xref: /freebsd/stand/common/gfx_fb.c (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2020 Toomas Soome
5  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
6  * Copyright 2020 RackTop Systems, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI
34  * GOP Blt, and allows us to fill the rectangle on screen, copy
35  * rectangle from video to buffer and buffer to video and video to video.
36  * Such implementation does allow us to have almost identical implementation
37  * for both BIOS VBE and UEFI.
38  *
39  * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red,
40  * Alpha) format, this allows us to only handle RGB data and not to worry
41  * about mixing RGB with indexed colors.
42  * Data exchange between memory buffer and video will translate BGRA
43  * and native format as following:
44  *
45  * 32-bit to/from 32-bit is trivial case.
46  * 32-bit to/from 24-bit is also simple - we just drop the alpha channel.
47  * 32-bit to/from 16-bit is more complicated, because we nee to handle
48  * data loss from 32-bit to 16-bit. While reading/writing from/to video, we
49  * need to apply masks of 16-bit color components. This will preserve
50  * colors for terminal text. For 32-bit truecolor PMG images, we need to
51  * translate 32-bit colors to 15/16 bit colors and this means data loss.
52  * There are different algorithms how to perform such color space reduction,
53  * we are currently using bitwise right shift to reduce color space and so far
54  * this technique seems to be sufficient (see also gfx_fb_putimage(), the
55  * end of for loop).
56  * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are
57  * indexed. From video, we do get color indexes, and we do translate
58  * color index values to RGB. To write to video, we again need to translate
59  * RGB to color index. Additionally, we need to translate between VGA and
60  * console colors.
61  *
62  * Our internal color data is represented using BGRA format. But the hardware
63  * used indexed colors for 8-bit colors (0-255) and for this mode we do
64  * need to perform translation to/from BGRA and index values.
65  *
66  *                   - paletteentry RGB <-> index -
67  * BGRA BUFFER <----/                              \ - VIDEO
68  *                  \                              /
69  *                   -  RGB (16/24/32)            -
70  *
71  * To perform index to RGB translation, we use palette table generated
72  * from when we set up 8-bit mode video. We cannot read palette data from
73  * the hardware, because not all hardware supports reading it.
74  *
75  * BGRA to index is implemented in rgb_to_color_index() by searching
76  * palette array for closest match of RBG values.
77  *
78  * Note: In 8-bit mode, We do store first 16 colors to palette registers
79  * in VGA color order, this serves two purposes; firstly,
80  * if palette update is not supported, we still have correct 16 colors.
81  * Secondly, the kernel does get correct 16 colors when some other boot
82  * loader is used. However, the palette map for 8-bit colors is using
83  * console color ordering - this does allow us to skip translation
84  * from VGA colors to console colors, while we are reading RGB data.
85  */
86 
87 #include <sys/cdefs.h>
88 #include <sys/param.h>
89 #include <stand.h>
90 #include <teken.h>
91 #include <gfx_fb.h>
92 #include <sys/font.h>
93 #include <sys/stdint.h>
94 #include <sys/endian.h>
95 #include <pnglite.h>
96 #include <bootstrap.h>
97 #include <lz4.h>
98 #if defined(EFI)
99 #include <efi.h>
100 #include <efilib.h>
101 #else
102 #include <vbe.h>
103 #endif
104 
105 /* VGA text mode does use bold font. */
106 #if !defined(VGA_8X16_FONT)
107 #define	VGA_8X16_FONT		"/boot/fonts/8x16b.fnt"
108 #endif
109 #if !defined(DEFAULT_8X16_FONT)
110 #define	DEFAULT_8X16_FONT	"/boot/fonts/8x16.fnt"
111 #endif
112 
113 /*
114  * Must be sorted by font size in descending order
115  */
116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts);
117 
118 #define	DEFAULT_FONT_DATA	font_data_8x16
119 extern vt_font_bitmap_data_t	font_data_8x16;
120 teken_gfx_t gfx_state = { 0 };
121 
122 static struct {
123 	unsigned char r;	/* Red percentage value. */
124 	unsigned char g;	/* Green percentage value. */
125 	unsigned char b;	/* Blue percentage value. */
126 } color_def[NCOLORS] = {
127 	{0,	0,	0},	/* black */
128 	{50,	0,	0},	/* dark red */
129 	{0,	50,	0},	/* dark green */
130 	{77,	63,	0},	/* dark yellow */
131 	{20,	40,	64},	/* dark blue */
132 	{50,	0,	50},	/* dark magenta */
133 	{0,	50,	50},	/* dark cyan */
134 	{75,	75,	75},	/* light gray */
135 
136 	{18,	20,	21},	/* dark gray */
137 	{100,	0,	0},	/* light red */
138 	{0,	100,	0},	/* light green */
139 	{100,	100,	0},	/* light yellow */
140 	{45,	62,	81},	/* light blue */
141 	{100,	0,	100},	/* light magenta */
142 	{0,	100,	100},	/* light cyan */
143 	{100,	100,	100},	/* white */
144 };
145 uint32_t cmap[NCMAP];
146 
147 /*
148  * Between console's palette and VGA's one:
149  *  - blue and red are swapped (1 <-> 4)
150  *  - yellow and cyan are swapped (3 <-> 6)
151  */
152 const int cons_to_vga_colors[NCOLORS] = {
153 	0,  4,  2,  6,  1,  5,  3,  7,
154 	8, 12, 10, 14,  9, 13, 11, 15
155 };
156 
157 static const int vga_to_cons_colors[NCOLORS] = {
158 	0,  1,  2,  3,  4,  5,  6,  7,
159 	8,  9, 10, 11,  12, 13, 14, 15
160 };
161 
162 struct text_pixel *screen_buffer;
163 #if defined(EFI)
164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer;
165 #else
166 static struct paletteentry *GlyphBuffer;
167 #endif
168 static size_t GlyphBufferSize;
169 
170 static bool insert_font(char *, FONT_FLAGS);
171 static int font_set(struct env_var *, int, const void *);
172 static void * allocate_glyphbuffer(uint32_t, uint32_t);
173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool);
174 
175 /*
176  * Initialize gfx framework.
