1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2020 Toomas Soome 5 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 6 * Copyright 2020 RackTop Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI 34 * GOP Blt, and allows us to fill the rectangle on screen, copy 35 * rectangle from video to buffer and buffer to video and video to video. 36 * Such implementation does allow us to have almost identical implementation 37 * for both BIOS VBE and UEFI. 38 * 39 * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red, 40 * Alpha) format, this allows us to only handle RGB data and not to worry 41 * about mixing RGB with indexed colors. 42 * Data exchange between memory buffer and video will translate BGRA 43 * and native format as following: 44 * 45 * 32-bit to/from 32-bit is trivial case. 46 * 32-bit to/from 24-bit is also simple - we just drop the alpha channel. 47 * 32-bit to/from 16-bit is more complicated, because we nee to handle 48 * data loss from 32-bit to 16-bit. While reading/writing from/to video, we 49 * need to apply masks of 16-bit color components. This will preserve 50 * colors for terminal text. For 32-bit truecolor PMG images, we need to 51 * translate 32-bit colors to 15/16 bit colors and this means data loss. 52 * There are different algorithms how to perform such color space reduction, 53 * we are currently using bitwise right shift to reduce color space and so far 54 * this technique seems to be sufficient (see also gfx_fb_putimage(), the 55 * end of for loop). 56 * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are 57 * indexed. From video, we do get color indexes, and we do translate 58 * color index values to RGB. To write to video, we again need to translate 59 * RGB to color index. Additionally, we need to translate between VGA and 60 * console colors. 61 * 62 * Our internal color data is represented using BGRA format. But the hardware 63 * used indexed colors for 8-bit colors (0-255) and for this mode we do 64 * need to perform translation to/from BGRA and index values. 65 * 66 * - paletteentry RGB <-> index - 67 * BGRA BUFFER <----/ \ - VIDEO 68 * \ / 69 * - RGB (16/24/32) - 70 * 71 * To perform index to RGB translation, we use palette table generated 72 * from when we set up 8-bit mode video. We cannot read palette data from 73 * the hardware, because not all hardware supports reading it. 74 * 75 * BGRA to index is implemented in rgb_to_color_index() by searching 76 * palette array for closest match of RBG values. 77 * 78 * Note: In 8-bit mode, We do store first 16 colors to palette registers 79 * in VGA color order, this serves two purposes; firstly, 80 * if palette update is not supported, we still have correct 16 colors. 81 * Secondly, the kernel does get correct 16 colors when some other boot 82 * loader is used. However, the palette map for 8-bit colors is using 83 * console color ordering - this does allow us to skip translation 84 * from VGA colors to console colors, while we are reading RGB data. 85 */ 86 87 #include <sys/cdefs.h> 88 #include <sys/param.h> 89 #include <stand.h> 90 #include <teken.h> 91 #include <gfx_fb.h> 92 #include <sys/font.h> 93 #include <sys/stdint.h> 94 #include <sys/endian.h> 95 #include <pnglite.h> 96 #include <bootstrap.h> 97 #include <lz4.h> 98 #if defined(EFI) 99 #include <efi.h> 100 #include <efilib.h> 101 #else 102 #include <vbe.h> 103 #endif 104 105 /* VGA text mode does use bold font. */ 106 #if !defined(VGA_8X16_FONT) 107 #define VGA_8X16_FONT "/boot/fonts/8x16b.fnt" 108 #endif 109 #if !defined(DEFAULT_8X16_FONT) 110 #define DEFAULT_8X16_FONT "/boot/fonts/8x16.fnt" 111 #endif 112 113 /* 114 * Must be sorted by font size in descending order 115 */ 116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 117 118 #define DEFAULT_FONT_DATA font_data_8x16 119 extern vt_font_bitmap_data_t font_data_8x16; 120 teken_gfx_t gfx_state = { 0 }; 121 122 static struct { 123 unsigned char r; /* Red percentage value. */ 124 unsigned char g; /* Green percentage value. */ 125 unsigned char b; /* Blue percentage value. */ 126 } color_def[NCOLORS] = { 127 {0, 0, 0}, /* black */ 128 {50, 0, 0}, /* dark red */ 129 {0, 50, 0}, /* dark green */ 130 {77, 63, 0}, /* dark yellow */ 131 {20, 40, 64}, /* dark blue */ 132 {50, 0, 50}, /* dark magenta */ 133 {0, 50, 50}, /* dark cyan */ 134 {75, 75, 75}, /* light gray */ 135 136 {18, 20, 21}, /* dark gray */ 137 {100, 0, 0}, /* light red */ 138 {0, 100, 0}, /* light green */ 139 {100, 100, 0}, /* light yellow */ 140 {45, 62, 81}, /* light blue */ 141 {100, 0, 100}, /* light magenta */ 142 {0, 100, 100}, /* light cyan */ 143 {100, 100, 100}, /* white */ 144 }; 145 uint32_t cmap[NCMAP]; 146 147 /* 148 * Between console's palette and VGA's one: 149 * - blue and red are swapped (1 <-> 4) 150 * - yellow and cyan are swapped (3 <-> 6) 151 */ 152 const int cons_to_vga_colors[NCOLORS] = { 153 0, 4, 2, 6, 1, 5, 3, 7, 154 8, 12, 10, 14, 9, 13, 11, 15 155 }; 156 157 static const int vga_to_cons_colors[NCOLORS] = { 158 0, 1, 2, 3, 4, 5, 6, 7, 159 8, 9, 10, 11, 12, 13, 14, 15 160 }; 161 162 struct text_pixel *screen_buffer; 163 #if defined(EFI) 164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer; 165 #else 166 static struct paletteentry *GlyphBuffer; 167 #endif 168 static size_t GlyphBufferSize; 169 170 static bool insert_font(char *, FONT_FLAGS); 171 static int font_set(struct env_var *, int, const void *); 172 static void * allocate_glyphbuffer(uint32_t, uint32_t); 173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool); 174 175 /* 176 * Initialize gfx framework. 177 */ 178 void 179 gfx_framework_init(void) 180 { 181 /* 182 * Setup font list to have builtin font. 183 */ 184 (void) insert_font(NULL, FONT_BUILTIN); 185 } 186 187 static uint8_t * 188 gfx_get_fb_address(void) 189 { 190 return (ptov((uint32_t)gfx_state.tg_fb.fb_addr)); 191 } 192 193 /* 194 * Utility function to parse gfx mode line strings. 195 */ 196 bool 197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth) 198 { 199 char *p, *end; 200 201 errno = 0; 202 p = str; 203 *x = strtoul(p, &end, 0); 204 if (*x == 0 || errno != 0) 205 return (false); 206 if (*end != 'x') 207 return (false); 208 p = end + 1; 209 *y = strtoul(p, &end, 0); 210 if (*y == 0 || errno != 0) 211 return (false); 212 if (*end != 'x') { 213 *depth = -1; /* auto select */ 214 } else { 215 p = end + 1; 216 *depth = strtoul(p, &end, 0); 217 if (*depth == 0 || errno != 0 || *end != '\0') 218 return (false); 219 } 220 221 return (true); 222 } 223 224 static uint32_t 225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset, 226 uint32_t gmax, int goffset, uint32_t bmax, int boffset) 227 { 228 uint32_t color, code, gray, level; 229 230 if (index < NCOLORS) { 231 #define CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset) 232 return (CF(r, index) | CF(g, index) | CF(b, index)); 233 #undef CF 234 } 235 236 #define CF(_f, _c) ((_f ## max & _c) << _f ## offset) 237 /* 6x6x6 color cube */ 238 if (index > 15 && index < 232) { 239 uint32_t red, green, blue; 240 241 for (red = 0; red < 6; red++) { 242 for (green = 0; green < 6; green++) { 243 for (blue = 0; blue < 6; blue++) { 244 code = 16 + (red * 36) + 245 (green * 6) + blue; 246 if (code != index) 247 continue; 248 red = red ? (red * 40 + 55) : 0; 249 green = green ? (green * 40 + 55) : 0; 250 blue = blue ? (blue * 40 + 55) : 0; 251 color = CF(r, red); 252 color |= CF(g, green); 253 color |= CF(b, blue); 254 return (color); 255 } 256 } 257 } 258 } 259 260 /* colors 232-255 are a grayscale ramp */ 261 for (gray = 0; gray < 24; gray++) { 262 level = (gray * 10) + 8; 263 code = 232 + gray; 264 if (code == index) 265 break; 266 } 267 return (CF(r, level) | CF(g, level) | CF(b, level)); 268 #undef CF 269 } 270 271 /* 272 * Support for color mapping. 273 * For 8, 24 and 32 bit depth, use mask size 8. 274 * 15/16 bit depth needs to use mask size from mode, 275 * or we will lose color information from 32-bit to 15/16 bit translation. 276 */ 277 uint32_t 278 gfx_fb_color_map(uint8_t index) 279 { 280 int rmask, gmask, bmask; 281 int roff, goff, boff, bpp; 282 283 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 284 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 285 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 286 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 287 288 if (bpp == 2) 289 rmask = gfx_state.tg_fb.fb_mask_red >> roff; 290 else 291 rmask = 0xff; 292 293 if (bpp == 2) 294 gmask = gfx_state.tg_fb.fb_mask_green >> goff; 295 else 296 gmask = 0xff; 297 298 if (bpp == 2) 299 bmask = gfx_state.tg_fb.fb_mask_blue >> boff; 300 else 301 bmask = 0xff; 302 303 return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0)); 304 } 305 306 /* 307 * Get indexed color from RGB. This function is used to write data to video 308 * memory when the adapter is set to use indexed colors. 