 if (fl->font_load != NULL && 2075 fl->font_name != NULL) { 2076 font = fl->font_load(fl->font_name); 2077 } 2078 if (font == NULL) 2079 continue; 2080 } 2081 *rows = height / font->vfbd_height; 2082 *cols = width / font->vfbd_width; 2083 break; 2084 } 2085 font = NULL; 2086 } 2087 2088 if (font == NULL) { 2089 /* 2090 * We have fonts sorted smallest last, try it before 2091 * falling back to builtin. 2092 */ 2093 fl = STAILQ_LAST(&fonts, fontlist, font_next); 2094 if (fl != NULL && fl->font_load != NULL && 2095 fl->font_name != NULL) { 2096 font = fl->font_load(fl->font_name); 2097 } 2098 if (font == NULL) 2099 font = &DEFAULT_FONT_DATA; 2100 2101 *rows = height / font->vfbd_height; 2102 *cols = width / font->vfbd_width; 2103 } 2104 2105 return (font); 2106 } 2107 2108 static void 2109 cons_clear(void) 2110 { 2111 char clear[] = { '\033', 'c' }; 2112 2113 /* Reset terminal */ 2114 teken_input(&gfx_state.tg_teken, clear, sizeof(clear)); 2115 gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0); 2116 } 2117 2118 void 2119 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width) 2120 { 2121 vt_font_bitmap_data_t *font_data; 2122 teken_pos_t *tp = &state->tg_tp; 2123 char env[8]; 2124 int i; 2125 2126 /* 2127 * set_font() will select a appropriate sized font for 2128 * the number of rows and columns selected. If we don't 2129 * have a font that will fit, then it will use the 2130 * default builtin font and adjust the rows and columns 2131 * to fit on the screen. 2132 */ 2133 font_data = set_font(&tp->tp_row, &tp->tp_col, height, width); 2134 2135 if (font_data == NULL) 2136 panic("out of memory"); 2137 2138 for (i = 0; i < VFNT_MAPS; i++) { 2139 state->tg_font.vf_map[i] = 2140 font_data->vfbd_font->vf_map[i]; 2141 state->tg_font.vf_map_count[i] = 2142 font_data->vfbd_font->vf_map_count[i]; 2143 } 2144 2145 state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes; 2146 state->tg_font.vf_height = font_data->vfbd_font->vf_height; 2147 state->tg_font.vf_width = font_data->vfbd_font->vf_width; 2148 2149 snprintf(env, sizeof (env), "%ux%u", 2150 state->tg_font.vf_width, state->tg_font.vf_height); 2151 env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK, 2152 env, font_set, env_nounset); 2153 } 2154 2155 /* Binary search for the glyph. Return 0 if not found. */ 2156 static uint16_t 2157 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src) 2158 { 2159 unsigned min, mid, max; 2160 2161 min = 0; 2162 max = len - 1; 2163 2164 /* Empty font map. */ 2165 if (len == 0) 2166 return (0); 2167 /* Character below minimal entry. */ 2168 if (src < map[0].vfm_src) 2169 return (0); 2170 /* Optimization: ASCII characters occur very often. */ 2171 if (src <= map[0].vfm_src + map[0].vfm_len) 2172 return (src - map[0].vfm_src + map[0].vfm_dst); 2173 /* Character above maximum entry. */ 2174 if (src > map[max].vfm_src + map[max].vfm_len) 2175 return (0); 2176 2177 /* Binary search. */ 2178 while (max >= min) { 2179 mid = (min + max) / 2; 2180 if (src < map[mid].vfm_src) 2181 max = mid - 1; 2182 else if (src > map[mid].vfm_src + map[mid].vfm_len) 2183 min = mid + 1; 2184 else 2185 return (src - map[mid].vfm_src + map[mid].vfm_dst); 2186 } 2187 2188 return (0); 2189 } 2190 2191 /* 2192 * Return glyph bitmap. If glyph is not found, we will return bitmap 2193 * for the first (offset 0) glyph. 