1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2020 Toomas Soome 5 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 6 * Copyright 2020 RackTop Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI 34 * GOP Blt, and allows us to fill the rectangle on screen, copy 35 * rectangle from video to buffer and buffer to video and video to video. 36 * Such implementation does allow us to have almost identical implementation 37 * for both BIOS VBE and UEFI. 38 * 39 * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red, 40 * Alpha) format, this allows us to only handle RGB data and not to worry 41 * about mixing RGB with indexed colors. 42 * Data exchange between memory buffer and video will translate BGRA 43 * and native format as following: 44 * 45 * 32-bit to/from 32-bit is trivial case. 46 * 32-bit to/from 24-bit is also simple - we just drop the alpha channel. 47 * 32-bit to/from 16-bit is more complicated, because we nee to handle 48 * data loss from 32-bit to 16-bit. While reading/writing from/to video, we 49 * need to apply masks of 16-bit color components. This will preserve 50 * colors for terminal text. For 32-bit truecolor PMG images, we need to 51 * translate 32-bit colors to 15/16 bit colors and this means data loss. 52 * There are different algorithms how to perform such color space reduction, 53 * we are currently using bitwise right shift to reduce color space and so far 54 * this technique seems to be sufficient (see also gfx_fb_putimage(), the 55 * end of for loop). 56 * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are 57 * indexed. From video, we do get color indexes, and we do translate 58 * color index values to RGB. To write to video, we again need to translate 59 * RGB to color index. Additionally, we need to translate between VGA and 60 * console colors. 61 * 62 * Our internal color data is represented using BGRA format. But the hardware 63 * used indexed colors for 8-bit colors (0-255) and for this mode we do 64 * need to perform translation to/from BGRA and index values. 65 * 66 * - paletteentry RGB <-> index - 67 * BGRA BUFFER <----/ \ - VIDEO 68 * \ / 69 * - RGB (16/24/32) - 70 * 71 * To perform index to RGB translation, we use palette table generated 72 * from when we set up 8-bit mode video. We cannot read palette data from 73 * the hardware, because not all hardware supports reading it. 74 * 75 * BGRA to index is implemented in rgb_to_color_index() by searching 76 * palette array for closest match of RBG values. 77 * 78 * Note: In 8-bit mode, We do store first 16 colors to palette registers 79 * in VGA color order, this serves two purposes; firstly, 80 * if palette update is not supported, we still have correct 16 colors. 81 * Secondly, the kernel does get correct 16 colors when some other boot 82 * loader is used. However, the palette map for 8-bit colors is using 83 * console color ordering - this does allow us to skip translation 84 * from VGA colors to console colors, while we are reading RGB data. 85 */ 86 87 #include <sys/cdefs.h> 88 #include <sys/param.h> 89 #include <stand.h> 90 #include <teken.h> 91 #include <gfx_fb.h> 92 #include <sys/font.h> 93 #include <sys/stdint.h> 94 #include <sys/endian.h> 95 #include <pnglite.h> 96 #include <bootstrap.h> 97 #include <lz4.h> 98 #if defined(EFI) 99 #include <efi.h> 100 #include <efilib.h> 101 #else 102 #include <vbe.h> 103 #endif 104 105 /* VGA text mode does use bold font. */ 106 #if !defined(VGA_8X16_FONT) 107 #define VGA_8X16_FONT "/boot/fonts/8x16b.fnt" 108 #endif 109 #if !defined(DEFAULT_8X16_FONT) 110 #define DEFAULT_8X16_FONT "/boot/fonts/8x16.fnt" 111 #endif 112 113 /* 114 * Must be sorted by font size in descending order 115 */ 116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 117 118 #define DEFAULT_FONT_DATA font_data_8x16 119 extern vt_font_bitmap_data_t font_data_8x16; 120 teken_gfx_t gfx_state = { 0 }; 121 122 static struct { 123 unsigned char r; /* Red percentage value. */ 124 unsigned char g; /* Green percentage value. */ 125 unsigned char b; /* Blue percentage value. */ 126 } color_def[NCOLORS] = { 127 {0, 0, 0}, /* black */ 128 {50, 0, 0}, /* dark red */ 129 {0, 50, 0}, /* dark green */ 130 {77, 63, 0}, /* dark yellow */ 131 {20, 40, 64}, /* dark blue */ 132 {50, 0, 50}, /* dark magenta */ 133 {0, 50, 50}, /* dark cyan */ 134 {75, 75, 75}, /* light gray */ 135 136 {18, 20, 21}, /* dark gray */ 137 {100, 0, 0}, /* light red */ 138 {0, 100, 0}, /* light green */ 139 {100, 100, 0}, /* light yellow */ 140 {45, 62, 81}, /* light blue */ 141 {100, 0, 100}, /* light magenta */ 142 {0, 100, 100}, /* light cyan */ 143 {100, 100, 100}, /* white */ 144 }; 145 uint32_t cmap[NCMAP]; 146 147 /* 148 * Between console's palette and VGA's one: 149 * - blue and red are swapped (1 <-> 4) 150 * - yellow and cyan are swapped (3 <-> 6) 151 */ 152 const int cons_to_vga_colors[NCOLORS] = { 153 0, 4, 2, 6, 1, 5, 3, 7, 154 8, 12, 10, 14, 9, 13, 11, 15 155 }; 156 157 static const int vga_to_cons_colors[NCOLORS] = { 158 0, 1, 2, 3, 4, 5, 6, 7, 159 8, 9, 10, 11, 12, 13, 14, 15 160 }; 161 162 struct text_pixel *screen_buffer; 163 #if defined(EFI) 164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer; 165 #else 166 static struct paletteentry *GlyphBuffer; 167 #endif 168 static size_t GlyphBufferSize; 169 170 static bool insert_font(char *, FONT_FLAGS); 171 static int font_set(struct env_var *, int, const void *); 172 static void * allocate_glyphbuffer(uint32_t, uint32_t); 173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool); 174 175 /* 176 * Initialize gfx framework. 177 */ 178 void 179 gfx_framework_init(void) 180 { 181 /* 182 * Setup font list to have builtin font. 183 */ 184 (void) insert_font(NULL, FONT_BUILTIN); 185 } 186 187 static uint8_t * 188 gfx_get_fb_address(void) 189 { 190 return (ptov((uint32_t)gfx_state.tg_fb.fb_addr)); 191 } 192 193 /* 194 * Utility function to parse gfx mode line strings. 195 */ 196 bool 197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth) 198 { 199 char *p, *end; 200 201 errno = 0; 202 p = str; 203 *x = strtoul(p, &end, 0); 204 if (*x == 0 || errno != 0) 205 return (false); 206 if (*end != 'x') 207 return (false); 208 p = end + 1; 209 *y = strtoul(p, &end, 0); 210 if (*y == 0 || errno != 0) 211 return (false); 212 if (*end != 'x') { 213 *depth = -1; /* auto select */ 214 } else { 215 p = end + 1; 216 *depth = strtoul(p, &end, 0); 217 if (*depth == 0 || errno != 0 || *end != '\0') 218 return (false); 219 } 220 221 return (true); 222 } 223 224 static uint32_t 225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset, 226 uint32_t gmax, int goffset, uint32_t bmax, int boffset) 227 { 228 uint32_t color, code, gray, level; 229 230 if (index < NCOLORS) { 231 #define CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset) 232 return (CF(r, index) | CF(g, index) | CF(b, index)); 233 #undef CF 234 } 235 236 #define CF(_f, _c) ((_f ## max & _c) << _f ## offset) 237 /* 6x6x6 color cube */ 238 if (index > 15 && index < 232) { 239 uint32_t red, green, blue; 240 241 for (red = 0; red < 6; red++) { 242 for (green = 0; green < 6; green++) { 243 for (blue = 0; blue < 6; blue++) { 244 code = 16 + (red * 36) + 245 (green * 6) + blue; 246 if (code != index) 247 continue; 248 red = red ? (red * 40 + 55) : 0; 249 green = green ? (green * 40 + 55) : 0; 250 blue = blue ? (blue * 40 + 55) : 0; 251 color = CF(r, red); 252 color |= CF(g, green); 253 color |= CF(b, blue); 254 return (color); 255 } 256 } 257 } 258 } 259 260 /* colors 232-255 are a grayscale ramp */ 261 for (gray = 0; gray < 24; gray++) { 262 level = (gray * 10) + 8; 263 code = 232 + gray; 264 if (code == index) 265 break; 266 } 267 return (CF(r, level) | CF(g, level) | CF(b, level)); 268 #undef CF 269 } 270 271 /* 272 * Support for color mapping. 273 * For 8, 24 and 32 bit depth, use mask size 8. 274 * 15/16 bit depth needs to use mask size from mode, 275 * or we will lose color information from 32-bit to 15/16 bit translation. 276 */ 277 uint32_t 278 gfx_fb_color_map(uint8_t index) 279 { 280 int rmask, gmask, bmask; 281 int roff, goff, boff, bpp; 282 283 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 284 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 285 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 286 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 287 288 if (bpp == 2) 289 rmask = gfx_state.tg_fb.fb_mask_red >> roff; 290 else 291 rmask = 0xff; 292 293 if (bpp == 2) 294 gmask = gfx_state.tg_fb.fb_mask_green >> goff; 295 else 296 gmask = 0xff; 297 298 if (bpp == 2) 299 bmask = gfx_state.tg_fb.fb_mask_blue >> boff; 300 else 301 bmask = 0xff; 302 303 return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0)); 304 } 305 306 /* 307 * Get indexed color from RGB. This function is used to write data to video 308 * memory when the adapter is set to use indexed colors. 