309 * Since UEFI does only support 32-bit colors, we do not implement it for 310 * UEFI because there is no need for it and we do not have palette array 311 * for UEFI. 312 */ 313 static uint8_t 314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b) 315 { 316 #if !defined(EFI) 317 uint32_t color, best, dist, k; 318 int diff; 319 320 color = 0; 321 best = 255 * 255 * 255; 322 for (k = 0; k < NCMAP; k++) { 323 diff = r - pe8[k].Red; 324 dist = diff * diff; 325 diff = g - pe8[k].Green; 326 dist += diff * diff; 327 diff = b - pe8[k].Blue; 328 dist += diff * diff; 329 330 /* Exact match, exit the loop */ 331 if (dist == 0) 332 break; 333 334 if (dist < best) { 335 color = k; 336 best = dist; 337 } 338 } 339 if (k == NCMAP) 340 k = color; 341 return (k); 342 #else 343 (void) r; 344 (void) g; 345 (void) b; 346 return (0); 347 #endif 348 } 349 350 int 351 generate_cons_palette(uint32_t *palette, int format, 352 uint32_t rmax, int roffset, uint32_t gmax, int goffset, 353 uint32_t bmax, int boffset) 354 { 355 int i; 356 357 switch (format) { 358 case COLOR_FORMAT_VGA: 359 for (i = 0; i < NCOLORS; i++) 360 palette[i] = cons_to_vga_colors[i]; 361 for (; i < NCMAP; i++) 362 palette[i] = i; 363 break; 364 case COLOR_FORMAT_RGB: 365 for (i = 0; i < NCMAP; i++) 366 palette[i] = rgb_color_map(i, rmax, roffset, 367 gmax, goffset, bmax, boffset); 368 break; 369 default: 370 return (ENODEV); 371 } 372 373 return (0); 374 } 375 376 static void 377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v) 378 { 379 380 if (o >= size) 381 return; 382 *(uint8_t *)(base + o) = v; 383 } 384 385 static void 386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v) 387 { 388 389 if (o >= size) 390 return; 391 *(uint16_t *)(base + o) = v; 392 } 393 394 static void 395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v) 396 { 397 398 if (o >= size) 399 return; 400 *(uint32_t *)(base + o) = v; 401 } 402 403 static int gfxfb_blt_fill(void *BltBuffer, 404 uint32_t DestinationX, uint32_t DestinationY, 405 uint32_t Width, uint32_t Height) 406 { 407 #if defined(EFI) 408 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 409 #else 410 struct paletteentry *p; 411 #endif 412 uint32_t data, bpp, pitch, y, x; 413 int roff, goff, boff; 414 size_t size; 415 off_t off; 416 uint8_t *destination; 417 418 if (BltBuffer == NULL) 419 return (EINVAL); 420 421 if (DestinationY + Height > gfx_state.tg_fb.fb_height) 422 return (EINVAL); 423 424 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 425 return (EINVAL); 426 427 if (Width == 0 || Height == 0) 428 return (EINVAL); 429 430 p = BltBuffer; 431 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 432 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 433 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 434 435 if (gfx_state.tg_fb.fb_bpp == 8) { 436 data = rgb_to_color_index(p->Red, p->Green, p->Blue); 437 } else { 438 data = (p->Red & 439 (gfx_state.tg_fb.fb_mask_red >> roff)) << roff; 440 data |= (p->Green & 441 (gfx_state.tg_fb.fb_mask_green >> goff)) << goff; 442 data |= (p->Blue & 443 (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff; 444 } 445 446 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 447 pitch = gfx_state.tg_fb.fb_stride * bpp; 448 destination = gfx_get_fb_address(); 449 size = gfx_state.tg_fb.fb_size; 450 451 for (y = DestinationY; y < Height + DestinationY; y++) { 452 off = y * pitch + DestinationX * bpp; 453 for (x = 0; x < Width; x++) { 454 switch (bpp) { 455 case 1: 456 gfx_mem_wr1(destination, size, off, 457 (data < NCOLORS) ? 458 cons_to_vga_colors[data] : data); 459 break; 460 case 2: 461 gfx_mem_wr2(destination, size, off, data); 462 break; 463 case 3: 464 gfx_mem_wr1(destination, size, off, 465 (data >> 16) & 0xff); 466 gfx_mem_wr1(destination, size, off + 1, 467 (data >> 8) & 0xff); 468 gfx_mem_wr1(destination, size, off + 2, 469 data & 0xff); 470 break; 471 case 4: 472 gfx_mem_wr4(destination, size, off, data); 473 break; 474 default: 475 return (EINVAL); 476 } 477 off += bpp; 478 } 479 } 480 481 return (0); 482 } 483 484 static int 485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 486 uint32_t DestinationX, uint32_t DestinationY, 487 uint32_t Width, uint32_t Height, uint32_t Delta) 488 { 489 #if defined(EFI) 490 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 491 #else 492 struct paletteentry *p; 493 #endif 494 uint32_t x, sy, dy; 495 uint32_t bpp, pitch, copybytes; 496 off_t off; 497 uint8_t *source, *destination, *sb; 498 uint8_t rm, rp, gm, gp, bm, bp; 499 bool bgra; 500 501 if (BltBuffer == NULL) 502 return (EINVAL); 503 504 if (SourceY + Height > 505 gfx_state.tg_fb.fb_height) 506 return (EINVAL); 507 508 if (SourceX + Width > gfx_state.tg_fb.fb_width) 509 return (EINVAL); 510 511 if (Width == 0 || Height == 0) 512 return (EINVAL); 513 514 if (Delta == 0) 515 Delta = Width * sizeof (*p); 516 517 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 518 pitch = gfx_state.tg_fb.fb_stride * bpp; 519 520 copybytes = Width * bpp; 521 522 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 523 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 524 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 525 rm = gfx_state.tg_fb.fb_mask_red >> rp; 526 gm = gfx_state.tg_fb.fb_mask_green >> gp; 527 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 528 529 /* If FB pixel format is BGRA, we can use direct copy. */ 530 bgra = bpp == 4 && 531 ffs(rm) - 1 == 8 && rp == 16 && 532 ffs(gm) - 1 == 8 && gp == 8 && 533 ffs(bm) - 1 == 8 && bp == 0; 534 535 for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY; 536 sy++, dy++) { 537 off = sy * pitch + SourceX * bpp; 538 source = gfx_get_fb_address() + off; 539 destination = (uint8_t *)BltBuffer + dy * Delta + 540 DestinationX * sizeof (*p); 541 542 if (bgra) { 543 bcopy(source, destination, copybytes); 544 } else { 545 for (x = 0; x < Width; x++) { 546 uint32_t c = 0; 547 548 p = (void *)(destination + x * sizeof (*p)); 549 sb = source + x * bpp; 550 switch (bpp) { 551 case 1: 552 c = *sb; 553 break; 554 case 2: 555 c = *(uint16_t *)sb; 556 break; 557 case 3: 558 c = sb[0] << 16 | sb[1] << 8 | sb[2]; 559 break; 560 case 4: 561 c = *(uint32_t *)sb; 562 break; 563 default: 564 return (EINVAL); 565 } 566 567 if (bpp == 1) { 568 *(uint32_t *)p = gfx_fb_color_map( 569 (c < 16) ? 570 vga_to_cons_colors[c] : c); 571 } else { 572 p->Red = (c >> rp) & rm; 573 p->Green = (c >> gp) & gm; 574 p->Blue = (c >> bp) & bm; 575 p->Reserved = 0; 576 } 577 } 578 } 579 } 580 581 return (0); 582 } 583 584 static int 585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 586 uint32_t DestinationX, uint32_t DestinationY, 587 uint32_t Width, uint32_t Height, uint32_t Delta) 588 { 589 #if defined(EFI) 590 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 591 #else 592 struct paletteentry *p; 593 #endif 594 uint32_t x, sy, dy; 595 uint32_t bpp, pitch, copybytes; 596 off_t off; 597 uint8_t *source, *destination; 598 uint8_t rm, rp, gm, gp, bm, bp; 599 bool bgra; 600 601 if (BltBuffer == NULL) 602 return (EINVAL); 603 604 if (DestinationY + Height > 605 gfx_state.tg_fb.fb_height) 606 return (EINVAL); 607 608 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 609 return (EINVAL); 610 611 if (Width == 0 || Height == 0) 612 return (EINVAL); 613 614 if (Delta == 0) 615 Delta = Width * sizeof (*p); 616 617 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 618 pitch = gfx_state.tg_fb.fb_stride * bpp; 619 620 copybytes = Width * bpp; 621 622 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 623 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 624 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 625 rm = gfx_state.tg_fb.fb_mask_red >> rp; 626 gm = gfx_state.tg_fb.fb_mask_green >> gp; 627 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 628 629 /* If FB pixel format is BGRA, we can use direct copy. */ 630 bgra = bpp == 4 && 631 ffs(rm) - 1 == 8 && rp == 16 && 632 ffs(gm) - 1 == 8 && gp == 8 && 633 ffs(bm) - 1 == 8 && bp == 0; 634 635 for (sy = SourceY, dy = DestinationY; sy < Height + SourceY; 636 sy++, dy++) { 637 off = dy * pitch + DestinationX * bpp; 638 destination = gfx_get_fb_address() + off; 639 640 if (bgra) { 641 source = (uint8_t *)BltBuffer + sy * Delta + 642 SourceX * sizeof (*p); 643 bcopy(source, destination, copybytes); 644 } else { 645 for (x = 0; x < Width; x++) { 646 uint32_t c; 647 648 p = (void *)((uint8_t *)BltBuffer + 649 sy * Delta + 650 (SourceX + x) * sizeof (*p)); 651 if (bpp == 1) { 652 c = rgb_to_color_index(p->Red, 653 p->Green, p->Blue); 654 } else { 655 c = (p->Red & rm) << rp | 656 (p->Green & gm) << gp | 657 (p->Blue & bm) << bp; 658 } 659 off = x * bpp; 660 switch (bpp) { 661 case 1: 662 gfx_mem_wr1(destination, copybytes, 663 off, (c < 16) ? 