2194 */ 2195 uint8_t * 2196 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a) 2197 { 2198 uint16_t dst; 2199 size_t stride; 2200 2201 /* Substitute bold with normal if not found. */ 2202 if (a->ta_format & TF_BOLD) { 2203 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 2204 vf->vf_map_count[VFNT_MAP_BOLD], c); 2205 if (dst != 0) 2206 goto found; 2207 } 2208 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 2209 vf->vf_map_count[VFNT_MAP_NORMAL], c); 2210 2211 found: 2212 stride = howmany(vf->vf_width, 8) * vf->vf_height; 2213 return (&vf->vf_bytes[dst * stride]); 2214 } 2215 2216 static int 2217 load_mapping(int fd, struct vt_font *fp, int n) 2218 { 2219 size_t i, size; 2220 ssize_t rv; 2221 vfnt_map_t *mp; 2222 2223 if (fp->vf_map_count[n] == 0) 2224 return (0); 2225 2226 size = fp->vf_map_count[n] * sizeof(*mp); 2227 mp = malloc(size); 2228 if (mp == NULL) 2229 return (ENOMEM); 2230 fp->vf_map[n] = mp; 2231 2232 rv = read(fd, mp, size); 2233 if (rv < 0 || (size_t)rv != size) { 2234 free(fp->vf_map[n]); 2235 fp->vf_map[n] = NULL; 2236 return (EIO); 2237 } 2238 2239 for (i = 0; i < fp->vf_map_count[n]; i++) { 2240 mp[i].vfm_src = be32toh(mp[i].vfm_src); 2241 mp[i].vfm_dst = be16toh(mp[i].vfm_dst); 2242 mp[i].vfm_len = be16toh(mp[i].vfm_len); 2243 } 2244 return (0); 2245 } 2246 2247 static int 2248 builtin_mapping(struct vt_font *fp, int n) 2249 { 2250 size_t size; 2251 struct vfnt_map *mp; 2252 2253 if (n >= VFNT_MAPS) 2254 return (EINVAL); 2255 2256 if (fp->vf_map_count[n] == 0) 2257 return (0); 2258 2259 size = fp->vf_map_count[n] * sizeof(*mp); 2260 mp = malloc(size); 2261 if (mp == NULL) 2262 return (ENOMEM); 2263 fp->vf_map[n] = mp; 2264 2265 memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size); 2266 return (0); 2267 } 2268 2269 /* 2270 * Load font from builtin or from file. 2271 * We do need special case for builtin because the builtin font glyphs 2272 * are compressed and we do need to uncompress them. 2273 * Having single load_font() for both cases will help us to simplify 2274 * font switch handling. 2275 */ 2276 static vt_font_bitmap_data_t * 2277 load_font(char *path) 2278 { 2279 int fd, i; 2280 uint32_t glyphs; 2281 struct font_header fh; 2282 struct fontlist *fl; 2283 vt_font_bitmap_data_t *bp; 2284 struct vt_font *fp; 2285 size_t size; 2286 ssize_t rv; 2287 2288 /* Get our entry from the font list. */ 2289 STAILQ_FOREACH(fl, &fonts, font_next) { 2290 if (strcmp(fl->font_name, path) == 0) 2291 break; 2292 } 2293 if (fl == NULL) 2294 return (NULL); /* Should not happen. */ 2295 2296 bp = fl->font_data; 2297 if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD) 2298 return (bp); 2299 2300 fd = -1; 2301 /* 2302 * Special case for builtin font. 2303 * Builtin font is the very first font we load, we do not have 2304 * previous loads to be released. 2305 */ 2306 if (fl->font_flags == FONT_BUILTIN) { 2307 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) 2308 return (NULL); 2309 2310 fp->vf_width = DEFAULT_FONT_DATA.vfbd_width; 2311 fp->vf_height = DEFAULT_FONT_DATA.vfbd_height; 2312 2313 fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size); 2314 if (fp->vf_bytes == NULL) { 2315 free(fp); 2316 return (NULL); 2317 } 2318 2319 bp->vfbd_uncompressed_size = 2320 DEFAULT_FONT_DATA.vfbd_uncompressed_size; 2321 bp->vfbd_compressed_size = 2322 DEFAULT_FONT_DATA.vfbd_compressed_size; 2323 2324 if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data, 2325 