309 * Since UEFI does only support 32-bit colors, we do not implement it for 310 * UEFI because there is no need for it and we do not have palette array 311 * for UEFI. 312 */ 313 static uint8_t 314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b) 315 { 316 #if !defined(EFI) 317 uint32_t color, best, dist, k; 318 int diff; 319 320 color = 0; 321 best = 255 * 255 * 255; 322 for (k = 0; k < NCMAP; k++) { 323 diff = r - pe8[k].Red; 324 dist = diff * diff; 325 diff = g - pe8[k].Green; 326 dist += diff * diff; 327 diff = b - pe8[k].Blue; 328 dist += diff * diff; 329 330 /* Exact match, exit the loop */ 331 if (dist == 0) 332 break; 333 334 if (dist < best) { 335 color = k; 336 best = dist; 337 } 338 } 339 if (k == NCMAP) 340 k = color; 341 return (k); 342 #else 343 (void) r; 344 (void) g; 345 (void) b; 346 return (0); 347 #endif 348 } 349 350 int 351 generate_cons_palette(uint32_t *palette, int format, 352 uint32_t rmax, int roffset, uint32_t gmax, int goffset, 353 uint32_t bmax, int boffset) 354 { 355 int i; 356 357 switch (format) { 358 case COLOR_FORMAT_VGA: 359 for (i = 0; i < NCOLORS; i++) 360 palette[i] = cons_to_vga_colors[i]; 361 for (; i < NCMAP; i++) 362 palette[i] = i; 363 break; 364 case COLOR_FORMAT_RGB: 365 for (i = 0; i < NCMAP; i++) 366 palette[i] = rgb_color_map(i, rmax, roffset, 367 gmax, goffset, bmax, boffset); 368 break; 369 default: 370 return (ENODEV); 371 } 372 373 return (0); 374 } 375 376 static void 377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v) 378 { 379 380 if (o >= size) 381 return; 382 *(uint8_t *)(base + o) = v; 383 } 384 385 static void 386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v) 387 { 388 389 if (o >= size) 390 return; 391 *(uint16_t *)(base + o) = v; 392 } 393 394 static void 395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v) 396 { 397 398 if (o >= size) 399 return; 400 *(uint32_t *)(base + o) = v; 401 } 402 403 static int gfxfb_blt_fill(void *BltBuffer, 404 uint32_t DestinationX, uint32_t DestinationY, 405 uint32_t Width, uint32_t Height) 406 { 407 #if defined(EFI) 408 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 409 #else 410 struct paletteentry *p; 411 #endif 412 uint32_t data, bpp, pitch, y, x; 413 int roff, goff, boff; 414 size_t size; 415 off_t off; 416 uint8_t *destination; 417 418 if (BltBuffer == NULL) 419 return (EINVAL); 420 421 if (DestinationY + Height > gfx_state.tg_fb.fb_height) 422 return (EINVAL); 423 424 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 425 return (EINVAL); 426 427 if (Width == 0 || Height == 0) 428 return (EINVAL); 429 430 p = BltBuffer; 431 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 432 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 433 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 434 435 if (gfx_state.tg_fb.fb_bpp == 8) { 436 data = rgb_to_color_index(p->Red, p->Green, p->Blue); 437 } else { 438 data = (p->Red & 439 (gfx_state.tg_fb.fb_mask_red >> roff)) << roff; 440 data |= (p->Green & 441 (gfx_state.tg_fb.fb_mask_green >> goff)) << goff; 442 data |= (p->Blue & 443 (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff; 444 } 445 446 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 447 pitch = gfx_state.tg_fb.fb_stride * bpp; 448 destination = gfx_get_fb_address(); 449 size = gfx_state.tg_fb.fb_size; 450 451 for (y = DestinationY; y < Height + DestinationY; y++) { 452 off = y * pitch + DestinationX * bpp; 453 for (x = 0; x < Width; x++) { 454 switch (bpp) { 455 case 1: 456 gfx_mem_wr1(destination, size, off, 457 (data < NCOLORS) ? 458 cons_to_vga_colors[data] : data); 459 break; 460 case 2: 461 gfx_mem_wr2(destination, size, off, data); 462 break; 463 case 3: 464 gfx_mem_wr1(destination, size, off, 465 (data >> 16) & 0xff); 466 gfx_mem_wr1(destination, size, off + 1, 467 (data >> 8) & 0xff); 468 gfx_mem_wr1(destination, size, off + 2, 469 data & 0xff); 470 break; 471 case 4: 472 gfx_mem_wr4(destination, size, off, data); 473 break; 474 default: 475 return (EINVAL); 476 } 477 off += bpp; 478 } 479 } 480 481 return (0); 482 } 483 484 static int 485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 486 uint32_t DestinationX, uint32_t DestinationY, 487 uint32_t Width, uint32_t Height, uint32_t Delta) 488 { 489 #if defined(EFI) 490 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 491 #else 492 struct paletteentry *p; 493 #endif 494 uint32_t x, sy, dy; 495 uint32_t bpp, pitch, copybytes; 496 off_t off; 497 uint8_t *source, *destination, *sb; 498 uint8_t rm, rp, gm, gp, bm, bp; 499 bool bgra; 500 501 if (BltBuffer == NULL) 502 return (EINVAL); 503 504 if (SourceY + Height > 505 gfx_state.tg_fb.fb_height) 506 return (EINVAL); 507 508 if (SourceX + Width > gfx_state.tg_fb.fb_width) 509 return (EINVAL); 510 511 if (Width == 0 || Height == 0) 512 return (EINVAL); 513 514 if (Delta == 0) 515 Delta = Width * sizeof (*p); 516 517 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 518 pitch = gfx_state.tg_fb.fb_stride * bpp; 519 520 copybytes = Width * bpp; 521 522 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 523 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 524 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 525 rm = gfx_state.tg_fb.fb_mask_red >> rp; 526 gm = gfx_state.tg_fb.fb_mask_green >> gp; 527 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 528 529 /* If FB pixel format is BGRA, we can use direct copy. */ 530 bgra = bpp == 4 && 531 ffs(rm) - 1 == 8 && rp == 16 && 532 ffs(gm) - 1 == 8 && gp == 8 && 533 ffs(bm) - 1 == 8 && bp == 0; 534 535 for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY; 536 sy++, dy++) { 537 off = sy * pitch + SourceX * bpp; 538 source = gfx_get_fb_address() + off; 539 destination = (uint8_t *)BltBuffer + dy * Delta + 540 DestinationX * sizeof (*p); 541 542 if (bgra) { 543 bcopy(source, destination, copybytes); 544 } else { 545 for (x = 0; x < Width; x++) { 546 uint32_t c = 0; 547 548 p = (void *)(destination + x * sizeof (*p)); 549 sb = source + x * bpp; 550 switch (bpp) { 551 case 1: 552 c = *sb; 553 break; 554 case 2: 555 c = *(uint16_t *)sb; 556 break; 557 case 3: 558 c = sb[0] << 16 | sb[1] << 8 | sb[2]; 559 break; 560 case 4: 561 c = *(uint32_t *)sb; 562 break; 563 default: 564 return (EINVAL); 565 } 566 567 if (bpp == 1) { 568 *(uint32_t *)p = gfx_fb_color_map( 569 (c < 16) ? 570 vga_to_cons_colors[c] : c); 571 } else { 572 p->Red = (c >> rp) & rm; 573 p->Green = (c >> gp) & gm; 574 p->Blue = (c >> bp) & bm; 575 p->Reserved = 0; 576 } 577 } 578 } 579 } 580 581 return (0); 582 } 583 584 static int 585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 586 uint32_t DestinationX, uint32_t DestinationY, 587 uint32_t Width, uint32_t Height, uint32_t Delta) 588 { 589 #if defined(EFI) 590 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 591 #else 592 struct paletteentry *p; 593 #endif 594 uint32_t x, sy, dy; 595 uint32_t bpp, pitch, copybytes; 596 off_t off; 597 uint8_t *source, *destination; 598 uint8_t rm, rp, gm, gp, bm, bp; 599 bool bgra; 600 601 if (BltBuffer == NULL) 602 return (EINVAL); 603 604 if (DestinationY + Height > 605 gfx_state.tg_fb.fb_height) 606 return (EINVAL); 607 608 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 609 return (EINVAL); 610 611 if (Width == 0 || Height == 0) 612 return (EINVAL); 613 614 if (Delta == 0) 615 Delta = Width * sizeof (*p); 616 617 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 618 pitch = gfx_state.tg_fb.fb_stride * bpp; 619 620 copybytes = Width * bpp; 621 622 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 623 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 624 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 625 rm = gfx_state.tg_fb.fb_mask_red >> rp; 626 gm = gfx_state.tg_fb.fb_mask_green >> gp; 627 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 628 629 /* If FB pixel format is BGRA, we can use direct copy. */ 630 bgra = bpp == 4 && 631 ffs(rm) - 1 == 8 && rp == 16 && 632 ffs(gm) - 1 == 8 && gp == 8 && 633 ffs(bm) - 1 == 8 && bp == 0; 634 635 for (sy = SourceY, dy = DestinationY; sy < Height + SourceY; 636 sy++, dy++) { 637 off = dy * pitch + DestinationX * bpp; 638 destination = gfx_get_fb_address() + off; 639 640 if (bgra) { 641 source = (uint8_t *)BltBuffer + sy * Delta + 642 SourceX * sizeof (*p); 643 bcopy(source, destination, copybytes); 644 } else { 645 for (x = 0; x < Width; x++) { 646 uint32_t c; 647 648 p = (void *)((uint8_t *)BltBuffer + 649 sy * Delta + 650 (SourceX + x) * sizeof (*p)); 651 if (bpp == 1) { 652 c = rgb_to_color_index(p->Red, 653 p->Green, p->Blue); 654 } else { 655 c = (p->Red & rm) << rp | 656 (p->Green & gm) << gp | 657 (p->Blue & bm) << bp; 658 } 659 off = x * bpp; 660 switch (bpp) { 661 case 1: 662 gfx_mem_wr1(destination, copybytes, 663 off, (c < 16) ? 