664 cons_to_vga_colors[c] : c); 665 break; 666 case 2: 667 gfx_mem_wr2(destination, copybytes, 668 off, c); 669 break; 670 case 3: 671 gfx_mem_wr1(destination, copybytes, 672 off, (c >> 16) & 0xff); 673 gfx_mem_wr1(destination, copybytes, 674 off + 1, (c >> 8) & 0xff); 675 gfx_mem_wr1(destination, copybytes, 676 off + 2, c & 0xff); 677 break; 678 case 4: 679 gfx_mem_wr4(destination, copybytes, 680 x * bpp, c); 681 break; 682 default: 683 return (EINVAL); 684 } 685 } 686 } 687 } 688 689 return (0); 690 } 691 692 static int 693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY, 694 uint32_t DestinationX, uint32_t DestinationY, 695 uint32_t Width, uint32_t Height) 696 { 697 uint32_t bpp, copybytes; 698 int pitch; 699 uint8_t *source, *destination; 700 off_t off; 701 702 if (SourceY + Height > 703 gfx_state.tg_fb.fb_height) 704 return (EINVAL); 705 706 if (SourceX + Width > gfx_state.tg_fb.fb_width) 707 return (EINVAL); 708 709 if (DestinationY + Height > 710 gfx_state.tg_fb.fb_height) 711 return (EINVAL); 712 713 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 714 return (EINVAL); 715 716 if (Width == 0 || Height == 0) 717 return (EINVAL); 718 719 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 720 pitch = gfx_state.tg_fb.fb_stride * bpp; 721 722 copybytes = Width * bpp; 723 724 off = SourceY * pitch + SourceX * bpp; 725 source = gfx_get_fb_address() + off; 726 off = DestinationY * pitch + DestinationX * bpp; 727 destination = gfx_get_fb_address() + off; 728 729 if ((uintptr_t)destination > (uintptr_t)source) { 730 source += Height * pitch; 731 destination += Height * pitch; 732 pitch = -pitch; 733 } 734 735 while (Height-- > 0) { 736 bcopy(source, destination, copybytes); 737 source += pitch; 738 destination += pitch; 739 } 740 741 return (0); 742 } 743 744 int 745 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation, 746 uint32_t SourceX, uint32_t SourceY, 747 uint32_t DestinationX, uint32_t DestinationY, 748 uint32_t Width, uint32_t Height, uint32_t Delta) 749 { 750 int rv; 751 #if defined(EFI) 752 EFI_STATUS status; 753 EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private; 754 755 /* 756 * We assume Blt() does work, if not, we will need to build 757 * exception list case by case. 758 */ 759 if (gop != NULL) { 760 switch (BltOperation) { 761 case GfxFbBltVideoFill: 762 status = gop->Blt(gop, BltBuffer, EfiBltVideoFill, 763 SourceX, SourceY, DestinationX, DestinationY, 764 Width, Height, Delta); 765 break; 766 767 case GfxFbBltVideoToBltBuffer: 768 status = gop->Blt(gop, BltBuffer, 769 EfiBltVideoToBltBuffer, 770 SourceX, SourceY, DestinationX, DestinationY, 771 Width, Height, Delta); 772 break; 773 774 case GfxFbBltBufferToVideo: 775 status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo, 776 SourceX, SourceY, DestinationX, DestinationY, 777 Width, Height, Delta); 778 break; 779 780 case GfxFbBltVideoToVideo: 781 status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo, 782 SourceX, SourceY, DestinationX, DestinationY, 783 Width, Height, Delta); 784 break; 785 786 default: 787 status = EFI_INVALID_PARAMETER; 788 break; 789 } 790 791 switch (status) { 792 case EFI_SUCCESS: 793 rv = 0; 794 break; 795 796 case EFI_INVALID_PARAMETER: 797 rv = EINVAL; 798 break; 799 800 case EFI_DEVICE_ERROR: 801 default: 802 rv = EIO; 803 break; 804 } 805 806 return (rv); 807 } 808 #endif 809 810 switch (BltOperation) { 811 case GfxFbBltVideoFill: 812 rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY, 813 Width, Height); 814 break; 815 816 case GfxFbBltVideoToBltBuffer: 817 rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY, 818 DestinationX, DestinationY, Width, Height, Delta); 819 break; 820 821 case GfxFbBltBufferToVideo: 822 rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY, 823 DestinationX, DestinationY, Width, Height, Delta); 824 break; 825 826 case GfxFbBltVideoToVideo: 827 rv = gfxfb_blt_video_to_video(SourceX, SourceY, 828 DestinationX, DestinationY, Width, Height); 829 break; 830 831 default: 832 rv = EINVAL; 833 break; 834 } 835 return (rv); 836 } 837 838 void 839 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph, 840 const teken_attr_t *a, uint32_t alpha, bool cursor) 841 { 842 uint32_t width, height; 843 uint32_t fgc, bgc, bpl, cc, o; 844 int bpp, bit, byte; 845 bool invert = false; 846 847 bpp = 4; /* We only generate BGRA */ 848 width = state->tg_font.vf_width; 849 height = state->tg_font.vf_height; 850 bpl = (width + 7) / 8; /* Bytes per source line. */ 851 852 fgc = a->ta_fgcolor; 853 bgc = a->ta_bgcolor; 854 if (a->ta_format & TF_BOLD) 855 fgc |= TC_LIGHT; 856 if (a->ta_format & TF_BLINK) 857 bgc |= TC_LIGHT; 858 859 fgc = gfx_fb_color_map(fgc); 860 bgc = gfx_fb_color_map(bgc); 861 862 if (a->ta_format & TF_REVERSE) 863 invert = !invert; 864 if (cursor) 865 invert = !invert; 866 if (invert) { 867 uint32_t tmp; 868 869 tmp = fgc; 870 fgc = bgc; 871 bgc = tmp; 872 } 873 874 alpha = alpha << 24; 875 fgc |= alpha; 876 bgc |= alpha; 877 878 for (uint32_t y = 0; y < height; y++) { 879 for (uint32_t x = 0; x < width; x++) { 880 byte = y * bpl + x / 8; 881 bit = 0x80 >> (x % 8); 882 o = y * width * bpp + x * bpp; 883 cc = glyph[byte] & bit ? fgc : bgc; 884 885 gfx_mem_wr4(state->tg_glyph, 886 state->tg_glyph_size, o, cc); 887 } 888 } 889 } 890 891 /* 892 * Draw prepared glyph on terminal point p. 893 */ 894 static void 895 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p) 896 { 897 unsigned x, y, width, height; 898 899 width = state->tg_font.vf_width; 900 height = state->tg_font.vf_height; 901 x = state->tg_origin.tp_col + p->tp_col * width; 902 y = state->tg_origin.tp_row + p->tp_row * height; 903 904 gfx_fb_cons_display(x, y, width, height, state->tg_glyph); 905 } 906 907 /* 908 * Store char with its attribute to buffer and put it on screen. 909 */ 910 void 911 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c, 912 const teken_attr_t *a) 913 { 914 teken_gfx_t *state = arg; 915 const uint8_t *glyph; 916 int idx; 917 918 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 919 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 920 return; 921 922 /* remove the cursor */ 923 if (state->tg_cursor_visible) 924 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 925 926 screen_buffer[idx].c = c; 927 screen_buffer[idx].a = *a; 928 929 glyph = font_lookup(&state->tg_font, c, a); 930 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 931 gfx_fb_printchar(state, p); 932 933 /* display the cursor */ 934 if (state->tg_cursor_visible) { 935 const teken_pos_t *c; 936 937 c = teken_get_cursor(&state->tg_teken); 938 gfx_fb_cursor_draw(state, c, true); 939 } 940 } 941 942 void 943 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c, 944 const teken_attr_t *a) 945 { 946 teken_gfx_t *state = arg; 947 const uint8_t *glyph; 948 teken_pos_t p; 949 struct text_pixel *row; 950 951 /* remove the cursor */ 952 if (state->tg_cursor_visible) 953 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 954 955 glyph = font_lookup(&state->tg_font, c, a); 956 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 957 958 for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row; 959 p.tp_row++) { 960 row = &screen_buffer[p.tp_row * state->tg_tp.tp_col]; 961 for (p.tp_col = r->tr_begin.tp_col; 962 p.tp_col < r->tr_end.tp_col; p.tp_col++) { 963 row[p.tp_col].c = c; 964 row[p.tp_col].a = *a; 965 gfx_fb_printchar(state, &p); 966 } 967 } 968 969 /* display the cursor */ 970 if (state->tg_cursor_visible) { 971 const teken_pos_t *c; 972 973 c = teken_get_cursor(&state->tg_teken); 974 gfx_fb_cursor_draw(state, c, true); 975 } 976 } 977 978 static void 979 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *p, bool on) 980 { 981 const uint8_t *glyph; 982 int idx; 983 984 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 985 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 986 return; 987 988 glyph = font_lookup(&state->tg_font, screen_buffer[idx].c, 989 &screen_buffer[idx].a); 990 gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on); 991 gfx_fb_printchar(state, p); 992 state->tg_cursor = *p; 993 } 994 995 void 996 gfx_fb_cursor(void *arg, const teken_pos_t *p) 997 { 998 teken_gfx_t *state = arg; 999 #if defined(EFI) 1000 EFI_TPL tpl; 1001 1002 tpl = BS->RaiseTPL(TPL_NOTIFY); 1003 #endif 1004 1005 /* Switch cursor off in old location and back on in new. */ 1006 if (state->tg_cursor_visible) { 1007 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1008 gfx_fb_cursor_draw(state, p, true); 1009 } 1010 #if defined(EFI) 1011 BS->RestoreTPL(tpl); 1012 #endif 1013 } 1014 1015 void 1016 gfx_fb_param(void *arg, int cmd, unsigned int value) 1017 { 1018 teken_gfx_t *state = arg; 1019 const teken_pos_t *c; 1020 1021 switch (cmd) { 1022 case TP_SETLOCALCURSOR: 1023 /* 1024 * 0 means normal (usually block), 1 means hidden, and 1025 * 2 means blinking (always block) for compatibility with 1026 * syscons. We don't support any changes except hiding, 1027 * so must map 2 to 0. 1028 */ 1029 value = (value == 1) ? 