fp->vf_bytes, 2326 DEFAULT_FONT_DATA.vfbd_compressed_size, 2327 DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) { 2328 free(fp->vf_bytes); 2329 free(fp); 2330 return (NULL); 2331 } 2332 2333 for (i = 0; i < VFNT_MAPS; i++) { 2334 fp->vf_map_count[i] = 2335 DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i]; 2336 if (builtin_mapping(fp, i) != 0) 2337 goto free_done; 2338 } 2339 2340 bp->vfbd_font = fp; 2341 return (bp); 2342 } 2343 2344 fd = open(path, O_RDONLY); 2345 if (fd < 0) 2346 return (NULL); 2347 2348 size = sizeof(fh); 2349 rv = read(fd, &fh, size); 2350 if (rv < 0 || (size_t)rv != size) { 2351 bp = NULL; 2352 goto done; 2353 } 2354 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) { 2355 bp = NULL; 2356 goto done; 2357 } 2358 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) { 2359 bp = NULL; 2360 goto done; 2361 } 2362 for (i = 0; i < VFNT_MAPS; i++) 2363 fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]); 2364 2365 glyphs = be32toh(fh.fh_glyph_count); 2366 fp->vf_width = fh.fh_width; 2367 fp->vf_height = fh.fh_height; 2368 2369 size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs; 2370 bp->vfbd_uncompressed_size = size; 2371 if ((fp->vf_bytes = malloc(size)) == NULL) 2372 goto free_done; 2373 2374 rv = read(fd, fp->vf_bytes, size); 2375 if (rv < 0 || (size_t)rv != size) 2376 goto free_done; 2377 for (i = 0; i < VFNT_MAPS; i++) { 2378 if (load_mapping(fd, fp, i) != 0) 2379 goto free_done; 2380 } 2381 2382 /* 2383 * Reset builtin flag now as we have full font loaded. 2384 */ 2385 if (fl->font_flags == FONT_BUILTIN) 2386 fl->font_flags = FONT_AUTO; 2387 2388 /* 2389 * Release previously loaded entries. We can do this now, as 2390 * the new font is loaded. Note, there can be no console 2391 * output till the new font is in place and teken is notified. 2392 * We do need to keep fl->font_data for glyph dimensions. 2393 */ 2394 STAILQ_FOREACH(fl, &fonts, font_next) { 2395 if (fl->font_data->vfbd_font == NULL) 2396 continue; 2397 2398 for (i = 0; i < VFNT_MAPS; i++) 2399 free(fl->font_data->vfbd_font->vf_map[i]); 2400 free(fl->font_data->vfbd_font->vf_bytes); 2401 free(fl->font_data->vfbd_font); 2402 fl->font_data->vfbd_font = NULL; 2403 } 2404 2405 bp->vfbd_font = fp; 2406 bp->vfbd_compressed_size = 0; 2407 2408 done: 2409 if (fd != -1) 2410 close(fd); 2411 return (bp); 2412 2413 free_done: 2414 for (i = 0; i < VFNT_MAPS; i++) 2415 free(fp->vf_map[i]); 2416 free(fp->vf_bytes); 2417 free(fp); 2418 bp = NULL; 2419 goto done; 2420 } 2421 2422 struct name_entry { 2423 char *n_name; 2424 SLIST_ENTRY(name_entry) n_entry; 2425 }; 2426 2427 SLIST_HEAD(name_list, name_entry); 2428 2429 /* Read font names from index file. */ 2430 static struct name_list * 2431 read_list(char *fonts) 2432 { 2433 struct name_list *nl; 2434 struct name_entry *np; 2435 char *dir, *ptr; 2436 char buf[PATH_MAX]; 2437 int fd, len; 2438 2439 TSENTER(); 2440 2441 dir = strdup(fonts); 2442 if (dir == NULL) 2443 return (NULL); 2444 2445 ptr = strrchr(dir, '/'); 2446 *ptr = '\0'; 2447 2448 fd = open(fonts, O_RDONLY); 2449 if (fd < 0) 2450 return (NULL); 2451 2452 nl = malloc(sizeof(*nl)); 2453 if (nl == NULL) { 2454 close(fd); 2455 return (nl); 2456 } 2457 2458 SLIST_INIT(nl); 2459 while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) { 2460 if (*buf == '#' || *buf == '\0') 2461 continue; 2462 2463 if (bcmp(buf, "MENU", 4) == 0) 2464 