664 cons_to_vga_colors[c] : c); 665 break; 666 case 2: 667 gfx_mem_wr2(destination, copybytes, 668 off, c); 669 break; 670 case 3: 671 gfx_mem_wr1(destination, copybytes, 672 off, (c >> 16) & 0xff); 673 gfx_mem_wr1(destination, copybytes, 674 off + 1, (c >> 8) & 0xff); 675 gfx_mem_wr1(destination, copybytes, 676 off + 2, c & 0xff); 677 break; 678 case 4: 679 gfx_mem_wr4(destination, copybytes, 680 x * bpp, c); 681 break; 682 default: 683 return (EINVAL); 684 } 685 } 686 } 687 } 688 689 return (0); 690 } 691 692 static int 693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY, 694 uint32_t DestinationX, uint32_t DestinationY, 695 uint32_t Width, uint32_t Height) 696 { 697 uint32_t bpp, copybytes; 698 int pitch; 699 uint8_t *source, *destination; 700 off_t off; 701 702 if (SourceY + Height > 703 gfx_state.tg_fb.fb_height) 704 return (EINVAL); 705 706 if (SourceX + Width > gfx_state.tg_fb.fb_width) 707 return (EINVAL); 708 709 if (DestinationY + Height > 710 gfx_state.tg_fb.fb_height) 711 return (EINVAL); 712 713 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 714 return (EINVAL); 715 716 if (Width == 0 || Height == 0) 717 return (EINVAL); 718 719 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 720 pitch = gfx_state.tg_fb.fb_stride * bpp; 721 722 copybytes = Width * bpp; 723 724 off = SourceY * pitch + SourceX * bpp; 725 source = gfx_get_fb_address() + off; 726 off = DestinationY * pitch + DestinationX * bpp; 727 destination = gfx_get_fb_address() + off; 728 729 if ((uintptr_t)destination > (uintptr_t)source) { 730 source += Height * pitch; 731 destination += Height * pitch; 732 pitch = -pitch; 733 } 734 735 while (Height-- > 0) { 736 bcopy(source, destination, copybytes); 737 source += pitch; 738 destination += pitch; 739 } 740 741 return (0); 742 } 743 744 int 745 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation, 746 uint32_t SourceX, uint32_t SourceY, 747 uint32_t DestinationX, uint32_t DestinationY, 748 uint32_t Width, uint32_t Height, uint32_t Delta) 749 { 750 int rv; 751 #if defined(EFI) 752 EFI_STATUS status; 753 EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private; 754 755 /* 756 * We assume Blt() does work, if not, we will need to build 757 * exception list case by case. 758 */ 759 if (gop != NULL) { 760 switch (BltOperation) { 761 case GfxFbBltVideoFill: 762 status = gop->Blt(gop, BltBuffer, EfiBltVideoFill, 763 SourceX, SourceY, DestinationX, DestinationY, 764 Width, Height, Delta); 765 break; 766 767 case GfxFbBltVideoToBltBuffer: 768 status = gop->Blt(gop, BltBuffer, 769 EfiBltVideoToBltBuffer, 770 SourceX, SourceY, DestinationX, DestinationY, 771 Width, Height, Delta); 772 break; 773 774 case GfxFbBltBufferToVideo: 775 status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo, 776 SourceX, SourceY, DestinationX, DestinationY, 777 Width, Height, Delta); 778 break; 779 780 case GfxFbBltVideoToVideo: 781 status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo, 782 SourceX, SourceY, DestinationX, DestinationY, 783 Width, Height, Delta); 784 break; 785 786 default: 787 status = EFI_INVALID_PARAMETER; 788 break; 789 } 790 791 switch (status) { 792 case EFI_SUCCESS: 793 rv = 0; 794 break; 795 796 case EFI_INVALID_PARAMETER: 797 rv = EINVAL; 798 break; 799 800 case EFI_DEVICE_ERROR: 801 default: 802 rv = EIO; 803 break; 804 } 805 806 return (rv); 807 } 808 #endif 809 810 switch (BltOperation) { 811 case GfxFbBltVideoFill: 812 rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY, 813 Width, Height); 814 break; 815 816 case GfxFbBltVideoToBltBuffer: 817 rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY, 818 DestinationX, DestinationY, Width, Height, Delta); 819 break; 820 821 case GfxFbBltBufferToVideo: 822 rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY, 823 DestinationX, DestinationY, Width, Height, Delta); 824 break; 825 826 case GfxFbBltVideoToVideo: 827 rv = gfxfb_blt_video_to_video(SourceX, SourceY, 828 DestinationX, DestinationY, Width, Height); 829 break; 830 831 default: 832 rv = EINVAL; 833 break; 834 } 835 return (rv); 836 } 837 838 void 839 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph, 840 const teken_attr_t *a, uint32_t alpha, bool cursor) 841 { 842 uint32_t width, height; 843 uint32_t fgc, bgc, bpl, cc, o; 844 int bpp, bit, byte; 845 bool invert = false; 846 847 bpp = 4; /* We only generate BGRA */ 848 width = state->tg_font.vf_width; 849 height = state->tg_font.vf_height; 850 bpl = (width + 7) / 8; /* Bytes per source line. */ 851 852 fgc = a->ta_fgcolor; 853 bgc = a->ta_bgcolor; 854 if (a->ta_format & TF_BOLD) 855 fgc |= TC_LIGHT; 856 if (a->ta_format & TF_BLINK) 857 bgc |= TC_LIGHT; 858 859 fgc = gfx_fb_color_map(fgc); 860 bgc = gfx_fb_color_map(bgc); 861 862 if (a->ta_format & TF_REVERSE) 863 invert = !invert; 864 if (cursor) 865 invert = !invert; 866 if (invert) { 867 uint32_t tmp; 868 869 tmp = fgc; 870 fgc = bgc; 871 bgc = tmp; 872 } 873 874 alpha = alpha << 24; 875 fgc |= alpha; 876 bgc |= alpha; 877 878 for (uint32_t y = 0; y < height; y++) { 879 for (uint32_t x = 0; x < width; x++) { 880 byte = y * bpl + x / 8; 881 bit = 0x80 >> (x % 8); 882 o = y * width * bpp + x * bpp; 883 cc = glyph[byte] & bit ? fgc : bgc; 884 885 gfx_mem_wr4(state->tg_glyph, 886 state->tg_glyph_size, o, cc); 887 } 888 } 889 } 890 891 /* 892 * Draw prepared glyph on terminal point p. 893 */ 894 static void 895 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p) 896 { 897 unsigned x, y, width, height; 898 899 width = state->tg_font.vf_width; 900 height = state->tg_font.vf_height; 901 x = state->tg_origin.tp_col + p->tp_col * width; 902 y = state->tg_origin.tp_row + p->tp_row * height; 903 904 gfx_fb_cons_display(x, y, width, height, state->tg_glyph); 905 } 906 907 /* 908 * Store char with its attribute to buffer and put it on screen. 909 */ 910 void 911 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c, 912 const teken_attr_t *a) 913 { 914 teken_gfx_t *state = arg; 915 const uint8_t *glyph; 916 int idx; 917 918 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 919 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 920 return; 921 922 /* remove the cursor */ 923 if (state->tg_cursor_visible) 924 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 925 926 screen_buffer[idx].c = c; 927 screen_buffer[idx].a = *a; 928 929 glyph = font_lookup(&state->tg_font, c, a); 930 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 931 gfx_fb_printchar(state, p); 932 933 /* display the cursor */ 934 if (state->tg_cursor_visible) { 935 const teken_pos_t *c; 936 937 c = teken_get_cursor(&state->tg_teken); 938 gfx_fb_cursor_draw(state, c, true); 939 } 940 } 941 942 void 943 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c, 944 const teken_attr_t *a) 945 { 946 teken_gfx_t *state = arg; 947 const uint8_t *glyph; 948 teken_pos_t p; 949 struct text_pixel *row; 950 951 /* remove the cursor */ 952 if (state->tg_cursor_visible) 953 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 954 955 glyph = font_lookup(&state->tg_font, c, a); 956 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 957 958 for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row; 959 p.tp_row++) { 960 row = &screen_buffer[p.tp_row * state->tg_tp.tp_col]; 961 for (p.tp_col = r->tr_begin.tp_col; 962 p.tp_col < r->tr_end.tp_col; p.tp_col++) { 963 row[p.tp_col].c = c; 964 row[p.tp_col].a = *a; 965 gfx_fb_printchar(state, &p); 966 } 967 } 968 969 /* display the cursor */ 970 if (state->tg_cursor_visible) { 971 const teken_pos_t *c; 972 973 c = teken_get_cursor(&state->tg_teken); 974 gfx_fb_cursor_draw(state, c, true); 975 } 976 } 977 978 static void 979 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *p, bool on) 980 { 981 unsigned x, y, width, height; 982 const uint8_t *glyph; 983 int idx; 984 985 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 986 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 987 return; 988 989 width = state->tg_font.vf_width; 990 height = state->tg_font.vf_height; 991 x = state->tg_origin.tp_col + p->tp_col * width; 992 y = state->tg_origin.tp_row + p->tp_row * height; 993 994 /* 995 * Save original display content to preserve image data. 996 */ 997 if (on) { 998 if (state->tg_cursor_image == NULL || 999 state->tg_cursor_size != width * height * 4) { 1000 free(state->tg_cursor_image); 1001 state->tg_cursor_size = width * height * 4; 1002 state->tg_cursor_image = malloc(state->tg_cursor_size); 1003 } 1004 if (state->tg_cursor_image != NULL) { 1005 if (gfxfb_blt(state->tg_cursor_image, 1006 GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1007 width, height, 0) != 0) { 1008 free(state->tg_cursor_image); 1009 state->tg_cursor_image = NULL; 1010 } 1011 } 1012 } else { 1013 /* 1014 * Restore display from tg_cursor_image. 1015 * If there is no image, restore char from screen_buffer. 1016 */ 1017 if (state->tg_cursor_image != NULL && 1018 gfxfb_blt(state->tg_cursor_image, GfxFbBltBufferToVideo, 1019 0, 0, x, y, width, height, 0) == 0) { 1020 state->tg_cursor = *p; 1021 return; 1022 } 1023 } 1024 1025 glyph = font_lookup(&state->tg_font, screen_buffer[idx].c, 1026 &screen_buffer[idx].a); 1027 gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on); 1028 gfx_fb_printchar(state, p); 1029 1030 state->tg_cursor = *p; 1031 } 1032 1033 void 1034 gfx_fb_cursor(void *arg, const teken_pos_t *p) 1035 { 1036 teken_gfx_t *state = arg; 1037 #if defined(EFI) 1038 EFI_TPL tpl; 1039 1040 tpl = BS->RaiseTPL(TPL_NOTIFY); 1041 #endif 1042 1043 /* Switch cursor off in old location and back on in new. */ 1044 if (state->tg_cursor_visible) { 1045 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1046 gfx_fb_cursor_draw(state, p, true); 1047 } 1048 #if defined(EFI) 1049 BS->RestoreTPL(tpl); 1050 #endif 1051 } 1052 1053 void 1054 gfx_fb_param(void *arg, int cmd, unsigned int value) 1055 { 1056 teken_gfx_t *state = arg; 1057 const teken_pos_t *c; 1058 1059 switch (cmd) { 1060 case TP_SETLOCALCURSOR: 1061 /* 1062 * 0 means normal (usually block), 1 means hidden, and 1063 * 2 means blinking (always block) for compatibility with 1064 * syscons. We don't support any changes except hiding, 1065 * so must map 2 to 0. 1066 */ 1067 value = (value == 1) ? 