177  */
178 void
179 gfx_framework_init(void)
180 {
181 	/*
182 	 * Setup font list to have builtin font.
183 	 */
184 	(void) insert_font(NULL, FONT_BUILTIN);
185 }
186 
187 static uint8_t *
188 gfx_get_fb_address(void)
189 {
190 	return (ptov((uint32_t)gfx_state.tg_fb.fb_addr));
191 }
192 
193 /*
194  * Utility function to parse gfx mode line strings.
195  */
196 bool
197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth)
198 {
199 	char *p, *end;
200 
201 	errno = 0;
202 	p = str;
203 	*x = strtoul(p, &end, 0);
204 	if (*x == 0 || errno != 0)
205 		return (false);
206 	if (*end != 'x')
207 		return (false);
208 	p = end + 1;
209 	*y = strtoul(p, &end, 0);
210 	if (*y == 0 || errno != 0)
211 		return (false);
212 	if (*end != 'x') {
213 		*depth = -1;    /* auto select */
214 	} else {
215 		p = end + 1;
216 		*depth = strtoul(p, &end, 0);
217 		if (*depth == 0 || errno != 0 || *end != '\0')
218 			return (false);
219 	}
220 
221 	return (true);
222 }
223 
224 static uint32_t
225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset,
226     uint32_t gmax, int goffset, uint32_t bmax, int boffset)
227 {
228 	uint32_t color, code, gray, level;
229 
230 	if (index < NCOLORS) {
231 #define	CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset)
232 		return (CF(r, index) | CF(g, index) | CF(b, index));
233 #undef  CF
234         }
235 
236 #define	CF(_f, _c) ((_f ## max & _c) << _f ## offset)
237         /* 6x6x6 color cube */
238         if (index > 15 && index < 232) {
239                 uint32_t red, green, blue;
240 
241                 for (red = 0; red < 6; red++) {
242                         for (green = 0; green < 6; green++) {
243                                 for (blue = 0; blue < 6; blue++) {
244                                         code = 16 + (red * 36) +
245                                             (green * 6) + blue;
246                                         if (code != index)
247                                                 continue;
248                                         red = red ? (red * 40 + 55) : 0;
249                                         green = green ? (green * 40 + 55) : 0;
250                                         blue = blue ? (blue * 40 + 55) : 0;
251                                         color = CF(r, red);
252 					color |= CF(g, green);
253 					color |= CF(b, blue);
254 					return (color);
255                                 }
256                         }
257                 }
258         }
259 
260         /* colors 232-255 are a grayscale ramp */
261         for (gray = 0; gray < 24; gray++) {
262                 level = (gray * 10) + 8;
263                 code = 232 + gray;
264                 if (code == index)
265                         break;
266         }
267         return (CF(r, level) | CF(g, level) | CF(b, level));
268 #undef  CF
269 }
270 
271 /*
272  * Support for color mapping.
273  * For 8, 24 and 32 bit depth, use mask size 8.
274  * 15/16 bit depth needs to use mask size from mode,
275  * or we will lose color information from 32-bit to 15/16 bit translation.
276  */
277 uint32_t
278 gfx_fb_color_map(uint8_t index)
279 {
280 	int rmask, gmask, bmask;
281 	int roff, goff, boff, bpp;
282 
283 	roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
284         goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
285         boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
286 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
287 
288 	if (bpp == 2)
289 		rmask = gfx_state.tg_fb.fb_mask_red >> roff;
290 	else
291 		rmask = 0xff;
292 
293 	if (bpp == 2)
294 		gmask = gfx_state.tg_fb.fb_mask_green >> goff;
295 	else
296 		gmask = 0xff;
297 
298 	if (bpp == 2)
299 		bmask = gfx_state.tg_fb.fb_mask_blue >> boff;
300 	else
301 		bmask = 0xff;
302 
303 	return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0));
304 }
305 
306 /*
307  * Get indexed color from RGB. This function is used to write data to video
308  * memory when the adapter is set to use indexed colors.
309  * Since UEFI does only support 32-bit colors, we do not implement it for
310  * UEFI because there is no need for it and we do not have palette array
311  * for UEFI.