continue; 2465 2466 if (bcmp(buf, "FONT", 4) == 0) 2467 continue; 2468 2469 ptr = strchr(buf, ':'); 2470 if (ptr == NULL) 2471 continue; 2472 else 2473 *ptr = '\0'; 2474 2475 np = malloc(sizeof(*np)); 2476 if (np == NULL) { 2477 close(fd); 2478 return (nl); /* return what we have */ 2479 } 2480 if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) { 2481 free(np); 2482 close(fd); 2483 return (nl); /* return what we have */ 2484 } 2485 SLIST_INSERT_HEAD(nl, np, n_entry); 2486 } 2487 close(fd); 2488 TSEXIT(); 2489 return (nl); 2490 } 2491 2492 /* 2493 * Read the font properties and insert new entry into the list. 2494 * The font list is built in descending order. 2495 */ 2496 static bool 2497 insert_font(char *name, FONT_FLAGS flags) 2498 { 2499 struct font_header fh; 2500 struct fontlist *fp, *previous, *entry, *next; 2501 size_t size; 2502 ssize_t rv; 2503 int fd; 2504 char *font_name; 2505 2506 TSENTER(); 2507 2508 font_name = NULL; 2509 if (flags == FONT_BUILTIN) { 2510 /* 2511 * We only install builtin font once, while setting up 2512 * initial console. Since this will happen very early, 2513 * we assume asprintf will not fail. Once we have access to 2514 * files, the builtin font will be replaced by font loaded 2515 * from file. 2516 */ 2517 if (!STAILQ_EMPTY(&fonts)) 2518 return (false); 2519 2520 fh.fh_width = DEFAULT_FONT_DATA.vfbd_width; 2521 fh.fh_height = DEFAULT_FONT_DATA.vfbd_height; 2522 2523 (void) asprintf(&font_name, "%dx%d", 2524 DEFAULT_FONT_DATA.vfbd_width, 2525 DEFAULT_FONT_DATA.vfbd_height); 2526 } else { 2527 fd = open(name, O_RDONLY); 2528 if (fd < 0) 2529 return (false); 2530 rv = read(fd, &fh, sizeof(fh)); 2531 close(fd); 2532 if (rv < 0 || (size_t)rv != sizeof(fh)) 2533 return (false); 2534 2535 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, 2536 sizeof(fh.fh_magic)) != 0) 2537 return (false); 2538 font_name = strdup(name); 2539 } 2540 2541 if (font_name == NULL) 2542 return (false); 2543 2544 /* 2545 * If we have an entry with the same glyph dimensions, replace 2546 * the file name and mark us. We only support unique dimensions. 2547 */ 2548 STAILQ_FOREACH(entry, &fonts, font_next) { 2549 if (fh.fh_width == entry->font_data->vfbd_width && 2550 fh.fh_height == entry->font_data->vfbd_height) { 2551 free(entry->font_name); 2552 entry->font_name = font_name; 2553 entry->font_flags = FONT_RELOAD; 2554 TSEXIT(); 2555 return (true); 2556 } 2557 } 2558 2559 fp = calloc(sizeof(*fp), 1); 2560 if (fp == NULL) { 2561 free(font_name); 2562 return (false); 2563 } 2564 fp->font_data = calloc(sizeof(*fp->font_data), 1); 2565 if (fp->font_data == NULL) { 2566 free(font_name); 2567 free(fp); 2568 return (false); 2569 } 2570 fp->font_name = font_name; 2571 fp->font_flags = flags; 2572 fp->font_load = load_font; 2573 fp->font_data->vfbd_width = fh.fh_width; 2574 fp->font_data->vfbd_height = fh.fh_height; 2575 2576 if (STAILQ_EMPTY(&fonts)) { 2577 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2578 TSEXIT(); 2579 return (true); 2580 } 2581 2582 previous = NULL; 2583 size = fp->font_data->vfbd_width * fp->font_data->vfbd_height; 2584 2585 STAILQ_FOREACH(entry, &fonts, font_next) { 2586 vt_font_bitmap_data_t *bd; 2587 2588 bd = entry->font_data; 2589 /* Should fp be inserted before the entry? */ 2590 if (size > bd->vfbd_width * bd->vfbd_height) { 2591 if (previous == NULL) { 2592 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2593 } else { 2594 STAILQ_INSERT_AFTER(&fonts, previous, fp, 2595 font_next); 2596 } 2597 TSEXIT(); 2598 return (true); 2599 } 2600 next = STAILQ_NEXT(entry, font_next); 2601 if (next == NULL || 2602 size > next->font_data->vfbd_width * 2603 next->font_data->vfbd_height) { 2604 STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next); 2605 TSEXIT(); 2606 return (true); 2607 } 2608 previous = entry; 2609 } 2610 TSEXIT(); 2611 return (true); 2612 } 2613 2614 static int 2615 font_set(struct env_var *ev __unused, int flags __unused, const void *value) 2616 { 2617 struct fontlist *fl; 2618 char *eptr; 2619 unsigned long x = 0, y = 0; 2620 2621 /* 2622 * Attempt to extract values from "XxY" string. In case of error, 2623 * we have unmaching glyph dimensions and will just output the 2624 * available values. 2625 */ 2626 if (value != NULL) { 2627 x = strtoul(value, &eptr, 10); 2628 if (*eptr == 'x') 2629 y = strtoul(eptr + 1, &eptr, 10); 2630 } 2631 STAILQ_FOREACH(fl, &fonts, font_next) { 2632 if (fl->font_data->vfbd_width == x && 2633 fl->font_data->vfbd_height == y) 2634 break; 2635 } 2636 if (fl != NULL) { 2637 /* Reset any FONT_MANUAL flag. */ 2638 reset_font_flags(); 2639 2640 /* Mark this font manually loaded */ 2641 fl->font_flags = FONT_MANUAL; 2642 cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2643 return (CMD_OK); 2644 } 2645 2646 printf("Available fonts:\n"); 2647 STAILQ_FOREACH(fl, &fonts, font_next) { 2648 printf(" %dx%d\n", fl->font_data->vfbd_width, 2649 fl->font_data->vfbd_height); 2650 } 2651 return (CMD_OK); 2652 } 2653 2654 void 2655 bios_text_font(bool use_vga_font) 2656 { 2657 if (use_vga_font) 2658 (void) insert_font(VGA_8X16_FONT, FONT_MANUAL); 2659 else 2660 (void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL); 2661 } 2662 2663 void 2664 autoload_font(bool bios) 2665 { 2666 struct name_list *nl; 2667 struct name_entry *np; 2668 2669 TSENTER(); 2670 2671 nl = read_list("/boot/fonts/INDEX.fonts"); 2672 if (nl == NULL) 2673 return; 2674 2675 while (!SLIST_EMPTY(nl)) { 2676 np = SLIST_FIRST(nl); 2677 SLIST_REMOVE_HEAD(nl, n_entry); 2678 if (insert_font(np->n_name, FONT_AUTO) == false) 2679 printf("failed to add font: %s\n", np->n_name); 2680 free(np->n_name); 2681 free(np); 2682 } 2683 2684 /* 2685 * If vga text mode was requested, load vga.font (8x16 bold) font. 2686 */ 2687 if (bios) { 2688 bios_text_font(true); 2689 } 2690 2691 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2692 2693 TSEXIT(); 2694 } 2695 2696 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font); 2697 2698 static int 2699 command_font(int argc, char *argv[]) 2700 { 2701 int i, c, rc; 2702 struct fontlist *fl; 2703 vt_font_bitmap_data_t *bd; 2704 bool list; 2705 2706 list = false; 2707 optind = 1; 2708 optreset = 1; 2709 rc = CMD_OK; 2710 2711 while ((c = getopt(argc, argv, "l")) != -1) { 2712 switch (c) { 2713 case 'l': 2714 list = true; 2715 break; 2716 case '?': 2717 default: 2718 return (CMD_ERROR); 2719 } 2720 } 2721 2722 argc -= optind; 2723 argv += optind; 2724 2725 if (argc > 1 || (list && argc != 0)) { 2726 printf("Usage: loadfont [-l] | [file.fnt]\n"); 2727 return (CMD_ERROR); 2728 } 2729 2730 if (list) { 2731 STAILQ_FOREACH(fl, &fonts, font_next) { 2732 printf("font %s: %dx%d%s\n", fl->font_name, 2733 fl->font_data->vfbd_width, 2734 fl->font_data->vfbd_height, 2735 fl->font_data->vfbd_font == NULL? "" : " loaded"); 