0 : 1; 1068 /* FALLTHROUGH */ 1069 case TP_SHOWCURSOR: 1070 c = teken_get_cursor(&state->tg_teken); 1071 gfx_fb_cursor_draw(state, c, true); 1072 if (value != 0) 1073 state->tg_cursor_visible = true; 1074 else 1075 state->tg_cursor_visible = false; 1076 break; 1077 default: 1078 /* Not yet implemented */ 1079 break; 1080 } 1081 } 1082 1083 bool 1084 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2) 1085 { 1086 if (px1->c != px2->c) 1087 return (false); 1088 1089 /* Is there image stored? */ 1090 if ((px1->a.ta_format & TF_IMAGE) || 1091 (px2->a.ta_format & TF_IMAGE)) 1092 return (false); 1093 1094 if (px1->a.ta_format != px2->a.ta_format) 1095 return (false); 1096 if (px1->a.ta_fgcolor != px2->a.ta_fgcolor) 1097 return (false); 1098 if (px1->a.ta_bgcolor != px2->a.ta_bgcolor) 1099 return (false); 1100 1101 return (true); 1102 } 1103 1104 static void 1105 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s, 1106 const teken_pos_t *d) 1107 { 1108 uint32_t sx, sy, dx, dy, width, height; 1109 1110 width = state->tg_font.vf_width; 1111 height = state->tg_font.vf_height; 1112 1113 sx = state->tg_origin.tp_col + s->tr_begin.tp_col * width; 1114 sy = state->tg_origin.tp_row + s->tr_begin.tp_row * height; 1115 dx = state->tg_origin.tp_col + d->tp_col * width; 1116 dy = state->tg_origin.tp_row + d->tp_row * height; 1117 1118 width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1); 1119 1120 (void) gfxfb_blt(NULL, GfxFbBltVideoToVideo, sx, sy, dx, dy, 1121 width, height, 0); 1122 } 1123 1124 static void 1125 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d) 1126 { 1127 teken_rect_t sr; 1128 teken_pos_t dp; 1129 unsigned soffset, doffset; 1130 bool mark = false; 1131 int x; 1132 1133 soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col; 1134 doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col; 1135 1136 for (x = 0; x < ncol; x++) { 1137 if (is_same_pixel(&screen_buffer[soffset + x], 1138 &screen_buffer[doffset + x])) { 1139 if (mark) { 1140 gfx_fb_copy_area(state, &sr, &dp); 1141 mark = false; 1142 } 1143 } else { 1144 screen_buffer[doffset + x] = screen_buffer[soffset + x]; 1145 if (mark) { 1146 /* update end point */ 1147 sr.tr_end.tp_col = s->tp_col + x;; 1148 } else { 1149 /* set up new rectangle */ 1150 mark = true; 1151 sr.tr_begin.tp_col = s->tp_col + x; 1152 sr.tr_begin.tp_row = s->tp_row; 1153 sr.tr_end.tp_col = s->tp_col + x; 1154 sr.tr_end.tp_row = s->tp_row; 1155 dp.tp_col = d->tp_col + x; 1156 dp.tp_row = d->tp_row; 1157 } 1158 } 1159 } 1160 if (mark) { 1161 gfx_fb_copy_area(state, &sr, &dp); 1162 } 1163 } 1164 1165 void 1166 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p) 1167 { 1168 teken_gfx_t *state = arg; 1169 unsigned doffset, soffset; 1170 teken_pos_t d, s; 1171 int nrow, ncol, y; /* Has to be signed - >= 0 comparison */ 1172 1173 /* 1174 * Copying is a little tricky. We must make sure we do it in 1175 * correct order, to make sure we don't overwrite our own data. 1176 */ 1177 1178 nrow = r->tr_end.tp_row - r->tr_begin.tp_row; 1179 ncol = r->tr_end.tp_col - r->tr_begin.tp_col; 1180 1181 if (p->tp_row + nrow > state->tg_tp.tp_row || 1182 p->tp_col + ncol > state->tg_tp.tp_col) 1183 return; 1184 1185 soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col; 1186 doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col; 1187 1188 /* remove the cursor */ 1189 if (state->tg_cursor_visible) 1190 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1191 1192 /* 1193 * Copy line by line. 1194 */ 1195 if (doffset <= soffset) { 1196 s = r->tr_begin; 1197 d = *p; 1198 for (y = 0; y < nrow; y++) { 1199 s.tp_row = r->tr_begin.tp_row + y; 1200 d.tp_row = p->tp_row + y; 1201 1202 gfx_fb_copy_line(state, ncol, &s, &d); 1203 } 1204 } else { 1205 for (y = nrow - 1; y >= 0; y--) { 1206 s.tp_row = r->tr_begin.tp_row + y; 1207 d.tp_row = p->tp_row + y; 1208 1209 gfx_fb_copy_line(state, ncol, &s, &d); 1210 } 1211 } 1212 1213 /* display the cursor */ 1214 if (state->tg_cursor_visible) { 1215 const teken_pos_t *c; 1216 1217 c = teken_get_cursor(&state->tg_teken); 1218 gfx_fb_cursor_draw(state, c, true); 1219 } 1220 } 1221 1222 /* 1223 * Implements alpha blending for RGBA data, could use pixels for arguments, 1224 * but byte stream seems more generic. 1225 * The generic alpha blending is: 1226 * blend = alpha * fg + (1.0 - alpha) * bg. 1227 * Since our alpha is not from range [0..1], we scale appropriately. 1228 */ 1229 static uint8_t 1230 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha) 1231 { 1232 uint16_t blend, h, l; 1233 1234 /* trivial corner cases */ 1235 if (alpha == 0) 1236 return (bg); 1237 if (alpha == 0xFF) 1238 return (fg); 1239 blend = (alpha * fg + (0xFF - alpha) * bg); 1240 /* Division by 0xFF */ 1241 h = blend >> 8; 1242 l = blend & 0xFF; 1243 if (h + l >= 0xFF) 1244 h++; 1245 return (h); 1246 } 1247 1248 /* 1249 * Implements alpha blending for RGBA data, could use pixels for arguments, 1250 * but byte stream seems more generic. 1251 * The generic alpha blending is: 1252 * blend = alpha * fg + (1.0 - alpha) * bg. 1253 * Since our alpha is not from range [0..1], we scale appropriately. 1254 */ 1255 static void 1256 bitmap_cpy(void *dst, void *src, uint32_t size) 1257 { 1258 #if defined(EFI) 1259 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd; 1260 #else 1261 struct paletteentry *ps, *pd; 1262 #endif 1263 uint32_t i; 1264 uint8_t a; 1265 1266 ps = src; 1267 pd = dst; 1268 1269 /* 1270 * we only implement alpha blending for depth 32. 1271 */ 1272 for (i = 0; i < size; i ++) { 1273 a = ps[i].Reserved; 1274 pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a); 1275 pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a); 1276 pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a); 1277 pd[i].Reserved = a; 1278 } 1279 } 1280 1281 static void * 1282 allocate_glyphbuffer(uint32_t width, uint32_t height) 1283 { 1284 size_t size; 1285 1286 size = sizeof (*GlyphBuffer) * width * height; 1287 if (size != GlyphBufferSize) { 1288 free(GlyphBuffer); 1289 GlyphBuffer = malloc(size); 1290 if (GlyphBuffer == NULL) 1291 return (NULL); 1292 GlyphBufferSize = size; 1293 } 1294 return (GlyphBuffer); 1295 } 1296 1297 void 1298 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height, 1299 void *data) 1300 { 1301 #if defined(EFI) 1302 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf; 1303 #else 1304 struct paletteentry *buf; 1305 #endif 1306 size_t size; 1307 1308 size = width * height * sizeof(*buf); 1309 1310 /* 1311 * Common data to display is glyph, use preallocated 1312 * glyph buffer. 1313 */ 1314 if (gfx_state.tg_glyph_size != GlyphBufferSize) 1315 (void) allocate_glyphbuffer(width, height); 1316 1317 if (size == GlyphBufferSize) 1318 buf = GlyphBuffer; 1319 else 1320 buf = malloc(size); 1321 if (buf == NULL) 1322 return; 1323 1324 if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1325 width, height, 0) == 0) { 1326 bitmap_cpy(buf, data, width * height); 1327 (void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y, 1328 width, height, 0); 1329 } 1330 if (buf != GlyphBuffer) 1331 free(buf); 1332 } 1333 1334 /* 1335 * Public graphics primitives. 1336 */ 1337 1338 static int 1339 isqrt(int num) 1340 { 1341 int res = 0; 1342 int bit = 1 << 30; 1343 1344 /* "bit" starts at the highest power of four <= the argument. */ 1345 while (bit > num) 1346 bit >>= 2; 1347 1348 while (bit != 0) { 1349 if (num >= res + bit) { 1350 num -= res + bit; 1351 res = (res >> 1) + bit; 1352 } else { 1353 res >>= 1; 1354 } 1355 bit >>= 2; 1356 } 1357 return (res); 1358 } 1359 1360 /* set pixel in framebuffer using gfx coordinates */ 1361 void 1362 gfx_fb_setpixel(uint32_t x, uint32_t y) 1363 { 1364 uint32_t c; 1365 const teken_attr_t *ap; 1366 1367 if (gfx_state.tg_fb_type == FB_TEXT) 1368 return; 1369 1370 ap = teken_get_curattr(&gfx_state.tg_teken); 1371 if (ap->ta_format & TF_REVERSE) { 1372 c = ap->ta_bgcolor; 1373 if (ap->ta_format & TF_BLINK) 1374 c |= TC_LIGHT; 1375 } else { 1376 c = ap->ta_fgcolor; 1377 if (ap->ta_format & TF_BOLD) 1378 c |= TC_LIGHT; 1379 } 1380 1381 c = gfx_fb_color_map(c); 1382 1383 if (x >= gfx_state.tg_fb.fb_width || 1384 y >= gfx_state.tg_fb.fb_height) 1385 return; 1386 1387 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0); 1388 } 1389 1390 /* 1391 * draw rectangle in framebuffer using gfx coordinates. 1392 * The function is borrowed from vt_fb.c 1393 */ 1394 void 1395 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2, 1396 uint32_t fill) 1397 { 1398 uint32_t x, y; 1399 1400 if (gfx_state.tg_fb_type == FB_TEXT) 1401 return; 1402 1403 for (y = y1; y <= y2; y++) { 1404 if (fill || (y == y1) || (y == y2)) { 1405 for (x = x1; x <= x2; x++) 1406 gfx_fb_setpixel(x, y); 1407 } else { 1408 gfx_fb_setpixel(x1, y); 1409 gfx_fb_setpixel(x2, y); 1410 } 1411 } 1412 } 1413 1414 void 1415 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd) 1416 { 1417 int dx, sx, dy, sy; 1418 int err, e2, x2, y2, ed, width; 1419 1420 if (gfx_state.tg_fb_type == FB_TEXT) 1421 return; 1422 1423 width = wd; 1424 sx = x0 < x1? 1 : -1; 1425 sy = y0 < y1? 