0 : 1; 1030 /* FALLTHROUGH */ 1031 case TP_SHOWCURSOR: 1032 c = teken_get_cursor(&state->tg_teken); 1033 gfx_fb_cursor_draw(state, c, true); 1034 if (value != 0) 1035 state->tg_cursor_visible = true; 1036 else 1037 state->tg_cursor_visible = false; 1038 break; 1039 default: 1040 /* Not yet implemented */ 1041 break; 1042 } 1043 } 1044 1045 bool 1046 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2) 1047 { 1048 if (px1->c != px2->c) 1049 return (false); 1050 1051 /* Is there image stored? */ 1052 if ((px1->a.ta_format & TF_IMAGE) || 1053 (px2->a.ta_format & TF_IMAGE)) 1054 return (false); 1055 1056 if (px1->a.ta_format != px2->a.ta_format) 1057 return (false); 1058 if (px1->a.ta_fgcolor != px2->a.ta_fgcolor) 1059 return (false); 1060 if (px1->a.ta_bgcolor != px2->a.ta_bgcolor) 1061 return (false); 1062 1063 return (true); 1064 } 1065 1066 static void 1067 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s, 1068 const teken_pos_t *d) 1069 { 1070 uint32_t sx, sy, dx, dy, width, height; 1071 1072 width = state->tg_font.vf_width; 1073 height = state->tg_font.vf_height; 1074 1075 sx = state->tg_origin.tp_col + s->tr_begin.tp_col * width; 1076 sy = state->tg_origin.tp_row + s->tr_begin.tp_row * height; 1077 dx = state->tg_origin.tp_col + d->tp_col * width; 1078 dy = state->tg_origin.tp_row + d->tp_row * height; 1079 1080 width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1); 1081 1082 (void) gfxfb_blt(NULL, GfxFbBltVideoToVideo, sx, sy, dx, dy, 1083 width, height, 0); 1084 } 1085 1086 static void 1087 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d) 1088 { 1089 teken_rect_t sr; 1090 teken_pos_t dp; 1091 unsigned soffset, doffset; 1092 bool mark = false; 1093 int x; 1094 1095 soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col; 1096 doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col; 1097 1098 for (x = 0; x < ncol; x++) { 1099 if (is_same_pixel(&screen_buffer[soffset + x], 1100 &screen_buffer[doffset + x])) { 1101 if (mark) { 1102 gfx_fb_copy_area(state, &sr, &dp); 1103 mark = false; 1104 } 1105 } else { 1106 screen_buffer[doffset + x] = screen_buffer[soffset + x]; 1107 if (mark) { 1108 /* update end point */ 1109 sr.tr_end.tp_col = s->tp_col + x;; 1110 } else { 1111 /* set up new rectangle */ 1112 mark = true; 1113 sr.tr_begin.tp_col = s->tp_col + x; 1114 sr.tr_begin.tp_row = s->tp_row; 1115 sr.tr_end.tp_col = s->tp_col + x; 1116 sr.tr_end.tp_row = s->tp_row; 1117 dp.tp_col = d->tp_col + x; 1118 dp.tp_row = d->tp_row; 1119 } 1120 } 1121 } 1122 if (mark) { 1123 gfx_fb_copy_area(state, &sr, &dp); 1124 } 1125 } 1126 1127 void 1128 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p) 1129 { 1130 teken_gfx_t *state = arg; 1131 unsigned doffset, soffset; 1132 teken_pos_t d, s; 1133 int nrow, ncol, y; /* Has to be signed - >= 0 comparison */ 1134 1135 /* 1136 * Copying is a little tricky. We must make sure we do it in 1137 * correct order, to make sure we don't overwrite our own data. 1138 */ 1139 1140 nrow = r->tr_end.tp_row - r->tr_begin.tp_row; 1141 ncol = r->tr_end.tp_col - r->tr_begin.tp_col; 1142 1143 if (p->tp_row + nrow > state->tg_tp.tp_row || 1144 p->tp_col + ncol > state->tg_tp.tp_col) 1145 return; 1146 1147 soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col; 1148 doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col; 1149 1150 /* remove the cursor */ 1151 if (state->tg_cursor_visible) 1152 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1153 1154 /* 1155 * Copy line by line. 1156 */ 1157 if (doffset <= soffset) { 1158 s = r->tr_begin; 1159 d = *p; 1160 for (y = 0; y < nrow; y++) { 1161 s.tp_row = r->tr_begin.tp_row + y; 1162 d.tp_row = p->tp_row + y; 1163 1164 gfx_fb_copy_line(state, ncol, &s, &d); 1165 } 1166 } else { 1167 for (y = nrow - 1; y >= 0; y--) { 1168 s.tp_row = r->tr_begin.tp_row + y; 1169 d.tp_row = p->tp_row + y; 1170 1171 gfx_fb_copy_line(state, ncol, &s, &d); 1172 } 1173 } 1174 1175 /* display the cursor */ 1176 if (state->tg_cursor_visible) { 1177 const teken_pos_t *c; 1178 1179 c = teken_get_cursor(&state->tg_teken); 1180 gfx_fb_cursor_draw(state, c, true); 1181 } 1182 } 1183 1184 /* 1185 * Implements alpha blending for RGBA data, could use pixels for arguments, 1186 * but byte stream seems more generic. 1187 * The generic alpha blending is: 1188 * blend = alpha * fg + (1.0 - alpha) * bg. 1189 * Since our alpha is not from range [0..1], we scale appropriately. 1190 */ 1191 static uint8_t 1192 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha) 1193 { 1194 uint16_t blend, h, l; 1195 1196 /* trivial corner cases */ 1197 if (alpha == 0) 1198 return (bg); 1199 if (alpha == 0xFF) 1200 return (fg); 1201 blend = (alpha * fg + (0xFF - alpha) * bg); 1202 /* Division by 0xFF */ 1203 h = blend >> 8; 1204 l = blend & 0xFF; 1205 if (h + l >= 0xFF) 1206 h++; 1207 return (h); 1208 } 1209 1210 /* 1211 * Implements alpha blending for RGBA data, could use pixels for arguments, 1212 * but byte stream seems more generic. 1213 * The generic alpha blending is: 1214 * blend = alpha * fg + (1.0 - alpha) * bg. 1215 * Since our alpha is not from range [0..1], we scale appropriately. 1216 */ 1217 static void 1218 bitmap_cpy(void *dst, void *src, uint32_t size) 1219 { 1220 #if defined(EFI) 1221 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd; 1222 #else 1223 struct paletteentry *ps, *pd; 1224 #endif 1225 uint32_t i; 1226 uint8_t a; 1227 1228 ps = src; 1229 pd = dst; 1230 1231 /* 1232 * we only implement alpha blending for depth 32. 1233 */ 1234 for (i = 0; i < size; i ++) { 1235 a = ps[i].Reserved; 1236 pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a); 1237 pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a); 1238 pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a); 1239 pd[i].Reserved = a; 1240 } 1241 } 1242 1243 static void * 1244 allocate_glyphbuffer(uint32_t width, uint32_t height) 1245 { 1246 size_t size; 1247 1248 size = sizeof (*GlyphBuffer) * width * height; 1249 if (size != GlyphBufferSize) { 1250 free(GlyphBuffer); 1251 GlyphBuffer = malloc(size); 1252 if (GlyphBuffer == NULL) 1253 return (NULL); 1254 GlyphBufferSize = size; 1255 } 1256 return (GlyphBuffer); 1257 } 1258 1259 void 1260 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height, 1261 void *data) 1262 { 1263 #if defined(EFI) 1264 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf; 1265 #else 1266 struct paletteentry *buf; 1267 #endif 1268 size_t size; 1269 1270 size = width * height * sizeof(*buf); 1271 1272 /* 1273 * Common data to display is glyph, use preallocated 1274 * glyph buffer. 1275 */ 1276 if (gfx_state.tg_glyph_size != GlyphBufferSize) 1277 (void) allocate_glyphbuffer(width, height); 1278 1279 if (size == GlyphBufferSize) 1280 buf = GlyphBuffer; 1281 else 1282 buf = malloc(size); 1283 if (buf == NULL) 1284 return; 1285 1286 if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1287 width, height, 0) == 0) { 1288 bitmap_cpy(buf, data, width * height); 1289 (void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y, 1290 width, height, 0); 1291 } 1292 if (buf != GlyphBuffer) 1293 free(buf); 1294 } 1295 1296 /* 1297 * Public graphics primitives. 1298 */ 1299 1300 static int 1301 isqrt(int num) 1302 { 1303 int res = 0; 1304 int bit = 1 << 30; 1305 1306 /* "bit" starts at the highest power of four <= the argument. */ 1307 while (bit > num) 1308 bit >>= 2; 1309 1310 while (bit != 0) { 1311 if (num >= res + bit) { 1312 num -= res + bit; 1313 res = (res >> 1) + bit; 1314 } else { 1315 res >>= 1; 1316 } 1317 bit >>= 2; 1318 } 1319 return (res); 1320 } 1321 1322 /* set pixel in framebuffer using gfx coordinates */ 1323 void 1324 gfx_fb_setpixel(uint32_t x, uint32_t y) 1325 { 1326 uint32_t c; 1327 const teken_attr_t *ap; 1328 1329 if (gfx_state.tg_fb_type == FB_TEXT) 1330 return; 1331 1332 ap = teken_get_curattr(&gfx_state.tg_teken); 1333 if (ap->ta_format & TF_REVERSE) { 1334 c = ap->ta_bgcolor; 1335 if (ap->ta_format & TF_BLINK) 1336 c |= TC_LIGHT; 1337 } else { 1338 c = ap->ta_fgcolor; 1339 if (ap->ta_format & TF_BOLD) 1340 c |= TC_LIGHT; 1341 } 1342 1343 c = gfx_fb_color_map(c); 1344 1345 if (x >= gfx_state.tg_fb.fb_width || 1346 y >= gfx_state.tg_fb.fb_height) 1347 return; 1348 1349 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0); 1350 } 1351 1352 /* 1353 * draw rectangle in framebuffer using gfx coordinates. 1354 * The function is borrowed from vt_fb.c 1355 */ 1356 void 1357 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2, 1358 uint32_t fill) 1359 { 1360 uint32_t x, y; 1361 1362 if (gfx_state.tg_fb_type == FB_TEXT) 1363 return; 1364 1365 for (y = y1; y <= y2; y++) { 1366 if (fill || (y == y1) || (y == y2)) { 1367 for (x = x1; x <= x2; x++) 1368 gfx_fb_setpixel(x, y); 1369 } else { 1370 gfx_fb_setpixel(x1, y); 1371 gfx_fb_setpixel(x2, y); 1372 } 1373 } 1374 } 1375 1376 void 1377 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd) 1378 { 1379 int dx, sx, dy, sy; 1380 int err, e2, x2, y2, ed, width; 1381 1382 if (gfx_state.tg_fb_type == FB_TEXT) 1383 return; 1384 1385 width = wd; 1386 sx = x0 < x1? 1 : -1; 1387 sy = y0 < y1? 1 : -1; 1388 dx = x1 > x0? x1 - x0 : x0 - x1; 1389 dy = y1 > y0? y1 - y0 : y0 - y1; 1390 err = dx + dy; 1391 ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy); 1392 1393 for (;;) { 1394 gfx_fb_setpixel(x0, y0); 1395 e2 = err; 1396 x2 = x0; 1397 if ((e2 << 1) >= -dx) { /* x step */ 1398 e2 += dy; 1399 y2 = y0; 1400 while (e2 < ed * width && 1401 (y1 != (uint32_t)y2 || dx > dy)) { 1402 y2 += sy; 1403 gfx_fb_setpixel(x0, y2); 1404 e2 += dx; 1405 } 1406 if (x0 == x1) 1407 break; 1408 e2 = err; 1409 err -= dy; 1410 x0 += sx; 1411 } 1412 if ((e2 << 1) <= dy) { /* y step */ 1413 e2 = dx-e2; 1414 while (e2 < ed * width && 1415 (x1 != (uint32_t)x2 || dx < dy)) { 1416 x2 += sx; 1417 gfx_fb_setpixel(x2, y0); 1418 e2 += dy; 1419 } 1420 if (y0 == y1) 1421 break; 1422 err += dx; 1423 y0 += sy; 1424 } 1425 } 1426 } 1427 1428 /* 1429 * quadratic Bézier curve limited to gradients without sign change. 