312  */
313 static uint8_t
314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b)
315 {
316 #if !defined(EFI)
317 	uint32_t color, best, dist, k;
318 	int diff;
319 
320 	color = 0;
321 	best = 255 * 255 * 255;
322 	for (k = 0; k < NCMAP; k++) {
323 		diff = r - pe8[k].Red;
324 		dist = diff * diff;
325 		diff = g - pe8[k].Green;
326 		dist += diff * diff;
327 		diff = b - pe8[k].Blue;
328 		dist += diff * diff;
329 
330 		/* Exact match, exit the loop */
331 		if (dist == 0)
332 			break;
333 
334 		if (dist < best) {
335 			color = k;
336 			best = dist;
337 		}
338 	}
339 	if (k == NCMAP)
340 		k = color;
341 	return (k);
342 #else
343 	(void) r;
344 	(void) g;
345 	(void) b;
346 	return (0);
347 #endif
348 }
349 
350 int
351 generate_cons_palette(uint32_t *palette, int format,
352     uint32_t rmax, int roffset, uint32_t gmax, int goffset,
353     uint32_t bmax, int boffset)
354 {
355 	int i;
356 
357 	switch (format) {
358 	case COLOR_FORMAT_VGA:
359 		for (i = 0; i < NCOLORS; i++)
360 			palette[i] = cons_to_vga_colors[i];
361 		for (; i < NCMAP; i++)
362 			palette[i] = i;
363 		break;
364 	case COLOR_FORMAT_RGB:
365 		for (i = 0; i < NCMAP; i++)
366 			palette[i] = rgb_color_map(i, rmax, roffset,
367 			    gmax, goffset, bmax, boffset);
368 		break;
369 	default:
370 		return (ENODEV);
371 	}
372 
373 	return (0);
374 }
375 
376 static void
377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v)
378 {
379 
380 	if (o >= size)
381 		return;
382 	*(uint8_t *)(base + o) = v;
383 }
384 
385 static void
386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v)
387 {
388 
389 	if (o >= size)
390 		return;
391 	*(uint16_t *)(base + o) = v;
392 }
393 
394 static void
395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v)
396 {
397 
398 	if (o >= size)
399 		return;
400 	*(uint32_t *)(base + o) = v;
401 }
402 
403 static int gfxfb_blt_fill(void *BltBuffer,
404     uint32_t DestinationX, uint32_t DestinationY,
405     uint32_t Width, uint32_t Height)
406 {
407 #if defined(EFI)
408 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
409 #else
410 	struct paletteentry *p;
411 #endif
412 	uint32_t data, bpp, pitch, y, x;
413 	int roff, goff, boff;
414 	size_t size;
415 	off_t off;
416 	uint8_t *destination;
417 
418 	if (BltBuffer == NULL)
419 		return (EINVAL);
420 
421 	if (DestinationY + Height > gfx_state.tg_fb.fb_height)
422 		return (EINVAL);
423 
424 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
425 		return (EINVAL);
426 
427 	if (Width == 0 || Height == 0)
428 		return (EINVAL);
429 
430 	p = BltBuffer;
431 	roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
432 	goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
433 	boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
434 
435 	if (gfx_state.tg_fb.fb_bpp == 8) {
436 		data = rgb_to_color_index(p->Red, p->Green, p->Blue);
437 	} else {
438 		data = (p->Red &
439 		    (gfx_state.tg_fb.fb_mask_red >> roff)) << roff;
440 		data |= (p->Green &
441 		    (gfx_state.tg_fb.fb_mask_green >> goff)) << goff;
442 		data |= (p->Blue &
443 		    (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff;
444 	}
445 
446 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
447 	pitch = gfx_state.tg_fb.fb_stride * bpp;
448 	destination = gfx_get_fb_address();
449 	size = gfx_state.tg_fb.fb_size;
450 
451 	for (y = DestinationY; y < Height + DestinationY; y++) {
452 		off = y * pitch + DestinationX * bpp;
453 		for (x = 0; x < Width; x++) {
454 			switch (bpp) {
455 			case 1:
456 				gfx_mem_wr1(destination, size, off,
457 				    (data < NCOLORS) ?