2736 } 2737 return (CMD_OK); 2738 } 2739 2740 /* Clear scren */ 2741 cons_clear(); 2742 2743 if (argc == 1) { 2744 char *name = argv[0]; 2745 2746 if (insert_font(name, FONT_MANUAL) == false) { 2747 printf("loadfont error: failed to load: %s\n", name); 2748 return (CMD_ERROR); 2749 } 2750 2751 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2752 return (CMD_OK); 2753 } 2754 2755 if (argc == 0) { 2756 /* 2757 * Walk entire font list, release any loaded font, and set 2758 * autoload flag. The font list does have at least the builtin 2759 * default font. 2760 */ 2761 STAILQ_FOREACH(fl, &fonts, font_next) { 2762 if (fl->font_data->vfbd_font != NULL) { 2763 2764 bd = fl->font_data; 2765 /* 2766 * Note the setup_font() is releasing 2767 * font bytes. 2768 */ 2769 for (i = 0; i < VFNT_MAPS; i++) 2770 free(bd->vfbd_font->vf_map[i]); 2771 free(fl->font_data->vfbd_font); 2772 fl->font_data->vfbd_font = NULL; 2773 fl->font_data->vfbd_uncompressed_size = 0; 2774 fl->font_flags = FONT_AUTO; 2775 } 2776 } 2777 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2778 } 2779 return (rc); 2780 } 2781 2782 bool 2783 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res) 2784 { 2785 struct resolution *rp, *p; 2786 2787 /* 2788 * Walk detailed timings tables (4). 2789 */ 2790 if ((edid->display.supported_features 2791 & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) { 2792 /* Walk detailed timing descriptors (4) */ 2793 for (int i = 0; i < DET_TIMINGS; i++) { 2794 /* 2795 * Reserved value 0 is not used for display decriptor. 2796 */ 2797 if (edid->detailed_timings[i].pixel_clock == 0) 2798 continue; 2799 if ((rp = malloc(sizeof(*rp))) == NULL) 2800 continue; 2801 rp->width = GET_EDID_INFO_WIDTH(edid, i); 2802 rp->height = GET_EDID_INFO_HEIGHT(edid, i); 2803 if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS && 2804 rp->height > 0 && rp->height <= EDID_MAX_LINES) 2805 TAILQ_INSERT_TAIL(res, rp, next); 2806 else 2807 free(rp); 2808 } 2809 } 2810 2811 /* 2812 * Walk standard timings list (8). 2813 */ 2814 for (int i = 0; i < STD_TIMINGS; i++) { 2815 /* Is this field unused? */ 2816 if (edid->standard_timings[i] == 0x0101) 2817 continue; 2818 2819 if ((rp = malloc(sizeof(*rp))) == NULL) 2820 continue; 2821 2822 rp->width = HSIZE(edid->standard_timings[i]); 2823 switch (RATIO(edid->standard_timings[i])) { 2824 case RATIO1_1: 2825 rp->height = HSIZE(edid->standard_timings[i]); 2826 if (edid->header.version > 1 || 2827 edid->header.revision > 2) { 2828 rp->height = rp->height * 10 / 16; 2829 } 2830 break; 2831 case RATIO4_3: 2832 rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4; 2833 break; 2834 case RATIO5_4: 2835 rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5; 2836 break; 2837 case RATIO16_9: 2838 rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16; 2839 break; 2840 } 2841 2842 /* 2843 * Create resolution list in decreasing order, except keep 2844 * first entry (preferred timing mode). 2845 */ 2846 TAILQ_FOREACH(p, res, next) { 2847 if (p->width * p->height < rp->width * rp->height) { 2848 /* Keep preferred mode first */ 2849 if (TAILQ_FIRST(res) == p) 2850 TAILQ_INSERT_AFTER(res, p, rp, next); 2851 else 2852 TAILQ_INSERT_BEFORE(p, rp, next); 2853 break; 2854 } 2855 if (TAILQ_NEXT(p, next) == NULL) { 2856 TAILQ_INSERT_TAIL(res, rp, next); 2857 break; 2858 } 2859 } 2860 } 2861 return (!TAILQ_EMPTY(res)); 2862 } 2863