1430 */ 1431 void 1432 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2, 1433 uint32_t y2, uint32_t wd) 1434 { 1435 int sx, sy, xx, yy, xy, width; 1436 int dx, dy, err, curvature; 1437 int i; 1438 1439 if (gfx_state.tg_fb_type == FB_TEXT) 1440 return; 1441 1442 width = wd; 1443 sx = x2 - x1; 1444 sy = y2 - y1; 1445 xx = x0 - x1; 1446 yy = y0 - y1; 1447 curvature = xx*sy - yy*sx; 1448 1449 if (sx*sx + sy*sy > xx*xx+yy*yy) { 1450 x2 = x0; 1451 x0 = sx + x1; 1452 y2 = y0; 1453 y0 = sy + y1; 1454 curvature = -curvature; 1455 } 1456 if (curvature != 0) { 1457 xx += sx; 1458 sx = x0 < x2? 1 : -1; 1459 xx *= sx; 1460 yy += sy; 1461 sy = y0 < y2? 1 : -1; 1462 yy *= sy; 1463 xy = (xx*yy) << 1; 1464 xx *= xx; 1465 yy *= yy; 1466 if (curvature * sx * sy < 0) { 1467 xx = -xx; 1468 yy = -yy; 1469 xy = -xy; 1470 curvature = -curvature; 1471 } 1472 dx = 4 * sy * curvature * (x1 - x0) + xx - xy; 1473 dy = 4 * sx * curvature * (y0 - y1) + yy - xy; 1474 xx += xx; 1475 yy += yy; 1476 err = dx + dy + xy; 1477 do { 1478 for (i = 0; i <= width; i++) 1479 gfx_fb_setpixel(x0 + i, y0); 1480 if (x0 == x2 && y0 == y2) 1481 return; /* last pixel -> curve finished */ 1482 y1 = 2 * err < dx; 1483 if (2 * err > dy) { 1484 x0 += sx; 1485 dx -= xy; 1486 dy += yy; 1487 err += dy; 1488 } 1489 if (y1 != 0) { 1490 y0 += sy; 1491 dy -= xy; 1492 dx += xx; 1493 err += dx; 1494 } 1495 } while (dy < dx); /* gradient negates -> algorithm fails */ 1496 } 1497 gfx_fb_line(x0, y0, x2, y2, width); 1498 } 1499 1500 /* 1501 * draw rectangle using terminal coordinates and current foreground color. 1502 */ 1503 void 1504 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2) 1505 { 1506 int x1, y1, x2, y2; 1507 int xshift, yshift; 1508 int width, i; 1509 uint32_t vf_width, vf_height; 1510 teken_rect_t r; 1511 1512 if (gfx_state.tg_fb_type == FB_TEXT) 1513 return; 1514 1515 vf_width = gfx_state.tg_font.vf_width; 1516 vf_height = gfx_state.tg_font.vf_height; 1517 width = vf_width / 4; /* line width */ 1518 xshift = (vf_width - width) / 2; 1519 yshift = (vf_height - width) / 2; 1520 1521 /* Shift coordinates */ 1522 if (ux1 != 0) 1523 ux1--; 1524 if (uy1 != 0) 1525 uy1--; 1526 ux2--; 1527 uy2--; 1528 1529 /* mark area used in terminal */ 1530 r.tr_begin.tp_col = ux1; 1531 r.tr_begin.tp_row = uy1; 1532 r.tr_end.tp_col = ux2 + 1; 1533 r.tr_end.tp_row = uy2 + 1; 1534 1535 term_image_display(&gfx_state, &r); 1536 1537 /* 1538 * Draw horizontal lines width points thick, shifted from outer edge. 1539 */ 1540 x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col; 1541 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1542 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1543 gfx_fb_drawrect(x1, y1, x2, y1 + width, 1); 1544 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1545 y2 += vf_height - yshift - width; 1546 gfx_fb_drawrect(x1, y2, x2, y2 + width, 1); 1547 1548 /* 1549 * Draw vertical lines width points thick, shifted from outer edge. 1550 */ 1551 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1552 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1553 y1 += vf_height; 1554 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1555 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1556 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1557 x1 += vf_width - xshift - width; 1558 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1559 1560 /* Draw upper left corner. */ 1561 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1562 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1563 y1 += vf_height; 1564 1565 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1566 x2 += vf_width; 1567 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1568 for (i = 0; i <= width; i++) 1569 gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i); 1570 1571 /* Draw lower left corner. */ 1572 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1573 x1 += vf_width; 1574 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1575 y1 += vf_height - yshift; 1576 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1577 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1578 for (i = 0; i <= width; i++) 1579 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1580 1581 /* Draw upper right corner. */ 1582 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1583 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1584 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1585 x2 += vf_width - xshift - width; 1586 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1587 y2 += vf_height; 1588 for (i = 0; i <= width; i++) 1589 gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i); 1590 1591 /* Draw lower right corner. */ 1592 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1593 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1594 y1 += vf_height - yshift; 1595 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1596 x2 += vf_width - xshift - width; 1597 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1598 for (i = 0; i <= width; i++) 1599 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1600 } 1601 1602 int 1603 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2, 1604 uint32_t uy2, uint32_t flags) 1605 { 1606 #if defined(EFI) 1607 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 1608 #else 1609 struct paletteentry *p; 1610 #endif 1611 uint8_t *data; 1612 uint32_t i, j, x, y, fheight, fwidth; 1613 int rs, gs, bs; 1614 uint8_t r, g, b, a; 1615 bool scale = false; 1616 bool trace = false; 1617 teken_rect_t rect; 1618 1619 trace = (flags & FL_PUTIMAGE_DEBUG) != 0; 1620 1621 if (gfx_state.tg_fb_type == FB_TEXT) { 1622 if (trace) 1623 printf("Framebuffer not active.\n"); 1624 return (1); 1625 } 1626 1627 if (png->color_type != PNG_TRUECOLOR_ALPHA) { 1628 if (trace) 1629 printf("Not truecolor image.\n"); 1630 return (1); 1631 } 1632 1633 if (ux1 > gfx_state.tg_fb.fb_width || 1634 uy1 > gfx_state.tg_fb.fb_height) { 1635 if (trace) 1636 printf("Top left coordinate off screen.\n"); 1637 return (1); 1638 } 1639 1640 if (png->width > UINT16_MAX || png->height > UINT16_MAX) { 1641 if (trace) 1642 printf("Image too large.\n"); 1643 return (1); 1644 } 1645 1646 if (png->width < 1 || png->height < 1) { 1647 if (trace) 1648 printf("Image too small.\n"); 1649 return (1); 1650 } 1651 1652 /* 1653 * If 0 was passed for either ux2 or uy2, then calculate the missing 1654 * part of the bottom right coordinate. 1655 */ 1656 scale = true; 1657 if (ux2 == 0 && uy2 == 0) { 1658 /* Both 0, use the native resolution of the image */ 1659 ux2 = ux1 + png->width; 1660 uy2 = uy1 + png->height; 1661 scale = false; 1662 } else if (ux2 == 0) { 1663 /* Set ux2 from uy2/uy1 to maintain aspect ratio */ 1664 ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height; 1665 } else if (uy2 == 0) { 1666 /* Set uy2 from ux2/ux1 to maintain aspect ratio */ 1667 uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width; 1668 } 1669 1670 if (ux2 > gfx_state.tg_fb.fb_width || 1671 uy2 > gfx_state.tg_fb.fb_height) { 1672 if (trace) 1673 printf("Bottom right coordinate off screen.\n"); 1674 return (1); 1675 } 1676 1677 fwidth = ux2 - ux1; 1678 fheight = uy2 - uy1; 1679 1680 /* 1681 * If the original image dimensions have been passed explicitly, 1682 * disable scaling. 1683 */ 1684 if (fwidth == png->width && fheight == png->height) 1685 scale = false; 1686 1687 if (ux1 == 0) { 1688 /* 1689 * No top left X co-ordinate (real coordinates start at 1), 1690 * place as far right as it will fit. 1691 */ 1692 ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col; 1693 ux1 = ux2 - fwidth; 1694 } 1695 1696 if (uy1 == 0) { 1697 /* 1698 * No top left Y co-ordinate (real coordinates start at 1), 1699 * place as far down as it will fit. 1700 */ 1701 uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row; 1702 uy1 = uy2 - fheight; 1703 } 1704 1705 if (ux1 >= ux2 || uy1 >= uy2) { 1706 if (trace) 1707 printf("Image dimensions reversed.\n"); 1708 return (1); 1709 } 1710 1711 if (fwidth < 2 || fheight < 2) { 1712 if (trace) 1713 printf("Target area too small\n"); 1714 return (1); 1715 } 1716 1717 if (trace) 1718 printf("Image %ux%u -> %ux%u @%ux%u\n", 1719 png->width, png->height, fwidth, fheight, ux1, uy1); 1720 1721 rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width; 1722 rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height; 1723 rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width; 1724 rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height; 1725 1726 /* 1727 * mark area used in terminal 1728 */ 1729 if (!(flags & FL_PUTIMAGE_NOSCROLL)) 1730 term_image_display(&gfx_state, &rect); 1731 1732 if ((flags & FL_PUTIMAGE_BORDER)) 1733 gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0); 1734 1735 data = malloc(fwidth * fheight * sizeof(*p)); 1736 p = (void *)data; 1737 if (data == NULL) { 1738 if (trace) 1739 printf("Out of memory.\n"); 1740 return (1); 1741 } 1742 1743 /* 1744 * Build image for our framebuffer. 1745 */ 1746 1747 /* Helper to calculate the pixel index from the source png */ 1748 #define GETPIXEL(xx, yy) (((yy) * png->width + (xx)) * png->bpp) 1749 1750 /* 1751 * For each of the x and y directions, calculate the number of pixels 1752 * in the source image that correspond to a single pixel in the target. 