458 				    cons_to_vga_colors[data] : data);
459 				break;
460 			case 2:
461 				gfx_mem_wr2(destination, size, off, data);
462 				break;
463 			case 3:
464 				gfx_mem_wr1(destination, size, off,
465 				    (data >> 16) & 0xff);
466 				gfx_mem_wr1(destination, size, off + 1,
467 				    (data >> 8) & 0xff);
468 				gfx_mem_wr1(destination, size, off + 2,
469 				    data & 0xff);
470 				break;
471 			case 4:
472 				gfx_mem_wr4(destination, size, off, data);
473 				break;
474 			default:
475 				return (EINVAL);
476 			}
477 			off += bpp;
478 		}
479 	}
480 
481 	return (0);
482 }
483 
484 static int
485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
486     uint32_t DestinationX, uint32_t DestinationY,
487     uint32_t Width, uint32_t Height, uint32_t Delta)
488 {
489 #if defined(EFI)
490 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
491 #else
492 	struct paletteentry *p;
493 #endif
494 	uint32_t x, sy, dy;
495 	uint32_t bpp, pitch, copybytes;
496 	off_t off;
497 	uint8_t *source, *destination, *sb;
498 	uint8_t rm, rp, gm, gp, bm, bp;
499 	bool bgra;
500 
501 	if (BltBuffer == NULL)
502 		return (EINVAL);
503 
504 	if (SourceY + Height >
505 	    gfx_state.tg_fb.fb_height)
506 		return (EINVAL);
507 
508 	if (SourceX + Width > gfx_state.tg_fb.fb_width)
509 		return (EINVAL);
510 
511 	if (Width == 0 || Height == 0)
512 		return (EINVAL);
513 
514 	if (Delta == 0)
515 		Delta = Width * sizeof (*p);
516 
517 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
518 	pitch = gfx_state.tg_fb.fb_stride * bpp;
519 
520 	copybytes = Width * bpp;
521 
522 	rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
523 	gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
524 	bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
525 	rm = gfx_state.tg_fb.fb_mask_red >> rp;
526 	gm = gfx_state.tg_fb.fb_mask_green >> gp;
527 	bm = gfx_state.tg_fb.fb_mask_blue >> bp;
528 
529 	/* If FB pixel format is BGRA, we can use direct copy. */
530 	bgra = bpp == 4 &&
531 	    ffs(rm) - 1 == 8 && rp == 16 &&
532 	    ffs(gm) - 1 == 8 && gp == 8 &&
533 	    ffs(bm) - 1 == 8 && bp == 0;
534 
535 	for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY;
536 	    sy++, dy++) {
537 		off = sy * pitch + SourceX * bpp;
538 		source = gfx_get_fb_address() + off;
539 		destination = (uint8_t *)BltBuffer + dy * Delta +
540 		    DestinationX * sizeof (*p);
541 
542 		if (bgra) {
543 			bcopy(source, destination, copybytes);
544 		} else {
545 			for (x = 0; x < Width; x++) {
546 				uint32_t c = 0;
547 
548 				p = (void *)(destination + x * sizeof (*p));
549 				sb = source + x * bpp;
550 				switch (bpp) {
551 				case 1:
552 					c = *sb;
553 					break;
554 				case 2:
555 					c = *(uint16_t *)sb;
556 					break;
557 				case 3:
558 					c = sb[0] << 16 | sb[1] << 8 | sb[2];
559 					break;
560 				case 4:
561 					c = *(uint32_t *)sb;
562 					break;
563 				default:
564 					return (EINVAL);
565 				}
566 
567 				if (bpp == 1) {
568 					*(uint32_t *)p = gfx_fb_color_map(
569 					    (c < 16) ?
570 					    vga_to_cons_colors[c] : c);
571 				} else {
572 					p->Red = (c >> rp) & rm;
573 					p->Green = (c >> gp) & gm;
574 					p->Blue = (c >> bp) & bm;
575 					p->Reserved = 0;
576 				}
577 			}
578 		}
579 	}
580 
581 	return (0);
582 }
583 
584 static int
585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
586     uint32_t DestinationX, uint32_t DestinationY,
587     uint32_t Width, uint32_t Height, uint32_t Delta)
588 {
589 #if defined(EFI)
590 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
591 #else
592 	struct paletteentry *p;
593 #endif
594 	uint32_t x, sy, dy;
595 	uint32_t bpp, pitch, copybytes;
596 	off_t off;
597 	uint8_t *source, *destination;
598 	uint8_t rm, rp, gm, gp, bm, bp;
599 	bool bgra;
600 
601 	if (BltBuffer == NULL)
602 		return (EINVAL);
603 
604 	if (DestinationY + Height >
605 	    gfx_state.tg_fb.fb_height)
606 		return (EINVAL);
607 
608 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
609 		return (EINVAL);
610 
611 	if (Width == 0 || Height == 0)
612 		return (EINVAL);
613 
614 	if (Delta == 0)
615 		Delta = Width * sizeof (*p);
616 
617 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
618 	pitch = gfx_state.tg_fb.fb_stride * bpp;
619 
620 	copybytes = Width * bpp;
621 
622 	rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
623 	gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
624 	bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
625 	rm = gfx_state.tg_fb.fb_mask_red >> rp;
626 	gm = gfx_state.tg_fb.fb_mask_green >> gp;
627 	bm = gfx_state.tg_fb.fb_mask_blue >> bp;
628 
629 	/* If FB pixel format is BGRA, we can use direct copy. */
630 	bgra = bpp == 4 &&
631 	    ffs(rm) - 1 == 8 && rp == 16 &&
632 	    ffs(gm) - 1 == 8 && gp == 8 &&
633 	    ffs(bm) - 1 == 8 && bp == 0;
634 
635 	for (sy = SourceY, dy = DestinationY; sy < Height + SourceY;
636 	    sy++, dy++) {
637 		off = dy * pitch + DestinationX * bpp;
638 		destination = gfx_get_fb_address() + off;
639 
640 		if (bgra) {
641 			source = (uint8_t *)BltBuffer + sy * Delta +
642 			    SourceX * sizeof (*p);
643 			bcopy(source, destination, copybytes);
644 		} else {
645 			for (x = 0; x < Width; x++) {
646 				uint32_t c;
647 
648 				p = (void *)((uint8_t *)BltBuffer +
649 				    sy * Delta +
650 				    (SourceX + x) * sizeof (*p));
651 				if (bpp == 1) {
652 					c = rgb_to_color_index(p->Red,
653 					    p->Green, p->Blue);
654 				} else {
655 					c = (p->Red & rm) << rp |
656 					    (p->Green & gm) << gp |
657 					    (p->Blue & bm) << bp;
658 				}
659 				off = x * bpp;
660 				switch (bpp) {
661 				case 1:
662 					gfx_mem_wr1(destination, copybytes,
663 					    off, (c < 16) ?