1 : -1; 1426 dx = x1 > x0? x1 - x0 : x0 - x1; 1427 dy = y1 > y0? y1 - y0 : y0 - y1; 1428 err = dx + dy; 1429 ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy); 1430 1431 for (;;) { 1432 gfx_fb_setpixel(x0, y0); 1433 e2 = err; 1434 x2 = x0; 1435 if ((e2 << 1) >= -dx) { /* x step */ 1436 e2 += dy; 1437 y2 = y0; 1438 while (e2 < ed * width && 1439 (y1 != (uint32_t)y2 || dx > dy)) { 1440 y2 += sy; 1441 gfx_fb_setpixel(x0, y2); 1442 e2 += dx; 1443 } 1444 if (x0 == x1) 1445 break; 1446 e2 = err; 1447 err -= dy; 1448 x0 += sx; 1449 } 1450 if ((e2 << 1) <= dy) { /* y step */ 1451 e2 = dx-e2; 1452 while (e2 < ed * width && 1453 (x1 != (uint32_t)x2 || dx < dy)) { 1454 x2 += sx; 1455 gfx_fb_setpixel(x2, y0); 1456 e2 += dy; 1457 } 1458 if (y0 == y1) 1459 break; 1460 err += dx; 1461 y0 += sy; 1462 } 1463 } 1464 } 1465 1466 /* 1467 * quadratic Bézier curve limited to gradients without sign change. 1468 */ 1469 void 1470 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2, 1471 uint32_t y2, uint32_t wd) 1472 { 1473 int sx, sy, xx, yy, xy, width; 1474 int dx, dy, err, curvature; 1475 int i; 1476 1477 if (gfx_state.tg_fb_type == FB_TEXT) 1478 return; 1479 1480 width = wd; 1481 sx = x2 - x1; 1482 sy = y2 - y1; 1483 xx = x0 - x1; 1484 yy = y0 - y1; 1485 curvature = xx*sy - yy*sx; 1486 1487 if (sx*sx + sy*sy > xx*xx+yy*yy) { 1488 x2 = x0; 1489 x0 = sx + x1; 1490 y2 = y0; 1491 y0 = sy + y1; 1492 curvature = -curvature; 1493 } 1494 if (curvature != 0) { 1495 xx += sx; 1496 sx = x0 < x2? 1 : -1; 1497 xx *= sx; 1498 yy += sy; 1499 sy = y0 < y2? 1 : -1; 1500 yy *= sy; 1501 xy = (xx*yy) << 1; 1502 xx *= xx; 1503 yy *= yy; 1504 if (curvature * sx * sy < 0) { 1505 xx = -xx; 1506 yy = -yy; 1507 xy = -xy; 1508 curvature = -curvature; 1509 } 1510 dx = 4 * sy * curvature * (x1 - x0) + xx - xy; 1511 dy = 4 * sx * curvature * (y0 - y1) + yy - xy; 1512 xx += xx; 1513 yy += yy; 1514 err = dx + dy + xy; 1515 do { 1516 for (i = 0; i <= width; i++) 1517 gfx_fb_setpixel(x0 + i, y0); 1518 if (x0 == x2 && y0 == y2) 1519 return; /* last pixel -> curve finished */ 1520 y1 = 2 * err < dx; 1521 if (2 * err > dy) { 1522 x0 += sx; 1523 dx -= xy; 1524 dy += yy; 1525 err += dy; 1526 } 1527 if (y1 != 0) { 1528 y0 += sy; 1529 dy -= xy; 1530 dx += xx; 1531 err += dx; 1532 } 1533 } while (dy < dx); /* gradient negates -> algorithm fails */ 1534 } 1535 gfx_fb_line(x0, y0, x2, y2, width); 1536 } 1537 1538 /* 1539 * draw rectangle using terminal coordinates and current foreground color. 1540 */ 1541 void 1542 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2) 1543 { 1544 int x1, y1, x2, y2; 1545 int xshift, yshift; 1546 int width, i; 1547 uint32_t vf_width, vf_height; 1548 teken_rect_t r; 1549 1550 if (gfx_state.tg_fb_type == FB_TEXT) 1551 return; 1552 1553 vf_width = gfx_state.tg_font.vf_width; 1554 vf_height = gfx_state.tg_font.vf_height; 1555 width = vf_width / 4; /* line width */ 1556 xshift = (vf_width - width) / 2; 1557 yshift = (vf_height - width) / 2; 1558 1559 /* Shift coordinates */ 1560 if (ux1 != 0) 1561 ux1--; 1562 if (uy1 != 0) 1563 uy1--; 1564 ux2--; 1565 uy2--; 1566 1567 /* mark area used in terminal */ 1568 r.tr_begin.tp_col = ux1; 1569 r.tr_begin.tp_row = uy1; 1570 r.tr_end.tp_col = ux2 + 1; 1571 r.tr_end.tp_row = uy2 + 1; 1572 1573 term_image_display(&gfx_state, &r); 1574 1575 /* 1576 * Draw horizontal lines width points thick, shifted from outer edge. 1577 */ 1578 x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col; 1579 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1580 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1581 gfx_fb_drawrect(x1, y1, x2, y1 + width, 1); 1582 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1583 y2 += vf_height - yshift - width; 1584 gfx_fb_drawrect(x1, y2, x2, y2 + width, 1); 1585 1586 /* 1587 * Draw vertical lines width points thick, shifted from outer edge. 1588 */ 1589 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1590 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1591 y1 += vf_height; 1592 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1593 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1594 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1595 x1 += vf_width - xshift - width; 1596 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1597 1598 /* Draw upper left corner. */ 1599 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1600 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1601 y1 += vf_height; 1602 1603 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1604 x2 += vf_width; 1605 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1606 for (i = 0; i <= width; i++) 1607 gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i); 1608 1609 /* Draw lower left corner. */ 1610 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1611 x1 += vf_width; 1612 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1613 y1 += vf_height - yshift; 1614 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1615 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1616 for (i = 0; i <= width; i++) 1617 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1618 1619 /* Draw upper right corner. */ 1620 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1621 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1622 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1623 x2 += vf_width - xshift - width; 1624 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1625 y2 += vf_height; 1626 for (i = 0; i <= width; i++) 1627 gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i); 1628 1629 /* Draw lower right corner. */ 1630 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1631 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1632 y1 += vf_height - yshift; 1633 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1634 x2 += vf_width - xshift - width; 1635 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1636 for (i = 0; i <= width; i++) 1637 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1638 } 1639 1640 int 1641 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2, 1642 uint32_t uy2, uint32_t flags) 1643 { 1644 #if defined(EFI) 1645 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 1646 #else 1647 struct paletteentry *p; 1648 #endif 1649 uint8_t *data; 1650 uint32_t i, j, x, y, fheight, fwidth; 1651 int rs, gs, bs; 1652 uint8_t r, g, b, a; 1653 bool scale = false; 1654 bool trace = false; 1655 teken_rect_t rect; 1656 1657 trace = (flags & FL_PUTIMAGE_DEBUG) != 0; 1658 1659 if (gfx_state.tg_fb_type == FB_TEXT) { 1660 if (trace) 1661 printf("Framebuffer not active.\n"); 1662 return (1); 1663 } 1664 1665 if (png->color_type != PNG_TRUECOLOR_ALPHA) { 1666 if (trace) 1667 printf("Not truecolor image.\n"); 1668 return (1); 1669 } 1670 1671 if (ux1 > gfx_state.tg_fb.fb_width || 1672 uy1 > gfx_state.tg_fb.fb_height) { 1673 if (trace) 1674 printf("Top left coordinate off screen.\n"); 1675 return (1); 1676 } 1677 1678 if (png->width > UINT16_MAX || png->height > UINT16_MAX) { 1679 if (trace) 1680 printf("Image too large.\n"); 1681 return (1); 1682 } 1683 1684 if (png->width < 1 || png->height < 1) { 1685 if (trace) 1686 printf("Image too small.\n"); 1687 return (1); 1688 } 1689 1690 /* 1691 * If 0 was passed for either ux2 or uy2, then calculate the missing 1692 * part of the bottom right coordinate. 1693 */ 1694 scale = true; 1695 if (ux2 == 0 && uy2 == 0) { 1696 /* Both 0, use the native resolution of the image */ 1697 ux2 = ux1 + png->width; 1698 uy2 = uy1 + png->height; 1699 scale = false; 1700 } else if (ux2 == 0) { 1701 /* Set ux2 from uy2/uy1 to maintain aspect ratio */ 1702 ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height; 1703 } else if (uy2 == 0) { 1704 /* Set uy2 from ux2/ux1 to maintain aspect ratio */ 1705 uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width; 1706 } 1707 1708 if (ux2 > gfx_state.tg_fb.fb_width || 1709 uy2 > gfx_state.tg_fb.fb_height) { 1710 if (trace) 1711 printf("Bottom right coordinate off screen.\n"); 1712 return (1); 1713 } 1714 1715 fwidth = ux2 - ux1; 1716 fheight = uy2 - uy1; 1717 1718 /* 1719 * If the original image dimensions have been passed explicitly, 1720 * disable scaling. 1721 */ 1722 if (fwidth == png->width && fheight == png->height) 1723 scale = false; 1724 1725 if (ux1 == 0) { 1726 /* 1727 * No top left X co-ordinate (real coordinates start at 1), 1728 * place as far right as it will fit. 1729 */ 1730 ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col; 1731 ux1 = ux2 - fwidth; 1732 } 1733 1734 if (uy1 == 0) { 1735 /* 1736 * No top left Y co-ordinate (real coordinates start at 1), 1737 * place as far down as it will fit. 1738 */ 1739 uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row; 1740 uy1 = uy2 - fheight; 1741 } 1742 1743 if (ux1 >= ux2 || uy1 >= uy2) { 1744 if (trace) 1745 printf("Image dimensions reversed.\n"); 1746 return (1); 1747 } 1748 1749 if (fwidth < 2 || fheight < 2) { 1750 if (trace) 1751 printf("Target area too small\n"); 1752 return (1); 1753 } 1754 1755 if (trace) 1756 printf("Image %ux%u -> %ux%u @%ux%u\n", 1757 png->width, png->height, fwidth, fheight, ux1, uy1); 1758 1759 rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width; 1760 rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height; 1761 rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width; 1762 rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height; 1763 1764 /* 1765 * mark area used in terminal 1766 */ 1767 if (!(flags & FL_PUTIMAGE_NOSCROLL)) 1768 term_image_display(&gfx_state, &rect); 1769 1770 if ((flags & FL_PUTIMAGE_BORDER)) 1771 gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0); 1772 1773 data = malloc(fwidth * fheight * sizeof(*p)); 1774 p = (void *)data; 1775 if (data == NULL) { 1776 if (trace) 1777 printf("Out of memory.