1753 * Use fixed-point arithmetic with 16-bits for each of the integer and 1754 * fractional parts. 1755 */ 1756 const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1); 1757 const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1); 1758 1759 rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) - 1760 ffs(gfx_state.tg_fb.fb_mask_red) + 1); 1761 gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) - 1762 ffs(gfx_state.tg_fb.fb_mask_green) + 1); 1763 bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) - 1764 ffs(gfx_state.tg_fb.fb_mask_blue) + 1); 1765 1766 uint32_t hc = 0; 1767 for (y = 0; y < fheight; y++) { 1768 uint32_t hc2 = (hc >> 9) & 0x7f; 1769 uint32_t hc1 = 0x80 - hc2; 1770 1771 uint32_t offset_y = hc >> 16; 1772 uint32_t offset_y1 = offset_y + 1; 1773 1774 uint32_t wc = 0; 1775 for (x = 0; x < fwidth; x++) { 1776 uint32_t wc2 = (wc >> 9) & 0x7f; 1777 uint32_t wc1 = 0x80 - wc2; 1778 1779 uint32_t offset_x = wc >> 16; 1780 uint32_t offset_x1 = offset_x + 1; 1781 1782 /* Target pixel index */ 1783 j = y * fwidth + x; 1784 1785 if (!scale) { 1786 i = GETPIXEL(x, y); 1787 r = png->image[i]; 1788 g = png->image[i + 1]; 1789 b = png->image[i + 2]; 1790 a = png->image[i + 3]; 1791 } else { 1792 uint8_t pixel[4]; 1793 1794 uint32_t p00 = GETPIXEL(offset_x, offset_y); 1795 uint32_t p01 = GETPIXEL(offset_x, offset_y1); 1796 uint32_t p10 = GETPIXEL(offset_x1, offset_y); 1797 uint32_t p11 = GETPIXEL(offset_x1, offset_y1); 1798 1799 /* 1800 * Given a 2x2 array of pixels in the source 1801 * image, combine them to produce a single 1802 * value for the pixel in the target image. 1803 * Each column of pixels is combined using 1804 * a weighted average where the top and bottom 1805 * pixels contribute hc1 and hc2 respectively. 1806 * The calculation for bottom pixel pB and 1807 * top pixel pT is: 1808 * (pT * hc1 + pB * hc2) / (hc1 + hc2) 1809 * Once the values are determined for the two 1810 * columns of pixels, then the columns are 1811 * averaged together in the same way but using 1812 * wc1 and wc2 for the weightings. 1813 * 1814 * Since hc1 and hc2 are chosen so that 1815 * hc1 + hc2 == 128 (and same for wc1 + wc2), 1816 * the >> 14 below is a quick way to divide by 1817 * (hc1 + hc2) * (wc1 + wc2) 1818 */ 1819 for (i = 0; i < 4; i++) 1820 pixel[i] = ( 1821 (png->image[p00 + i] * hc1 + 1822 png->image[p01 + i] * hc2) * wc1 + 1823 (png->image[p10 + i] * hc1 + 1824 png->image[p11 + i] * hc2) * wc2) 1825 >> 14; 1826 1827 r = pixel[0]; 1828 g = pixel[1]; 1829 b = pixel[2]; 1830 a = pixel[3]; 1831 } 1832 1833 if (trace) 1834 printf("r/g/b: %x/%x/%x\n", r, g, b); 1835 /* 1836 * Rough colorspace reduction for 15/16 bit colors. 1837 */ 1838 p[j].Red = r >> rs; 1839 p[j].Green = g >> gs; 1840 p[j].Blue = b >> bs; 1841 p[j].Reserved = a; 1842 1843 wc += wcstep; 1844 } 1845 hc += hcstep; 1846 } 1847 1848 gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data); 1849 free(data); 1850 return (0); 1851 } 1852 1853 /* 1854 * Reset font flags to FONT_AUTO. 1855 */ 1856 void 1857 reset_font_flags(void) 1858 { 1859 struct fontlist *fl; 1860 1861 STAILQ_FOREACH(fl, &fonts, font_next) { 1862 fl->font_flags = FONT_AUTO; 1863 } 1864 } 1865 1866 /* Return w^2 + h^2 or 0, if the dimensions are unknown */ 1867 static unsigned 1868 edid_diagonal_squared(void) 1869 { 1870 unsigned w, h; 1871 1872 if (edid_info == NULL) 1873 return (0); 1874 1875 w = edid_info->display.max_horizontal_image_size; 1876 h = edid_info->display.max_vertical_image_size; 1877 1878 /* If either one is 0, we have aspect ratio, not size */ 1879 if (w == 0 || h == 0) 1880 return (0); 1881 1882 /* 1883 * some monitors encode the aspect ratio instead of the physical size. 1884 */ 1885 if ((w == 16 && h == 9) || (w == 16 && h == 10) || 1886 (w == 4 && h == 3) || (w == 5 && h == 4)) 1887 return (0); 1888 1889 /* 1890 * translate cm to inch, note we scale by 100 here. 1891 */ 1892 w = w * 100 / 254; 1893 h = h * 100 / 254; 1894 1895 /* Return w^2 + h^2 */ 1896 return (w * w + h * h); 1897 } 1898 1899 /* 1900 * calculate pixels per inch. 1901 */ 1902 static unsigned 1903 gfx_get_ppi(void) 1904 { 1905 unsigned dp, di; 1906 1907 di = edid_diagonal_squared(); 1908 if (di == 0) 1909 return (0); 1910 1911 dp = gfx_state.tg_fb.fb_width * 1912 gfx_state.tg_fb.fb_width + 1913 gfx_state.tg_fb.fb_height * 1914 gfx_state.tg_fb.fb_height; 1915 1916 return (isqrt(dp / di)); 1917 } 1918 1919 /* 1920 * Calculate font size from density independent pixels (dp): 1921 * ((16dp * ppi) / 160) * display_factor. 1922 * Here we are using fixed constants: 1dp == 160 ppi and 1923 * display_factor 2. 1924 * 1925 * We are rounding font size up and are searching for font which is 1926 * not smaller than calculated size value. 1927 */ 1928 static vt_font_bitmap_data_t * 1929 gfx_get_font(void) 1930 { 1931 unsigned ppi, size; 1932 vt_font_bitmap_data_t *font = NULL; 1933 struct fontlist *fl, *next; 1934 1935 /* Text mode is not supported here. */ 1936 if (gfx_state.tg_fb_type == FB_TEXT) 1937 return (NULL); 1938 1939 ppi = gfx_get_ppi(); 1940 if (ppi == 0) 1941 return (NULL); 1942 1943 /* 1944 * We will search for 16dp font. 1945 * We are using scale up by 10 for roundup. 1946 */ 1947 size = (16 * ppi * 10) / 160; 1948 /* Apply display factor 2. */ 1949 size = roundup(size * 2, 10) / 10; 1950 1951 STAILQ_FOREACH(fl, &fonts, font_next) { 1952 next = STAILQ_NEXT(fl, font_next); 1953 1954 /* 1955 * If this is last font or, if next font is smaller, 1956 * we have our font. Make sure, it actually is loaded. 1957 */ 1958 if (next == NULL || next->font_data->vfbd_height < size) { 1959 font = fl->font_data; 1960 if (font->vfbd_font == NULL || 1961 fl->font_flags == FONT_RELOAD) { 1962 if (fl->font_load != NULL && 1963 fl->font_name != NULL) 1964 font = fl->font_load(fl->font_name); 1965 } 1966 break; 1967 } 1968 } 1969 1970 return (font); 1971 } 1972 1973 static vt_font_bitmap_data_t * 1974 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w) 1975 { 1976 vt_font_bitmap_data_t *font = NULL; 1977 struct fontlist *fl; 1978 unsigned height = h; 1979 unsigned width = w; 1980 1981 /* 1982 * First check for manually loaded font. 1983 */ 1984 STAILQ_FOREACH(fl, &fonts, font_next) { 1985 if (fl->font_flags == FONT_MANUAL) { 1986 font = fl->font_data; 1987 if (font->vfbd_font == NULL && fl->font_load != NULL && 1988 fl->font_name != NULL) { 1989 font = fl->font_load(fl->font_name); 1990 } 1991 if (font == NULL || font->vfbd_font == NULL) 1992 font = NULL; 1993 break; 1994 } 1995 } 1996 1997 if (font == NULL) 1998 font = gfx_get_font(); 1999 2000 if (font != NULL) { 2001 *rows = height / font->vfbd_height; 2002 *cols = width / font->vfbd_width; 2003 return (font); 2004 } 2005 2006 /* 2007 * Find best font for these dimensions, or use default. 2008 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH, 2009 * do not use smaller font than our DEFAULT_FONT_DATA. 2010 */ 2011 STAILQ_FOREACH(fl, &fonts, font_next) { 2012 font = fl->font_data; 2013 if ((*rows * font->vfbd_height <= height && 2014 *cols * font->vfbd_width <= width) || 2015 (height >= VT_FB_MAX_HEIGHT && 2016 width >= VT_FB_MAX_WIDTH && 2017 font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height && 2018 font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) { 2019 if (font->vfbd_font == NULL || 2020 fl->font_flags == FONT_RELOAD) { 2021 if (fl->font_load != NULL && 2022 fl->font_name != NULL) { 2023 font = fl->font_load(fl->font_name); 2024 } 2025 if (font == NULL) 2026 continue; 2027 } 2028 *rows = height / font->vfbd_height; 2029 *cols = width / font->vfbd_width; 2030 break; 2031 } 2032 font = NULL; 2033 } 2034 2035 if (font == NULL) { 2036 /* 2037 * We have fonts sorted smallest last, try it before 2038 * falling back to builtin. 2039 */ 2040 fl = STAILQ_LAST(&fonts, fontlist, font_next); 2041 if (fl != NULL && fl->font_load != NULL && 2042 fl->font_name != NULL) { 2043 font = fl->font_load(fl->font_name); 2044 } 2045 if (font == NULL) 2046 font = &DEFAULT_FONT_DATA; 2047 2048 *rows = height / font->vfbd_height; 2049 *cols = width / font->vfbd_width; 2050 } 2051 2052 return (font); 2053 } 2054 2055 static void 2056 cons_clear(void) 2057 { 2058 char clear[] = { '\033', 'c' }; 2059 2060 /* Reset terminal */ 2061 teken_input(&gfx_state.tg_teken, clear, sizeof(clear)); 2062 gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0); 2063 } 2064 2065 void 2066 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width) 2067 { 2068 vt_font_bitmap_data_t *font_data; 2069 teken_pos_t *tp = &state->tg_tp; 2070 char env[8]; 2071 int i; 2072 2073 /* 2074 * set_font() will select a appropriate sized font for 2075 * the number of rows and columns selected. If we don't 2076 * have a font that will fit, then it will use the 2077 * default builtin font and adjust the rows and columns 2078 * to fit on the screen. 