664 					    cons_to_vga_colors[c] : c);
665 					break;
666 				case 2:
667 					gfx_mem_wr2(destination, copybytes,
668 					    off, c);
669 					break;
670 				case 3:
671 					gfx_mem_wr1(destination, copybytes,
672 					    off, (c >> 16) & 0xff);
673 					gfx_mem_wr1(destination, copybytes,
674 					    off + 1, (c >> 8) & 0xff);
675 					gfx_mem_wr1(destination, copybytes,
676 					    off + 2, c & 0xff);
677 					break;
678 				case 4:
679 					gfx_mem_wr4(destination, copybytes,
680 					    x * bpp, c);
681 					break;
682 				default:
683 					return (EINVAL);
684 				}
685 			}
686 		}
687 	}
688 
689 	return (0);
690 }
691 
692 static int
693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY,
694     uint32_t DestinationX, uint32_t DestinationY,
695     uint32_t Width, uint32_t Height)
696 {
697 	uint32_t bpp, copybytes;
698 	int pitch;
699 	uint8_t *source, *destination;
700 	off_t off;
701 
702 	if (SourceY + Height >
703 	    gfx_state.tg_fb.fb_height)
704 		return (EINVAL);
705 
706 	if (SourceX + Width > gfx_state.tg_fb.fb_width)
707 		return (EINVAL);
708 
709 	if (DestinationY + Height >
710 	    gfx_state.tg_fb.fb_height)
711 		return (EINVAL);
712 
713 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
714 		return (EINVAL);
715 
716 	if (Width == 0 || Height == 0)
717 		return (EINVAL);
718 
719 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
720 	pitch = gfx_state.tg_fb.fb_stride * bpp;
721 
722 	copybytes = Width * bpp;
723 
724 	off = SourceY * pitch + SourceX * bpp;
725 	source = gfx_get_fb_address() + off;
726 	off = DestinationY * pitch + DestinationX * bpp;
727 	destination = gfx_get_fb_address() + off;
728 
729 	if ((uintptr_t)destination > (uintptr_t)source) {
730 		source += Height * pitch;
731 		destination += Height * pitch;
732 		pitch = -pitch;
733 	}
734 
735 	while (Height-- > 0) {
736 		bcopy(source, destination, copybytes);
737 		source += pitch;
738 		destination += pitch;
739 	}
740 
741 	return (0);
742 }
743 
744 static void
745 gfxfb_shadow_fill(uint32_t *BltBuffer,
746     uint32_t DestinationX, uint32_t DestinationY,
747     uint32_t Width, uint32_t Height)
748 {
749 	uint32_t fbX, fbY;
750 
751 	if (gfx_state.tg_shadow_fb == NULL)
752 		return;
753 
754 	fbX = gfx_state.tg_fb.fb_width;
755 	fbY = gfx_state.tg_fb.fb_height;
756 
757 	if (BltBuffer == NULL)
758 		return;
759 
760 	if (DestinationX + Width > fbX)
761 		Width = fbX - DestinationX;
762 
763 	if (DestinationY + Height > fbY)
764 		Height = fbY - DestinationY;
765 
766 	uint32_t y2 = Height + DestinationY;
767 	for (uint32_t y1 = DestinationY; y1 < y2; y1++) {
768 		uint32_t off = y1 * fbX + DestinationX;
769 
770 		for (uint32_t x = 0; x < Width; x++) {
771 			gfx_state.tg_shadow_fb[off + x] = *BltBuffer;
772 		}
773 	}
774 }
775 
776 int
777 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation,
778     uint32_t SourceX, uint32_t SourceY,
779     uint32_t DestinationX, uint32_t DestinationY,
780     uint32_t Width, uint32_t Height, uint32_t Delta)
781 {
782 	int rv;
783 #if defined(EFI)
784 	EFI_STATUS status;
785 	EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private;
786 	EFI_TPL tpl;
787 
788 	/*
789 	 * We assume Blt() does work, if not, we will need to build exception
790 	 * list case by case. We only have boot services during part of our
791 	 * exectution. Once terminate boot services, these operations cannot be
792 	 * done as they are provided by protocols that disappear when exit
793 	 * boot services.