\n"); 1778 return (1); 1779 } 1780 1781 /* 1782 * Build image for our framebuffer. 1783 */ 1784 1785 /* Helper to calculate the pixel index from the source png */ 1786 #define GETPIXEL(xx, yy) (((yy) * png->width + (xx)) * png->bpp) 1787 1788 /* 1789 * For each of the x and y directions, calculate the number of pixels 1790 * in the source image that correspond to a single pixel in the target. 1791 * Use fixed-point arithmetic with 16-bits for each of the integer and 1792 * fractional parts. 1793 */ 1794 const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1); 1795 const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1); 1796 1797 rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) - 1798 ffs(gfx_state.tg_fb.fb_mask_red) + 1); 1799 gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) - 1800 ffs(gfx_state.tg_fb.fb_mask_green) + 1); 1801 bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) - 1802 ffs(gfx_state.tg_fb.fb_mask_blue) + 1); 1803 1804 uint32_t hc = 0; 1805 for (y = 0; y < fheight; y++) { 1806 uint32_t hc2 = (hc >> 9) & 0x7f; 1807 uint32_t hc1 = 0x80 - hc2; 1808 1809 uint32_t offset_y = hc >> 16; 1810 uint32_t offset_y1 = offset_y + 1; 1811 1812 uint32_t wc = 0; 1813 for (x = 0; x < fwidth; x++) { 1814 uint32_t wc2 = (wc >> 9) & 0x7f; 1815 uint32_t wc1 = 0x80 - wc2; 1816 1817 uint32_t offset_x = wc >> 16; 1818 uint32_t offset_x1 = offset_x + 1; 1819 1820 /* Target pixel index */ 1821 j = y * fwidth + x; 1822 1823 if (!scale) { 1824 i = GETPIXEL(x, y); 1825 r = png->image[i]; 1826 g = png->image[i + 1]; 1827 b = png->image[i + 2]; 1828 a = png->image[i + 3]; 1829 } else { 1830 uint8_t pixel[4]; 1831 1832 uint32_t p00 = GETPIXEL(offset_x, offset_y); 1833 uint32_t p01 = GETPIXEL(offset_x, offset_y1); 1834 uint32_t p10 = GETPIXEL(offset_x1, offset_y); 1835 uint32_t p11 = GETPIXEL(offset_x1, offset_y1); 1836 1837 /* 1838 * Given a 2x2 array of pixels in the source 1839 * image, combine them to produce a single 1840 * value for the pixel in the target image. 1841 * Each column of pixels is combined using 1842 * a weighted average where the top and bottom 1843 * pixels contribute hc1 and hc2 respectively. 1844 * The calculation for bottom pixel pB and 1845 * top pixel pT is: 1846 * (pT * hc1 + pB * hc2) / (hc1 + hc2) 1847 * Once the values are determined for the two 1848 * columns of pixels, then the columns are 1849 * averaged together in the same way but using 1850 * wc1 and wc2 for the weightings. 1851 * 1852 * Since hc1 and hc2 are chosen so that 1853 * hc1 + hc2 == 128 (and same for wc1 + wc2), 1854 * the >> 14 below is a quick way to divide by 1855 * (hc1 + hc2) * (wc1 + wc2) 1856 */ 1857 for (i = 0; i < 4; i++) 1858 pixel[i] = ( 1859 (png->image[p00 + i] * hc1 + 1860 png->image[p01 + i] * hc2) * wc1 + 1861 (png->image[p10 + i] * hc1 + 1862 png->image[p11 + i] * hc2) * wc2) 1863 >> 14; 1864 1865 r = pixel[0]; 1866 g = pixel[1]; 1867 b = pixel[2]; 1868 a = pixel[3]; 1869 } 1870 1871 if (trace) 1872 printf("r/g/b: %x/%x/%x\n", r, g, b); 1873 /* 1874 * Rough colorspace reduction for 15/16 bit colors. 1875 */ 1876 p[j].Red = r >> rs; 1877 p[j].Green = g >> gs; 1878 p[j].Blue = b >> bs; 1879 p[j].Reserved = a; 1880 1881 wc += wcstep; 1882 } 1883 hc += hcstep; 1884 } 1885 1886 gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data); 1887 free(data); 1888 return (0); 1889 } 1890 1891 /* 1892 * Reset font flags to FONT_AUTO. 1893 */ 1894 void 1895 reset_font_flags(void) 1896 { 1897 struct fontlist *fl; 1898 1899 STAILQ_FOREACH(fl, &fonts, font_next) { 1900 fl->font_flags = FONT_AUTO; 1901 } 1902 } 1903 1904 /* Return w^2 + h^2 or 0, if the dimensions are unknown */ 1905 static unsigned 1906 edid_diagonal_squared(void) 1907 { 1908 unsigned w, h; 1909 1910 if (edid_info == NULL) 1911 return (0); 1912 1913 w = edid_info->display.max_horizontal_image_size; 1914 h = edid_info->display.max_vertical_image_size; 1915 1916 /* If either one is 0, we have aspect ratio, not size */ 1917 if (w == 0 || h == 0) 1918 return (0); 1919 1920 /* 1921 * some monitors encode the aspect ratio instead of the physical size. 1922 */ 1923 if ((w == 16 && h == 9) || (w == 16 && h == 10) || 1924 (w == 4 && h == 3) || (w == 5 && h == 4)) 1925 return (0); 1926 1927 /* 1928 * translate cm to inch, note we scale by 100 here. 1929 */ 1930 w = w * 100 / 254; 1931 h = h * 100 / 254; 1932 1933 /* Return w^2 + h^2 */ 1934 return (w * w + h * h); 1935 } 1936 1937 /* 1938 * calculate pixels per inch. 1939 */ 1940 static unsigned 1941 gfx_get_ppi(void) 1942 { 1943 unsigned dp, di; 1944 1945 di = edid_diagonal_squared(); 1946 if (di == 0) 1947 return (0); 1948 1949 dp = gfx_state.tg_fb.fb_width * 1950 gfx_state.tg_fb.fb_width + 1951 gfx_state.tg_fb.fb_height * 1952 gfx_state.tg_fb.fb_height; 1953 1954 return (isqrt(dp / di)); 1955 } 1956 1957 /* 1958 * Calculate font size from density independent pixels (dp): 1959 * ((16dp * ppi) / 160) * display_factor. 1960 * Here we are using fixed constants: 1dp == 160 ppi and 1961 * display_factor 2. 1962 * 1963 * We are rounding font size up and are searching for font which is 1964 * not smaller than calculated size value. 1965 */ 1966 static vt_font_bitmap_data_t * 1967 gfx_get_font(void) 1968 { 1969 unsigned ppi, size; 1970 vt_font_bitmap_data_t *font = NULL; 1971 struct fontlist *fl, *next; 1972 1973 /* Text mode is not supported here. */ 1974 if (gfx_state.tg_fb_type == FB_TEXT) 1975 return (NULL); 1976 1977 ppi = gfx_get_ppi(); 1978 if (ppi == 0) 1979 return (NULL); 1980 1981 /* 1982 * We will search for 16dp font. 1983 * We are using scale up by 10 for roundup. 1984 */ 1985 size = (16 * ppi * 10) / 160; 1986 /* Apply display factor 2. */ 1987 size = roundup(size * 2, 10) / 10; 1988 1989 STAILQ_FOREACH(fl, &fonts, font_next) { 1990 next = STAILQ_NEXT(fl, font_next); 1991 1992 /* 1993 * If this is last font or, if next font is smaller, 1994 * we have our font. Make sure, it actually is loaded. 1995 */ 1996 if (next == NULL || next->font_data->vfbd_height < size) { 1997 font = fl->font_data; 1998 if (font->vfbd_font == NULL || 1999 fl->font_flags == FONT_RELOAD) { 2000 if (fl->font_load != NULL && 2001 fl->font_name != NULL) 2002 font = fl->font_load(fl->font_name); 2003 } 2004 break; 2005 } 2006 } 2007 2008 return (font); 2009 } 2010 2011 static vt_font_bitmap_data_t * 2012 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w) 2013 { 2014 vt_font_bitmap_data_t *font = NULL; 2015 struct fontlist *fl; 2016 unsigned height = h; 2017 unsigned width = w; 2018 2019 /* 2020 * First check for manually loaded font. 2021 */ 2022 STAILQ_FOREACH(fl, &fonts, font_next) { 2023 if (fl->font_flags == FONT_MANUAL) { 2024 font = fl->font_data; 2025 if (font->vfbd_font == NULL && fl->font_load != NULL && 2026 fl->font_name != NULL) { 2027 font = fl->font_load(fl->font_name); 2028 } 2029 if (font == NULL || font->vfbd_font == NULL) 2030 font = NULL; 2031 break; 2032 } 2033 } 2034 2035 if (font == NULL) 2036 font = gfx_get_font(); 2037 2038 if (font != NULL) { 2039 *rows = height / font->vfbd_height; 2040 *cols = width / font->vfbd_width; 2041 return (font); 2042 } 2043 2044 /* 2045 * Find best font for these dimensions, or use default. 2046 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH, 2047 * do not use smaller font than our DEFAULT_FONT_DATA. 2048 */ 2049 STAILQ_FOREACH(fl, &fonts, font_next) { 2050 font = fl->font_data; 2051 if ((*rows * font->vfbd_height <= height && 2052 *cols * font->vfbd_width <= width) || 2053 (height >= VT_FB_MAX_HEIGHT && 2054 width >= VT_FB_MAX_WIDTH && 2055 font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height && 2056 font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) { 2057 if (font->vfbd_font == NULL || 2058 fl->font_flags == FONT_RELOAD) { 2059 if (fl->font_load != NULL && 2060 fl->font_name != NULL) { 2061 font = fl->font_load(fl->font_name); 2062 } 2063 if (font == NULL) 2064 continue; 2065 } 2066 *rows = height / font->vfbd_height; 2067 *cols = width / font->vfbd_width; 2068 break; 2069 } 2070 font = NULL; 2071 } 2072 2073 if (font == NULL) { 2074 /* 2075 * We have fonts sorted smallest last, try it before 2076 * falling back to builtin. 2077 */ 2078 fl = STAILQ_LAST(&fonts, fontlist, font_next); 2079 if (fl != NULL && fl->font_load != NULL && 2080 fl->font_name != NULL) { 2081 font = fl->font_load(fl->font_name); 2082 } 2083 if (font == NULL) 2084 font = &DEFAULT_FONT_DATA; 2085 2086 *rows = height / font->vfbd_height; 2087 *cols = width / font->vfbd_width; 2088 } 2089 2090 return (font); 2091 } 2092 2093 static void 2094 cons_clear(void) 2095 { 2096 char clear[] = { '\033', 'c' }; 2097 2098 /* Reset terminal */ 2099 teken_input(&gfx_state.tg_teken, clear, sizeof(clear)); 2100 gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0); 2101 } 2102 2103 void 2104 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width) 2105 { 2106 vt_font_bitmap_data_t *font_data; 2107 teken_pos_t *tp = &state->tg_tp; 2108 char env[8]; 2109 int i; 2110 2111 /* 2112 * set_font() will select a appropriate sized font for 2113 * the number of rows and columns selected. If we don't 2114 * have a font that will fit, then it will use the 2115 * default builtin font and adjust the rows and columns 2116 * to fit on the screen. 