2079 */ 2080 font_data = set_font(&tp->tp_row, &tp->tp_col, height, width); 2081 2082 if (font_data == NULL) 2083 panic("out of memory"); 2084 2085 for (i = 0; i < VFNT_MAPS; i++) { 2086 state->tg_font.vf_map[i] = 2087 font_data->vfbd_font->vf_map[i]; 2088 state->tg_font.vf_map_count[i] = 2089 font_data->vfbd_font->vf_map_count[i]; 2090 } 2091 2092 state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes; 2093 state->tg_font.vf_height = font_data->vfbd_font->vf_height; 2094 state->tg_font.vf_width = font_data->vfbd_font->vf_width; 2095 2096 snprintf(env, sizeof (env), "%ux%u", 2097 state->tg_font.vf_width, state->tg_font.vf_height); 2098 env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK, 2099 env, font_set, env_nounset); 2100 } 2101 2102 /* Binary search for the glyph. Return 0 if not found. */ 2103 static uint16_t 2104 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src) 2105 { 2106 unsigned min, mid, max; 2107 2108 min = 0; 2109 max = len - 1; 2110 2111 /* Empty font map. */ 2112 if (len == 0) 2113 return (0); 2114 /* Character below minimal entry. */ 2115 if (src < map[0].vfm_src) 2116 return (0); 2117 /* Optimization: ASCII characters occur very often. */ 2118 if (src <= map[0].vfm_src + map[0].vfm_len) 2119 return (src - map[0].vfm_src + map[0].vfm_dst); 2120 /* Character above maximum entry. */ 2121 if (src > map[max].vfm_src + map[max].vfm_len) 2122 return (0); 2123 2124 /* Binary search. */ 2125 while (max >= min) { 2126 mid = (min + max) / 2; 2127 if (src < map[mid].vfm_src) 2128 max = mid - 1; 2129 else if (src > map[mid].vfm_src + map[mid].vfm_len) 2130 min = mid + 1; 2131 else 2132 return (src - map[mid].vfm_src + map[mid].vfm_dst); 2133 } 2134 2135 return (0); 2136 } 2137 2138 /* 2139 * Return glyph bitmap. If glyph is not found, we will return bitmap 2140 * for the first (offset 0) glyph. 2141 */ 2142 uint8_t * 2143 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a) 2144 { 2145 uint16_t dst; 2146 size_t stride; 2147 2148 /* Substitute bold with normal if not found. */ 2149 if (a->ta_format & TF_BOLD) { 2150 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 2151 vf->vf_map_count[VFNT_MAP_BOLD], c); 2152 if (dst != 0) 2153 goto found; 2154 } 2155 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 2156 vf->vf_map_count[VFNT_MAP_NORMAL], c); 2157 2158 found: 2159 stride = howmany(vf->vf_width, 8) * vf->vf_height; 2160 return (&vf->vf_bytes[dst * stride]); 2161 } 2162 2163 static int 2164 load_mapping(int fd, struct vt_font *fp, int n) 2165 { 2166 size_t i, size; 2167 ssize_t rv; 2168 vfnt_map_t *mp; 2169 2170 if (fp->vf_map_count[n] == 0) 2171 return (0); 2172 2173 size = fp->vf_map_count[n] * sizeof(*mp); 2174 mp = malloc(size); 2175 if (mp == NULL) 2176 return (ENOMEM); 2177 fp->vf_map[n] = mp; 2178 2179 rv = read(fd, mp, size); 2180 if (rv < 0 || (size_t)rv != size) { 2181 free(fp->vf_map[n]); 2182 fp->vf_map[n] = NULL; 2183 return (EIO); 2184 } 2185 2186 for (i = 0; i < fp->vf_map_count[n]; i++) { 2187 mp[i].vfm_src = be32toh(mp[i].vfm_src); 2188 mp[i].vfm_dst = be16toh(mp[i].vfm_dst); 2189 mp[i].vfm_len = be16toh(mp[i].vfm_len); 2190 } 2191 return (0); 2192 } 2193 2194 static int 2195 builtin_mapping(struct vt_font *fp, int n) 2196 { 2197 size_t size; 2198 struct vfnt_map *mp; 2199 2200 if (n >= VFNT_MAPS) 2201 return (EINVAL); 2202 2203 if (fp->vf_map_count[n] == 0) 2204 return (0); 2205 2206 size = fp->vf_map_count[n] * sizeof(*mp); 2207 mp = malloc(size); 2208 if (mp == NULL) 2209 return (ENOMEM); 2210 fp->vf_map[n] = mp; 2211 2212 memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size); 2213 return (0); 2214 } 2215 2216 /* 2217 * Load font from builtin or from file. 2218 * We do need special case for builtin because the builtin font glyphs 2219 * are compressed and we do need to uncompress them. 2220 * Having single load_font() for both cases will help us to simplify 2221 * font switch handling. 2222 */ 2223 static vt_font_bitmap_data_t * 2224 load_font(char *path) 2225 { 2226 int fd, i; 2227 uint32_t glyphs; 2228 struct font_header fh; 2229 struct fontlist *fl; 2230 vt_font_bitmap_data_t *bp; 2231 struct vt_font *fp; 2232 size_t size; 2233 ssize_t rv; 2234 2235 /* Get our entry from the font list. */ 2236 STAILQ_FOREACH(fl, &fonts, font_next) { 2237 if (strcmp(fl->font_name, path) == 0) 2238 break; 2239 } 2240 if (fl == NULL) 2241 return (NULL); /* Should not happen. */ 2242 2243 bp = fl->font_data; 2244 if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD) 2245 return (bp); 2246 2247 fd = -1; 2248 /* 2249 * Special case for builtin font. 2250 * Builtin font is the very first font we load, we do not have 2251 * previous loads to be released. 2252 */ 2253 if (fl->font_flags == FONT_BUILTIN) { 2254 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) 2255 return (NULL); 2256 2257 fp->vf_width = DEFAULT_FONT_DATA.vfbd_width; 2258 fp->vf_height = DEFAULT_FONT_DATA.vfbd_height; 2259 2260 fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size); 2261 if (fp->vf_bytes == NULL) { 2262 free(fp); 2263 return (NULL); 2264 } 2265 2266 bp->vfbd_uncompressed_size = 2267 DEFAULT_FONT_DATA.vfbd_uncompressed_size; 2268 bp->vfbd_compressed_size = 2269 DEFAULT_FONT_DATA.vfbd_compressed_size; 2270 2271 if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data, 2272 fp->vf_bytes, 2273 DEFAULT_FONT_DATA.vfbd_compressed_size, 2274 DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) { 2275 free(fp->vf_bytes); 2276 free(fp); 2277 return (NULL); 2278 } 2279 2280 for (i = 0; i < VFNT_MAPS; i++) { 2281 fp->vf_map_count[i] = 2282 DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i]; 2283 if (builtin_mapping(fp, i) != 0) 2284 goto free_done; 2285 } 2286 2287 bp->vfbd_font = fp; 2288 return (bp); 2289 } 2290 2291 fd = open(path, O_RDONLY); 2292 if (fd < 0) 2293 return (NULL); 2294 2295 size = sizeof(fh); 2296 rv = read(fd, &fh, size); 2297 if (rv < 0 || (size_t)rv != size) { 2298 bp = NULL; 2299 goto done; 2300 } 2301 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) { 2302 bp = NULL; 2303 goto done; 2304 } 2305 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) { 2306 bp = NULL; 2307 goto done; 2308 } 2309 for (i = 0; i < VFNT_MAPS; i++) 2310 fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]); 2311 2312 glyphs = be32toh(fh.fh_glyph_count); 2313 fp->vf_width = fh.fh_width; 2314 fp->vf_height = fh.fh_height; 2315 2316 size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs; 2317 bp->vfbd_uncompressed_size = size; 2318 if ((fp->vf_bytes = malloc(size)) == NULL) 2319 goto free_done; 2320 2321 rv = read(fd, fp->vf_bytes, size); 2322 if (rv < 0 || (size_t)rv != size) 2323 goto free_done; 2324 for (i = 0; i < VFNT_MAPS; i++) { 2325 if (load_mapping(fd, fp, i) != 0) 2326 goto free_done; 2327 } 2328 2329 /* 2330 * Reset builtin flag now as we have full font loaded. 2331 */ 2332 if (fl->font_flags == FONT_BUILTIN) 2333 fl->font_flags = FONT_AUTO; 2334 2335 /* 2336 * Release previously loaded entries. We can do this now, as 2337 * the new font is loaded. Note, there can be no console 2338 * output till the new font is in place and teken is notified. 2339 * We do need to keep fl->font_data for glyph dimensions. 2340 */ 2341 STAILQ_FOREACH(fl, &fonts, font_next) { 2342 if (fl->font_data->vfbd_font == NULL) 2343 continue; 2344 2345 for (i = 0; i < VFNT_MAPS; i++) 2346 free(fl->font_data->vfbd_font->vf_map[i]); 2347 free(fl->font_data->vfbd_font->vf_bytes); 2348 free(fl->font_data->vfbd_font); 2349 fl->font_data->vfbd_font = NULL; 2350 } 2351 2352 bp->vfbd_font = fp; 2353 bp->vfbd_compressed_size = 0; 2354 2355 done: 2356 if (fd != -1) 2357 close(fd); 2358 return (bp); 2359 2360 free_done: 2361 for (i = 0; i < VFNT_MAPS; i++) 2362 free(fp->vf_map[i]); 2363 free(fp->vf_bytes); 2364 free(fp); 2365 bp = NULL; 2366 goto done; 2367 } 2368 2369 struct name_entry { 2370 char *n_name; 2371 SLIST_ENTRY(name_entry) n_entry; 2372 }; 2373 2374 SLIST_HEAD(name_list, name_entry); 2375 2376 /* Read font names from index file. */ 2377 static struct name_list * 2378 read_list(char *fonts) 2379 { 2380 struct name_list *nl; 2381 struct name_entry *np; 2382 char *dir, *ptr; 2383 char buf[PATH_MAX]; 2384 int fd, len; 2385 2386 dir = strdup(fonts); 2387 if (dir == NULL) 2388 return (NULL); 2389 2390 ptr = strrchr(dir, '/'); 2391 *ptr = '\0'; 2392 2393 fd = open(fonts, O_RDONLY); 2394 if (fd < 0) 2395 return (NULL); 2396 2397 nl = malloc(sizeof(*nl)); 2398 if (nl == NULL) { 2399 close(fd); 2400 return (nl); 2401 } 2402 2403 SLIST_INIT(nl); 2404 while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) { 2405 if (*buf == '#' || *buf == '\0') 2406 continue; 2407 2408 if (bcmp(buf, "MENU", 4) == 0) 2409 continue; 2410 2411 if (bcmp(buf, "FONT", 4) == 0) 2412 continue; 2413 2414 ptr = strchr(buf, ':'); 2415 if (ptr == NULL) 2416 continue; 2417 else 2418 *ptr = '\0'; 2419 2420 np = malloc(sizeof(*np)); 2421 if (np == NULL) { 2422 close(fd); 2423 return (nl); /* return what we have */ 2424 } 2425 if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) { 2426 free(np); 2427 close(fd); 2428 return (nl); /* return what we have */ 2429 } 2430 SLIST_INSERT_HEAD(nl, np, n_entry); 2431 } 2432 close(fd); 2433 return (nl); 2434 } 2435 2436 /* 2437 * Read the font properties and insert new entry into the list. 2438 * The font list is built in descending order. 