794 	 */
795 	if (gop != NULL && boot_services_active) {
796 		tpl = BS->RaiseTPL(TPL_NOTIFY);
797 		switch (BltOperation) {
798 		case GfxFbBltVideoFill:
799 			gfxfb_shadow_fill(BltBuffer, DestinationX,
800 			    DestinationY, Width, Height);
801 			status = gop->Blt(gop, BltBuffer, EfiBltVideoFill,
802 			    SourceX, SourceY, DestinationX, DestinationY,
803 			    Width, Height, Delta);
804 			break;
805 
806 		case GfxFbBltVideoToBltBuffer:
807 			status = gop->Blt(gop, BltBuffer,
808 			    EfiBltVideoToBltBuffer,
809 			    SourceX, SourceY, DestinationX, DestinationY,
810 			    Width, Height, Delta);
811 			break;
812 
813 		case GfxFbBltBufferToVideo:
814 			status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo,
815 			    SourceX, SourceY, DestinationX, DestinationY,
816 			    Width, Height, Delta);
817 			break;
818 
819 		case GfxFbBltVideoToVideo:
820 			status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo,
821 			    SourceX, SourceY, DestinationX, DestinationY,
822 			    Width, Height, Delta);
823 			break;
824 
825 		default:
826 			status = EFI_INVALID_PARAMETER;
827 			break;
828 		}
829 
830 		switch (status) {
831 		case EFI_SUCCESS:
832 			rv = 0;
833 			break;
834 
835 		case EFI_INVALID_PARAMETER:
836 			rv = EINVAL;
837 			break;
838 
839 		case EFI_DEVICE_ERROR:
840 		default:
841 			rv = EIO;
842 			break;
843 		}
844 
845 		BS->RestoreTPL(tpl);
846 		return (rv);
847 	}
848 #endif
849 
850 	switch (BltOperation) {
851 	case GfxFbBltVideoFill:
852 		gfxfb_shadow_fill(BltBuffer, DestinationX, DestinationY,
853 		    Width, Height);
854 		rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY,
855 		    Width, Height);
856 		break;
857 
858 	case GfxFbBltVideoToBltBuffer:
859 		rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY,
860 		    DestinationX, DestinationY, Width, Height, Delta);
861 		break;
862 
863 	case GfxFbBltBufferToVideo:
864 		rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY,
865 		    DestinationX, DestinationY, Width, Height, Delta);
866 		break;
867 
868 	case GfxFbBltVideoToVideo:
869 		rv = gfxfb_blt_video_to_video(SourceX, SourceY,
870 		    DestinationX, DestinationY, Width, Height);
871 		break;
872 
873 	default:
874 		rv = EINVAL;
875 		break;
876 	}
877 	return (rv);
878 }
879 
880 void
881 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph,
882     const teken_attr_t *a, uint32_t alpha, bool cursor)
883 {
884 	uint32_t width, height;
885 	uint32_t fgc, bgc, bpl, cc, o;
886 	int bpp, bit, byte;
887 	bool invert = false;
888 
889 	bpp = 4;		/* We only generate BGRA */
890 	width = state->tg_font.vf_width;
891 	height = state->tg_font.vf_height;
892 	bpl = (width + 7) / 8;  /* Bytes per source line. */
893 
894 	fgc = a->ta_fgcolor;
895 	bgc = a->ta_bgcolor;
896 	if (a->ta_format & TF_BOLD)
897 		fgc |= TC_LIGHT;
898 	if (a->ta_format & TF_BLINK)
899 		bgc |= TC_LIGHT;
900 
901 	fgc = gfx_fb_color_map(fgc);
902 	bgc = gfx_fb_color_map(bgc);
903 
904 	if (a->ta_format & TF_REVERSE)
905 		invert = !invert;
906 	if (cursor)
907 		invert = !invert;
908 	if (invert) {
909 		uint32_t tmp;
910 
911 		tmp = fgc;
912 		fgc = bgc;
913 		bgc = tmp;
914 	}
915 
916 	alpha = alpha << 24;
917 	fgc |= alpha;
918 	bgc |= alpha;
919 
920 	for (uint32_t y = 0; y < height; y++) {
921 		for (uint32_t x = 0; x < width; x++) {
922 			byte = y * bpl + x / 8;
923 			bit = 0x80 >> (x % 8);
924 			o = y * width * bpp + x * bpp;
925 			cc = glyph[byte] & bit ? fgc : bgc;
926 
927 			gfx_mem_wr4(state->tg_glyph,
928 			    state->tg_glyph_size, o, cc);
929 		}
930 	}
931 }
932 
933 /*
934  * Draw prepared glyph on terminal point p.
935  */
936 static void
937 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p)
938 {
939 	unsigned x, y, width, height;
940 
941 	width = state->tg_font.vf_width;
942 	height = state->tg_font.vf_height;
943 	x = state->tg_origin.tp_col + p->tp_col * width;
944 	y = state->tg_origin.tp_row + p->tp_row * height;
945 
946 	gfx_fb_cons_display(x, y, width, height, state->tg_glyph);
947 }
948 
949 /*
950  * Store char with its attribute to buffer and put it on screen.