2117 */ 2118 font_data = set_font(&tp->tp_row, &tp->tp_col, height, width); 2119 2120 if (font_data == NULL) 2121 panic("out of memory"); 2122 2123 for (i = 0; i < VFNT_MAPS; i++) { 2124 state->tg_font.vf_map[i] = 2125 font_data->vfbd_font->vf_map[i]; 2126 state->tg_font.vf_map_count[i] = 2127 font_data->vfbd_font->vf_map_count[i]; 2128 } 2129 2130 state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes; 2131 state->tg_font.vf_height = font_data->vfbd_font->vf_height; 2132 state->tg_font.vf_width = font_data->vfbd_font->vf_width; 2133 2134 snprintf(env, sizeof (env), "%ux%u", 2135 state->tg_font.vf_width, state->tg_font.vf_height); 2136 env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK, 2137 env, font_set, env_nounset); 2138 } 2139 2140 /* Binary search for the glyph. Return 0 if not found. */ 2141 static uint16_t 2142 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src) 2143 { 2144 unsigned min, mid, max; 2145 2146 min = 0; 2147 max = len - 1; 2148 2149 /* Empty font map. */ 2150 if (len == 0) 2151 return (0); 2152 /* Character below minimal entry. */ 2153 if (src < map[0].vfm_src) 2154 return (0); 2155 /* Optimization: ASCII characters occur very often. */ 2156 if (src <= map[0].vfm_src + map[0].vfm_len) 2157 return (src - map[0].vfm_src + map[0].vfm_dst); 2158 /* Character above maximum entry. */ 2159 if (src > map[max].vfm_src + map[max].vfm_len) 2160 return (0); 2161 2162 /* Binary search. */ 2163 while (max >= min) { 2164 mid = (min + max) / 2; 2165 if (src < map[mid].vfm_src) 2166 max = mid - 1; 2167 else if (src > map[mid].vfm_src + map[mid].vfm_len) 2168 min = mid + 1; 2169 else 2170 return (src - map[mid].vfm_src + map[mid].vfm_dst); 2171 } 2172 2173 return (0); 2174 } 2175 2176 /* 2177 * Return glyph bitmap. If glyph is not found, we will return bitmap 2178 * for the first (offset 0) glyph. 2179 */ 2180 uint8_t * 2181 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a) 2182 { 2183 uint16_t dst; 2184 size_t stride; 2185 2186 /* Substitute bold with normal if not found. */ 2187 if (a->ta_format & TF_BOLD) { 2188 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 2189 vf->vf_map_count[VFNT_MAP_BOLD], c); 2190 if (dst != 0) 2191 goto found; 2192 } 2193 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 2194 vf->vf_map_count[VFNT_MAP_NORMAL], c); 2195 2196 found: 2197 stride = howmany(vf->vf_width, 8) * vf->vf_height; 2198 return (&vf->vf_bytes[dst * stride]); 2199 } 2200 2201 static int 2202 load_mapping(int fd, struct vt_font *fp, int n) 2203 { 2204 size_t i, size; 2205 ssize_t rv; 2206 vfnt_map_t *mp; 2207 2208 if (fp->vf_map_count[n] == 0) 2209 return (0); 2210 2211 size = fp->vf_map_count[n] * sizeof(*mp); 2212 mp = malloc(size); 2213 if (mp == NULL) 2214 return (ENOMEM); 2215 fp->vf_map[n] = mp; 2216 2217 rv = read(fd, mp, size); 2218 if (rv < 0 || (size_t)rv != size) { 2219 free(fp->vf_map[n]); 2220 fp->vf_map[n] = NULL; 2221 return (EIO); 2222 } 2223 2224 for (i = 0; i < fp->vf_map_count[n]; i++) { 2225 mp[i].vfm_src = be32toh(mp[i].vfm_src); 2226 mp[i].vfm_dst = be16toh(mp[i].vfm_dst); 2227 mp[i].vfm_len = be16toh(mp[i].vfm_len); 2228 } 2229 return (0); 2230 } 2231 2232 static int 2233 builtin_mapping(struct vt_font *fp, int n) 2234 { 2235 size_t size; 2236 struct vfnt_map *mp; 2237 2238 if (n >= VFNT_MAPS) 2239 return (EINVAL); 2240 2241 if (fp->vf_map_count[n] == 0) 2242 return (0); 2243 2244 size = fp->vf_map_count[n] * sizeof(*mp); 2245 mp = malloc(size); 2246 if (mp == NULL) 2247 return (ENOMEM); 2248 fp->vf_map[n] = mp; 2249 2250 memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size); 2251 return (0); 2252 } 2253 2254 /* 2255 * Load font from builtin or from file. 2256 * We do need special case for builtin because the builtin font glyphs 2257 * are compressed and we do need to uncompress them. 2258 * Having single load_font() for both cases will help us to simplify 2259 * font switch handling. 2260 */ 2261 static vt_font_bitmap_data_t * 2262 load_font(char *path) 2263 { 2264 int fd, i; 2265 uint32_t glyphs; 2266 struct font_header fh; 2267 struct fontlist *fl; 2268 vt_font_bitmap_data_t *bp; 2269 struct vt_font *fp; 2270 size_t size; 2271 ssize_t rv; 2272 2273 /* Get our entry from the font list. */ 2274 STAILQ_FOREACH(fl, &fonts, font_next) { 2275 if (strcmp(fl->font_name, path) == 0) 2276 break; 2277 } 2278 if (fl == NULL) 2279 return (NULL); /* Should not happen. */ 2280 2281 bp = fl->font_data; 2282 if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD) 2283 return (bp); 2284 2285 fd = -1; 2286 /* 2287 * Special case for builtin font. 2288 * Builtin font is the very first font we load, we do not have 2289 * previous loads to be released. 2290 */ 2291 if (fl->font_flags == FONT_BUILTIN) { 2292 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) 2293 return (NULL); 2294 2295 fp->vf_width = DEFAULT_FONT_DATA.vfbd_width; 2296 fp->vf_height = DEFAULT_FONT_DATA.vfbd_height; 2297 2298 fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size); 2299 if (fp->vf_bytes == NULL) { 2300 free(fp); 2301 return (NULL); 2302 } 2303 2304 bp->vfbd_uncompressed_size = 2305 DEFAULT_FONT_DATA.vfbd_uncompressed_size; 2306 bp->vfbd_compressed_size = 2307 DEFAULT_FONT_DATA.vfbd_compressed_size; 2308 2309 if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data, 2310 fp->vf_bytes, 2311 DEFAULT_FONT_DATA.vfbd_compressed_size, 2312 DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) { 2313 free(fp->vf_bytes); 2314 free(fp); 2315 return (NULL); 2316 } 2317 2318 for (i = 0; i < VFNT_MAPS; i++) { 2319 fp->vf_map_count[i] = 2320 DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i]; 2321 if (builtin_mapping(fp, i) != 0) 2322 goto free_done; 2323 } 2324 2325 bp->vfbd_font = fp; 2326 return (bp); 2327 } 2328 2329 fd = open(path, O_RDONLY); 2330 if (fd < 0) 2331 return (NULL); 2332 2333 size = sizeof(fh); 2334 rv = read(fd, &fh, size); 2335 if (rv < 0 || (size_t)rv != size) { 2336 bp = NULL; 2337 goto done; 2338 } 2339 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) { 2340 bp = NULL; 2341 goto done; 2342 } 2343 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) { 2344 bp = NULL; 2345 goto done; 2346 } 2347 for (i = 0; i < VFNT_MAPS; i++) 2348 fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]); 2349 2350 glyphs = be32toh(fh.fh_glyph_count); 2351 fp->vf_width = fh.fh_width; 2352 fp->vf_height = fh.fh_height; 2353 2354 size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs; 2355 bp->vfbd_uncompressed_size = size; 2356 if ((fp->vf_bytes = malloc(size)) == NULL) 2357 goto free_done; 2358 2359 rv = read(fd, fp->vf_bytes, size); 2360 if (rv < 0 || (size_t)rv != size) 2361 goto free_done; 2362 for (i = 0; i < VFNT_MAPS; i++) { 2363 if (load_mapping(fd, fp, i) != 0) 2364 goto free_done; 2365 } 2366 2367 /* 2368 * Reset builtin flag now as we have full font loaded. 2369 */ 2370 if (fl->font_flags == FONT_BUILTIN) 2371 fl->font_flags = FONT_AUTO; 2372 2373 /* 2374 * Release previously loaded entries. We can do this now, as 2375 * the new font is loaded. Note, there can be no console 2376 * output till the new font is in place and teken is notified. 2377 * We do need to keep fl->font_data for glyph dimensions. 2378 */ 2379 STAILQ_FOREACH(fl, &fonts, font_next) { 2380 if (fl->font_data->vfbd_font == NULL) 2381 continue; 2382 2383 for (i = 0; i < VFNT_MAPS; i++) 2384 free(fl->font_data->vfbd_font->vf_map[i]); 2385 free(fl->font_data->vfbd_font->vf_bytes); 2386 free(fl->font_data->vfbd_font); 2387 fl->font_data->vfbd_font = NULL; 2388 } 2389 2390 bp->vfbd_font = fp; 2391 bp->vfbd_compressed_size = 0; 2392 2393 done: 2394 if (fd != -1) 2395 close(fd); 2396 return (bp); 2397 2398 free_done: 2399 for (i = 0; i < VFNT_MAPS; i++) 2400 free(fp->vf_map[i]); 2401 free(fp->vf_bytes); 2402 free(fp); 2403 bp = NULL; 2404 goto done; 2405 } 2406 2407 struct name_entry { 2408 char *n_name; 2409 SLIST_ENTRY(name_entry) n_entry; 2410 }; 2411 2412 SLIST_HEAD(name_list, name_entry); 2413 2414 /* Read font names from index file. */ 2415 static struct name_list * 2416 read_list(char *fonts) 2417 { 2418 struct name_list *nl; 2419 struct name_entry *np; 2420 char *dir, *ptr; 2421 char buf[PATH_MAX]; 2422 int fd, len; 2423 2424 dir = strdup(fonts); 2425 if (dir == NULL) 2426 return (NULL); 2427 2428 ptr = strrchr(dir, '/'); 2429 *ptr = '\0'; 2430 2431 fd = open(fonts, O_RDONLY); 2432 if (fd < 0) 2433 return (NULL); 2434 2435 nl = malloc(sizeof(*nl)); 2436 if (nl == NULL) { 2437 close(fd); 2438 return (nl); 2439 } 2440 2441 SLIST_INIT(nl); 2442 while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) { 2443 if (*buf == '#' || *buf == '\0') 2444 continue; 2445 2446 if (bcmp(buf, "MENU", 4) == 0) 2447 continue; 2448 2449 if (bcmp(buf, "FONT", 4) == 0) 2450 continue; 2451 2452 ptr = strchr(buf, ':'); 2453 if (ptr == NULL) 2454 continue; 2455 else 2456 *ptr = '\0'; 2457 2458 np = malloc(sizeof(*np)); 2459 if (np == NULL) { 2460 close(fd); 2461 return (nl); /* return what we have */ 2462 } 2463 if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) { 2464 free(np); 2465 close(fd); 2466 return (nl); /* return what we have */ 2467 } 2468 SLIST_INSERT_HEAD(nl, np, n_entry); 2469 } 2470 close(fd); 2471 return (nl); 2472 } 2473 2474 /* 2475 * Read the font properties and insert new entry into the list. 2476 * The font list is built in descending order. 