2439 */ 2440 static bool 2441 insert_font(char *name, FONT_FLAGS flags) 2442 { 2443 struct font_header fh; 2444 struct fontlist *fp, *previous, *entry, *next; 2445 size_t size; 2446 ssize_t rv; 2447 int fd; 2448 char *font_name; 2449 2450 font_name = NULL; 2451 if (flags == FONT_BUILTIN) { 2452 /* 2453 * We only install builtin font once, while setting up 2454 * initial console. Since this will happen very early, 2455 * we assume asprintf will not fail. Once we have access to 2456 * files, the builtin font will be replaced by font loaded 2457 * from file. 2458 */ 2459 if (!STAILQ_EMPTY(&fonts)) 2460 return (false); 2461 2462 fh.fh_width = DEFAULT_FONT_DATA.vfbd_width; 2463 fh.fh_height = DEFAULT_FONT_DATA.vfbd_height; 2464 2465 (void) asprintf(&font_name, "%dx%d", 2466 DEFAULT_FONT_DATA.vfbd_width, 2467 DEFAULT_FONT_DATA.vfbd_height); 2468 } else { 2469 fd = open(name, O_RDONLY); 2470 if (fd < 0) 2471 return (false); 2472 rv = read(fd, &fh, sizeof(fh)); 2473 close(fd); 2474 if (rv < 0 || (size_t)rv != sizeof(fh)) 2475 return (false); 2476 2477 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, 2478 sizeof(fh.fh_magic)) != 0) 2479 return (false); 2480 font_name = strdup(name); 2481 } 2482 2483 if (font_name == NULL) 2484 return (false); 2485 2486 /* 2487 * If we have an entry with the same glyph dimensions, replace 2488 * the file name and mark us. We only support unique dimensions. 2489 */ 2490 STAILQ_FOREACH(entry, &fonts, font_next) { 2491 if (fh.fh_width == entry->font_data->vfbd_width && 2492 fh.fh_height == entry->font_data->vfbd_height) { 2493 free(entry->font_name); 2494 entry->font_name = font_name; 2495 entry->font_flags = FONT_RELOAD; 2496 return (true); 2497 } 2498 } 2499 2500 fp = calloc(sizeof(*fp), 1); 2501 if (fp == NULL) { 2502 free(font_name); 2503 return (false); 2504 } 2505 fp->font_data = calloc(sizeof(*fp->font_data), 1); 2506 if (fp->font_data == NULL) { 2507 free(font_name); 2508 free(fp); 2509 return (false); 2510 } 2511 fp->font_name = font_name; 2512 fp->font_flags = flags; 2513 fp->font_load = load_font; 2514 fp->font_data->vfbd_width = fh.fh_width; 2515 fp->font_data->vfbd_height = fh.fh_height; 2516 2517 if (STAILQ_EMPTY(&fonts)) { 2518 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2519 return (true); 2520 } 2521 2522 previous = NULL; 2523 size = fp->font_data->vfbd_width * fp->font_data->vfbd_height; 2524 2525 STAILQ_FOREACH(entry, &fonts, font_next) { 2526 vt_font_bitmap_data_t *bd; 2527 2528 bd = entry->font_data; 2529 /* Should fp be inserted before the entry? */ 2530 if (size > bd->vfbd_width * bd->vfbd_height) { 2531 if (previous == NULL) { 2532 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2533 } else { 2534 STAILQ_INSERT_AFTER(&fonts, previous, fp, 2535 font_next); 2536 } 2537 return (true); 2538 } 2539 next = STAILQ_NEXT(entry, font_next); 2540 if (next == NULL || 2541 size > next->font_data->vfbd_width * 2542 next->font_data->vfbd_height) { 2543 STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next); 2544 return (true); 2545 } 2546 previous = entry; 2547 } 2548 return (true); 2549 } 2550 2551 static int 2552 font_set(struct env_var *ev __unused, int flags __unused, const void *value) 2553 { 2554 struct fontlist *fl; 2555 char *eptr; 2556 unsigned long x = 0, y = 0; 2557 2558 /* 2559 * Attempt to extract values from "XxY" string. In case of error, 2560 * we have unmaching glyph dimensions and will just output the 2561 * available values. 2562 */ 2563 if (value != NULL) { 2564 x = strtoul(value, &eptr, 10); 2565 if (*eptr == 'x') 2566 y = strtoul(eptr + 1, &eptr, 10); 2567 } 2568 STAILQ_FOREACH(fl, &fonts, font_next) { 2569 if (fl->font_data->vfbd_width == x && 2570 fl->font_data->vfbd_height == y) 2571 break; 2572 } 2573 if (fl != NULL) { 2574 /* Reset any FONT_MANUAL flag. */ 2575 reset_font_flags(); 2576 2577 /* Mark this font manually loaded */ 2578 fl->font_flags = FONT_MANUAL; 2579 cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2580 return (CMD_OK); 2581 } 2582 2583 printf("Available fonts:\n"); 2584 STAILQ_FOREACH(fl, &fonts, font_next) { 2585 printf(" %dx%d\n", fl->font_data->vfbd_width, 2586 fl->font_data->vfbd_height); 2587 } 2588 return (CMD_OK); 2589 } 2590 2591 void 2592 bios_text_font(bool use_vga_font) 2593 { 2594 if (use_vga_font) 2595 (void) insert_font(VGA_8X16_FONT, FONT_MANUAL); 2596 else 2597 (void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL); 2598 } 2599 2600 void 2601 autoload_font(bool bios) 2602 { 2603 struct name_list *nl; 2604 struct name_entry *np; 2605 2606 nl = read_list("/boot/fonts/INDEX.fonts"); 2607 if (nl == NULL) 2608 return; 2609 2610 while (!SLIST_EMPTY(nl)) { 2611 np = SLIST_FIRST(nl); 2612 SLIST_REMOVE_HEAD(nl, n_entry); 2613 if (insert_font(np->n_name, FONT_AUTO) == false) 2614 printf("failed to add font: %s\n", np->n_name); 2615 free(np->n_name); 2616 free(np); 2617 } 2618 2619 /* 2620 * If vga text mode was requested, load vga.font (8x16 bold) font. 2621 */ 2622 if (bios) { 2623 bios_text_font(true); 2624 } 2625 2626 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2627 } 2628 2629 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font); 2630 2631 static int 2632 command_font(int argc, char *argv[]) 2633 { 2634 int i, c, rc; 2635 struct fontlist *fl; 2636 vt_font_bitmap_data_t *bd; 2637 bool list; 2638 2639 list = false; 2640 optind = 1; 2641 optreset = 1; 2642 rc = CMD_OK; 2643 2644 while ((c = getopt(argc, argv, "l")) != -1) { 2645 switch (c) { 2646 case 'l': 2647 list = true; 2648 break; 2649 case '?': 2650 default: 2651 return (CMD_ERROR); 2652 } 2653 } 2654 2655 argc -= optind; 2656 argv += optind; 2657 2658 if (argc > 1 || (list && argc != 0)) { 2659 printf("Usage: loadfont [-l] | [file.fnt]\n"); 2660 return (CMD_ERROR); 2661 } 2662 2663 if (list) { 2664 STAILQ_FOREACH(fl, &fonts, font_next) { 2665 printf("font %s: %dx%d%s\n", fl->font_name, 2666 fl->font_data->vfbd_width, 2667 fl->font_data->vfbd_height, 2668 fl->font_data->vfbd_font == NULL? "" : " loaded"); 2669 } 2670 return (CMD_OK); 2671 } 2672 2673 /* Clear scren */ 2674 cons_clear(); 2675 2676 if (argc == 1) { 2677 char *name = argv[0]; 2678 2679 if (insert_font(name, FONT_MANUAL) == false) { 2680 printf("loadfont error: failed to load: %s\n", name); 2681 return (CMD_ERROR); 2682 } 2683 2684 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2685 return (CMD_OK); 2686 } 2687 2688 if (argc == 0) { 2689 /* 2690 * Walk entire font list, release any loaded font, and set 2691 * autoload flag. The font list does have at least the builtin 2692 * default font. 2693 */ 2694 STAILQ_FOREACH(fl, &fonts, font_next) { 2695 if (fl->font_data->vfbd_font != NULL) { 2696 2697 bd = fl->font_data; 2698 /* 2699 * Note the setup_font() is releasing 2700 * font bytes. 2701 */ 2702 for (i = 0; i < VFNT_MAPS; i++) 2703 free(bd->vfbd_font->vf_map[i]); 2704 free(fl->font_data->vfbd_font); 2705 fl->font_data->vfbd_font = NULL; 2706 fl->font_data->vfbd_uncompressed_size = 0; 2707 fl->font_flags = FONT_AUTO; 2708 } 2709 } 2710 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2711 } 2712 return (rc); 2713 } 2714 2715 bool 2716 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res) 2717 { 2718 struct resolution *rp, *p; 2719 2720 /* 2721 * Walk detailed timings tables (4). 2722 */ 2723 if ((edid->display.supported_features 2724 & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) { 2725 /* Walk detailed timing descriptors (4) */ 2726 for (int i = 0; i < DET_TIMINGS; i++) { 2727 /* 2728 * Reserved value 0 is not used for display decriptor. 2729 */ 2730 if (edid->detailed_timings[i].pixel_clock == 0) 2731 continue; 2732 if ((rp = malloc(sizeof(*rp))) == NULL) 2733 continue; 2734 rp->width = GET_EDID_INFO_WIDTH(edid, i); 2735 rp->height = GET_EDID_INFO_HEIGHT(edid, i); 2736 if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS && 2737 rp->height > 0 && rp->height <= EDID_MAX_LINES) 2738 TAILQ_INSERT_TAIL(res, rp, next); 2739 else 2740 free(rp); 2741 } 2742 } 2743 2744 /* 2745 * Walk standard timings list (8). 2746 */ 2747 for (int i = 0; i < STD_TIMINGS; i++) { 2748 /* Is this field unused? */ 2749 if (edid->standard_timings[i] == 0x0101) 2750 continue; 2751 2752 if ((rp = malloc(sizeof(*rp))) == NULL) 2753 continue; 2754 2755 rp->width = HSIZE(edid->standard_timings[i]); 2756 switch (RATIO(edid->standard_timings[i])) { 2757 case RATIO1_1: 2758 rp->height = HSIZE(edid->standard_timings[i]); 2759 if (edid->header.version > 1 || 2760 edid->header.revision > 2) { 2761 rp->height = rp->height * 10 / 16; 2762 } 2763 break; 2764 case RATIO4_3: 2765 rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4; 2766 break; 2767 case RATIO5_4: 2768 rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5; 2769 break; 2770 case RATIO16_9: 2771 rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16; 2772 break; 2773 } 2774 2775 /* 2776 * Create resolution list in decreasing order, except keep 2777 * first entry (preferred timing mode). 2778 */ 2779 TAILQ_FOREACH(p, res, next) { 2780 if (p->width * p->height < rp->width * rp->height) { 2781 /* Keep preferred mode first */ 2782 if (TAILQ_FIRST(res) == p) 2783 TAILQ_INSERT_AFTER(res, p, rp, next); 2784 else 2785 TAILQ_INSERT_BEFORE(p, rp, next); 2786 break; 2787 } 2788 if (TAILQ_NEXT(p, next) == NULL) { 2789 TAILQ_INSERT_TAIL(res, rp, next); 2790 break; 2791 } 2792 } 2793 } 2794 return (!TAILQ_EMPTY(res)); 2795 } 2796