951  */
952 void
953 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c,
954     const teken_attr_t *a)
955 {
956 	teken_gfx_t *state = arg;
957 	const uint8_t *glyph;
958 	int idx;
959 
960 	idx = p->tp_col + p->tp_row * state->tg_tp.tp_col;
961 	if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
962 		return;
963 
964 	/* remove the cursor */
965 	if (state->tg_cursor_visible)
966 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
967 
968 	screen_buffer[idx].c = c;
969 	screen_buffer[idx].a = *a;
970 
971 	glyph = font_lookup(&state->tg_font, c, a);
972 	gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
973 	gfx_fb_printchar(state, p);
974 
975 	/* display the cursor */
976 	if (state->tg_cursor_visible) {
977 		const teken_pos_t *c;
978 
979 		c = teken_get_cursor(&state->tg_teken);
980 		gfx_fb_cursor_draw(state, c, true);
981 	}
982 }
983 
984 void
985 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c,
986     const teken_attr_t *a)
987 {
988 	teken_gfx_t *state = arg;
989 	const uint8_t *glyph;
990 	teken_pos_t p;
991 	struct text_pixel *row;
992 
993 	/* remove the cursor */
994 	if (state->tg_cursor_visible)
995 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
996 
997 	glyph = font_lookup(&state->tg_font, c, a);
998 	gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
999 
1000 	for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row;
1001 	    p.tp_row++) {
1002 		row = &screen_buffer[p.tp_row * state->tg_tp.tp_col];
1003 		for (p.tp_col = r->tr_begin.tp_col;
1004 		    p.tp_col < r->tr_end.tp_col; p.tp_col++) {
1005 			row[p.tp_col].c = c;
1006 			row[p.tp_col].a = *a;
1007 			gfx_fb_printchar(state, &p);
1008 		}
1009 	}
1010 
1011 	/* display the cursor */
1012 	if (state->tg_cursor_visible) {
1013 		const teken_pos_t *c;
1014 
1015 		c = teken_get_cursor(&state->tg_teken);
1016 		gfx_fb_cursor_draw(state, c, true);
1017 	}
1018 }
1019 
1020 static void
1021 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *pos, bool on)
1022 {
1023 	const uint8_t *glyph;
1024 	teken_pos_t p;
1025 	int idx;
1026 
1027 	p = *pos;
1028 	if (p.tp_col >= state->tg_tp.tp_col)
1029 		p.tp_col = state->tg_tp.tp_col - 1;
1030 	if (p.tp_row >= state->tg_tp.tp_row)
1031 		p.tp_row = state->tg_tp.tp_row - 1;
1032 	idx = p.tp_col + p.tp_row * state->tg_tp.tp_col;
1033 	if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
1034 		return;
1035 
1036 	glyph = font_lookup(&state->tg_font, screen_buffer[idx].c,
1037 	    &screen_buffer[idx].a);
1038 	gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on);
1039 	gfx_fb_printchar(state, &p);
1040 
1041 	state->tg_cursor = p;
1042 }
1043 
1044 void
1045 gfx_fb_cursor(void *arg, const teken_pos_t *p)
1046 {
1047 	teken_gfx_t *state = arg;
1048 
1049 	/* Switch cursor off in old location and back on in new. */
1050 	if (state->tg_cursor_visible) {
1051 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
1052 		gfx_fb_cursor_draw(state, p, true);
1053 	}
1054 }
1055 
1056 void
1057 gfx_fb_param(void *arg, int cmd, unsigned int value)
1058 {
1059 	teken_gfx_t *state = arg;
1060 	const teken_pos_t *c;
1061 
1062 	switch (cmd) {
1063 	case TP_SETLOCALCURSOR:
1064 		/*
1065 		 * 0 means normal (usually block), 1 means hidden, and
1066 		 * 2 means blinking (always block) for compatibility with
1067 		 * syscons.  We don't support any changes except hiding,
1068 		 * so must map 2 to 0.
1069 		 */
1070 		value = (value == 1) ? 0 : 1;
1071 		/* FALLTHROUGH */
1072 	case TP_SHOWCURSOR:
1073 		c = teken_get_cursor(&state->tg_teken);
1074 		gfx_fb_cursor_draw(state, c, true);
1075 		if (value != 0)
1076 			state->tg_cursor_visible = true;
1077 		else
1078 			state->tg_cursor_visible = false;
1079 		break;
1080 	default:
1081 		/* Not yet implemented */
1082 		break;
1083 	}
1084 }
1085 
1086 bool
1087 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2)
1088 {
1089 	if (px1->c != px2->c)
1090 		return (false);
1091 
1092 	/* Is there image stored? */
1093 	if ((px1->a.ta_format & TF_IMAGE) ||
1094 	    (px2->a.ta_format & TF_IMAGE))
1095 		return (false);
1096 
1097 	if (px1->a.ta_format != px2->a.ta_format)
1098 		return (false);
1099 	if (px1->a.ta_fgcolor != px2->a.ta_fgcolor)
1100 		return (false);
1101 	if (px1->a.ta_bgcolor != px2->a.ta_bgcolor)
1102 		return (false);
1103 
1104 	return (true);
1105 }
1106 
1107 static void
1108 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s,
1109     const teken_pos_t *d)
1110 {
1111 	uint32_t sx, sy, dx, dy, width, height;
1112 	uint32_t pitch, bytes;
1113 	int step;
1114 
1115 	width = state->tg_font.vf_width;
1116 	height = state->tg_font.vf_height;
1117 
1118 	sx = s->tr_begin.tp_col * width;
1119 	sy = s->tr_begin.tp_row * height;
1120 	dx = d->tp_col * width;
1121 	dy = d->tp_row * height;
1122 
1123 	width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1);
1124 
1125 	/*
1126 	 * With no shadow fb, use video to video copy.