2477 */ 2478 static bool 2479 insert_font(char *name, FONT_FLAGS flags) 2480 { 2481 struct font_header fh; 2482 struct fontlist *fp, *previous, *entry, *next; 2483 size_t size; 2484 ssize_t rv; 2485 int fd; 2486 char *font_name; 2487 2488 font_name = NULL; 2489 if (flags == FONT_BUILTIN) { 2490 /* 2491 * We only install builtin font once, while setting up 2492 * initial console. Since this will happen very early, 2493 * we assume asprintf will not fail. Once we have access to 2494 * files, the builtin font will be replaced by font loaded 2495 * from file. 2496 */ 2497 if (!STAILQ_EMPTY(&fonts)) 2498 return (false); 2499 2500 fh.fh_width = DEFAULT_FONT_DATA.vfbd_width; 2501 fh.fh_height = DEFAULT_FONT_DATA.vfbd_height; 2502 2503 (void) asprintf(&font_name, "%dx%d", 2504 DEFAULT_FONT_DATA.vfbd_width, 2505 DEFAULT_FONT_DATA.vfbd_height); 2506 } else { 2507 fd = open(name, O_RDONLY); 2508 if (fd < 0) 2509 return (false); 2510 rv = read(fd, &fh, sizeof(fh)); 2511 close(fd); 2512 if (rv < 0 || (size_t)rv != sizeof(fh)) 2513 return (false); 2514 2515 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, 2516 sizeof(fh.fh_magic)) != 0) 2517 return (false); 2518 font_name = strdup(name); 2519 } 2520 2521 if (font_name == NULL) 2522 return (false); 2523 2524 /* 2525 * If we have an entry with the same glyph dimensions, replace 2526 * the file name and mark us. We only support unique dimensions. 2527 */ 2528 STAILQ_FOREACH(entry, &fonts, font_next) { 2529 if (fh.fh_width == entry->font_data->vfbd_width && 2530 fh.fh_height == entry->font_data->vfbd_height) { 2531 free(entry->font_name); 2532 entry->font_name = font_name; 2533 entry->font_flags = FONT_RELOAD; 2534 return (true); 2535 } 2536 } 2537 2538 fp = calloc(sizeof(*fp), 1); 2539 if (fp == NULL) { 2540 free(font_name); 2541 return (false); 2542 } 2543 fp->font_data = calloc(sizeof(*fp->font_data), 1); 2544 if (fp->font_data == NULL) { 2545 free(font_name); 2546 free(fp); 2547 return (false); 2548 } 2549 fp->font_name = font_name; 2550 fp->font_flags = flags; 2551 fp->font_load = load_font; 2552 fp->font_data->vfbd_width = fh.fh_width; 2553 fp->font_data->vfbd_height = fh.fh_height; 2554 2555 if (STAILQ_EMPTY(&fonts)) { 2556 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2557 return (true); 2558 } 2559 2560 previous = NULL; 2561 size = fp->font_data->vfbd_width * fp->font_data->vfbd_height; 2562 2563 STAILQ_FOREACH(entry, &fonts, font_next) { 2564 vt_font_bitmap_data_t *bd; 2565 2566 bd = entry->font_data; 2567 /* Should fp be inserted before the entry? */ 2568 if (size > bd->vfbd_width * bd->vfbd_height) { 2569 if (previous == NULL) { 2570 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2571 } else { 2572 STAILQ_INSERT_AFTER(&fonts, previous, fp, 2573 font_next); 2574 } 2575 return (true); 2576 } 2577 next = STAILQ_NEXT(entry, font_next); 2578 if (next == NULL || 2579 size > next->font_data->vfbd_width * 2580 next->font_data->vfbd_height) { 2581 STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next); 2582 return (true); 2583 } 2584 previous = entry; 2585 } 2586 return (true); 2587 } 2588 2589 static int 2590 font_set(struct env_var *ev __unused, int flags __unused, const void *value) 2591 { 2592 struct fontlist *fl; 2593 char *eptr; 2594 unsigned long x = 0, y = 0; 2595 2596 /* 2597 * Attempt to extract values from "XxY" string. In case of error, 2598 * we have unmaching glyph dimensions and will just output the 2599 * available values. 2600 */ 2601 if (value != NULL) { 2602 x = strtoul(value, &eptr, 10); 2603 if (*eptr == 'x') 2604 y = strtoul(eptr + 1, &eptr, 10); 2605 } 2606 STAILQ_FOREACH(fl, &fonts, font_next) { 2607 if (fl->font_data->vfbd_width == x && 2608 fl->font_data->vfbd_height == y) 2609 break; 2610 } 2611 if (fl != NULL) { 2612 /* Reset any FONT_MANUAL flag. */ 2613 reset_font_flags(); 2614 2615 /* Mark this font manually loaded */ 2616 fl->font_flags = FONT_MANUAL; 2617 cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2618 return (CMD_OK); 2619 } 2620 2621 printf("Available fonts:\n"); 2622 STAILQ_FOREACH(fl, &fonts, font_next) { 2623 printf(" %dx%d\n", fl->font_data->vfbd_width, 2624 fl->font_data->vfbd_height); 2625 } 2626 return (CMD_OK); 2627 } 2628 2629 void 2630 bios_text_font(bool use_vga_font) 2631 { 2632 if (use_vga_font) 2633 (void) insert_font(VGA_8X16_FONT, FONT_MANUAL); 2634 else 2635 (void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL); 2636 } 2637 2638 void 2639 autoload_font(bool bios) 2640 { 2641 struct name_list *nl; 2642 struct name_entry *np; 2643 2644 nl = read_list("/boot/fonts/INDEX.fonts"); 2645 if (nl == NULL) 2646 return; 2647 2648 while (!SLIST_EMPTY(nl)) { 2649 np = SLIST_FIRST(nl); 2650 SLIST_REMOVE_HEAD(nl, n_entry); 2651 if (insert_font(np->n_name, FONT_AUTO) == false) 2652 printf("failed to add font: %s\n", np->n_name); 2653 free(np->n_name); 2654 free(np); 2655 } 2656 2657 /* 2658 * If vga text mode was requested, load vga.font (8x16 bold) font. 2659 */ 2660 if (bios) { 2661 bios_text_font(true); 2662 } 2663 2664 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2665 } 2666 2667 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font); 2668 2669 static int 2670 command_font(int argc, char *argv[]) 2671 { 2672 int i, c, rc; 2673 struct fontlist *fl; 2674 vt_font_bitmap_data_t *bd; 2675 bool list; 2676 2677 list = false; 2678 optind = 1; 2679 optreset = 1; 2680 rc = CMD_OK; 2681 2682 while ((c = getopt(argc, argv, "l")) != -1) { 2683 switch (c) { 2684 case 'l': 2685 list = true; 2686 break; 2687 case '?': 2688 default: 2689 return (CMD_ERROR); 2690 } 2691 } 2692 2693 argc -= optind; 2694 argv += optind; 2695 2696 if (argc > 1 || (list && argc != 0)) { 2697 printf("Usage: loadfont [-l] | [file.fnt]\n"); 2698 return (CMD_ERROR); 2699 } 2700 2701 if (list) { 2702 STAILQ_FOREACH(fl, &fonts, font_next) { 2703 printf("font %s: %dx%d%s\n", fl->font_name, 2704 fl->font_data->vfbd_width, 2705 fl->font_data->vfbd_height, 2706 fl->font_data->vfbd_font == NULL? "" : " loaded"); 2707 } 2708 return (CMD_OK); 2709 } 2710 2711 /* Clear scren */ 2712 cons_clear(); 2713 2714 if (argc == 1) { 2715 char *name = argv[0]; 2716 2717 if (insert_font(name, FONT_MANUAL) == false) { 2718 printf("loadfont error: failed to load: %s\n", name); 2719 return (CMD_ERROR); 2720 } 2721 2722 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2723 return (CMD_OK); 2724 } 2725 2726 if (argc == 0) { 2727 /* 2728 * Walk entire font list, release any loaded font, and set 2729 * autoload flag. The font list does have at least the builtin 2730 * default font. 2731 */ 2732 STAILQ_FOREACH(fl, &fonts, font_next) { 2733 if (fl->font_data->vfbd_font != NULL) { 2734 2735 bd = fl->font_data; 2736 /* 2737 * Note the setup_font() is releasing 2738 * font bytes. 2739 */ 2740 for (i = 0; i < VFNT_MAPS; i++) 2741 free(bd->vfbd_font->vf_map[i]); 2742 free(fl->font_data->vfbd_font); 2743 fl->font_data->vfbd_font = NULL; 2744 fl->font_data->vfbd_uncompressed_size = 0; 2745 fl->font_flags = FONT_AUTO; 2746 } 2747 } 2748 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2749 } 2750 return (rc); 2751 } 2752 2753 bool 2754 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res) 2755 { 2756 struct resolution *rp, *p; 2757 2758 /* 2759 * Walk detailed timings tables (4). 2760 */ 2761 if ((edid->display.supported_features 2762 & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) { 2763 /* Walk detailed timing descriptors (4) */ 2764 for (int i = 0; i < DET_TIMINGS; i++) { 2765 /* 2766 * Reserved value 0 is not used for display decriptor. 2767 */ 2768 if (edid->detailed_timings[i].pixel_clock == 0) 2769 continue; 2770 if ((rp = malloc(sizeof(*rp))) == NULL) 2771 continue; 2772 rp->width = GET_EDID_INFO_WIDTH(edid, i); 2773 rp->height = GET_EDID_INFO_HEIGHT(edid, i); 2774 if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS && 2775 rp->height > 0 && rp->height <= EDID_MAX_LINES) 2776 TAILQ_INSERT_TAIL(res, rp, next); 2777 else 2778 free(rp); 2779 } 2780 } 2781 2782 /* 2783 * Walk standard timings list (8). 2784 */ 2785 for (int i = 0; i < STD_TIMINGS; i++) { 2786 /* Is this field unused? */ 2787 if (edid->standard_timings[i] == 0x0101) 2788 continue; 2789 2790 if ((rp = malloc(sizeof(*rp))) == NULL) 2791 continue; 2792 2793 rp->width = HSIZE(edid->standard_timings[i]); 2794 switch (RATIO(edid->standard_timings[i])) { 2795 case RATIO1_1: 2796 rp->height = HSIZE(edid->standard_timings[i]); 2797 if (edid->header.version > 1 || 2798 edid->header.revision > 2) { 2799 rp->height = rp->height * 10 / 16; 2800 } 2801 break; 2802 case RATIO4_3: 2803 rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4; 2804 break; 2805 case RATIO5_4: 2806 rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5; 2807 break; 2808 case RATIO16_9: 2809 rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16; 2810 break; 2811 } 2812 2813 /* 2814 * Create resolution list in decreasing order, except keep 2815 * first entry (preferred timing mode). 2816 */ 2817 TAILQ_FOREACH(p, res, next) { 2818 if (p->width * p->height < rp->width * rp->height) { 2819 /* Keep preferred mode first */ 2820 if (TAILQ_FIRST(res) == p) 2821 TAILQ_INSERT_AFTER(res, p, rp, next); 2822 else 2823 TAILQ_INSERT_BEFORE(p, rp, next); 2824 break; 2825 } 2826 if (TAILQ_NEXT(p, next) == NULL) { 2827 TAILQ_INSERT_TAIL(res, rp, next); 2828 break; 2829 } 2830 } 2831 } 2832 return (!TAILQ_EMPTY(res)); 2833 } 2834