1127 	 */
1128 	if (state->tg_shadow_fb == NULL) {
1129 		(void) gfxfb_blt(NULL, GfxFbBltVideoToVideo,
1130 		    sx + state->tg_origin.tp_col,
1131 		    sy + state->tg_origin.tp_row,
1132 		    dx + state->tg_origin.tp_col,
1133 		    dy + state->tg_origin.tp_row,
1134 		    width, height, 0);
1135 		return;
1136 	}
1137 
1138 	/*
1139 	 * With shadow fb, we need to copy data on both shadow and video,
1140 	 * to preserve the consistency. We only read data from shadow fb.
1141 	 */
1142 
1143 	step = 1;
1144 	pitch = state->tg_fb.fb_width;
1145 	bytes = width * sizeof (*state->tg_shadow_fb);
1146 
1147 	/*
1148 	 * To handle overlapping areas, set up reverse copy here.
1149 	 */
1150 	if (dy * pitch + dx > sy * pitch + sx) {
1151 		sy += height;
1152 		dy += height;
1153 		step = -step;
1154 	}
1155 
1156 	while (height-- > 0) {
1157 		uint32_t *source = &state->tg_shadow_fb[sy * pitch + sx];
1158 		uint32_t *destination = &state->tg_shadow_fb[dy * pitch + dx];
1159 
1160 		bcopy(source, destination, bytes);
1161 		(void) gfxfb_blt(destination, GfxFbBltBufferToVideo,
1162 		    0, 0, dx + state->tg_origin.tp_col,
1163 		    dy + state->tg_origin.tp_row, width, 1, 0);
1164 
1165 		sy += step;
1166 		dy += step;
1167 	}
1168 }
1169 
1170 static void
1171 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d)
1172 {
1173 	teken_rect_t sr;
1174 	teken_pos_t dp;
1175 	unsigned soffset, doffset;
1176 	bool mark = false;
1177 	int x;
1178 
1179 	soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col;
1180 	doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col;
1181 
1182 	for (x = 0; x < ncol; x++) {
1183 		if (is_same_pixel(&screen_buffer[soffset + x],
1184 		    &screen_buffer[doffset + x])) {
1185 			if (mark) {
1186 				gfx_fb_copy_area(state, &sr, &dp);
1187 				mark = false;
1188 			}
1189 		} else {
1190 			screen_buffer[doffset + x] = screen_buffer[soffset + x];
1191 			if (mark) {
1192 				/* update end point */
1193 				sr.tr_end.tp_col = s->tp_col + x;;
1194 			} else {
1195 				/* set up new rectangle */
1196 				mark = true;
1197 				sr.tr_begin.tp_col = s->tp_col + x;
1198 				sr.tr_begin.tp_row = s->tp_row;
1199 				sr.tr_end.tp_col = s->tp_col + x;
1200 				sr.tr_end.tp_row = s->tp_row;
1201 				dp.tp_col = d->tp_col + x;
1202 				dp.tp_row = d->tp_row;
1203 			}
1204 		}
1205 	}
1206 	if (mark) {
1207 		gfx_fb_copy_area(state, &sr, &dp);
1208 	}
1209 }
1210 
1211 void
1212 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p)
1213 {
1214 	teken_gfx_t *state = arg;
1215 	unsigned doffset, soffset;
1216 	teken_pos_t d, s;
1217 	int nrow, ncol, y; /* Has to be signed - >= 0 comparison */
1218 
1219 	/*
1220 	 * Copying is a little tricky. We must make sure we do it in
1221 	 * correct order, to make sure we don't overwrite our own data.
1222 	 */
1223 
1224 	nrow = r->tr_end.tp_row - r->tr_begin.tp_row;
1225 	ncol = r->tr_end.tp_col - r->tr_begin.tp_col;
1226 
1227 	if (p->tp_row + nrow > state->tg_tp.tp_row ||
1228 	    p->tp_col + ncol > state->tg_tp.tp_col)
1229 		return;
1230 
1231 	soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col;
1232 	doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col;
1233 
1234 	/* remove the cursor */
1235 	if (state->tg_cursor_visible)
1236 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
1237 
1238 	/*
1239 	 * Copy line by line.
1240 	 */
1241 	if (doffset <= soffset) {
1242 		s = r->tr_begin;
1243 		d = *p;
1244 		for (y = 0; y < nrow; y++) {
1245 			s.tp_row = r->tr_begin.tp_row + y;
1246 			d.tp_row = p->tp_row + y;
1247 
1248 			gfx_fb_copy_line(state, ncol, &s, &d);
1249 		}
1250 	} else {
1251 		for (y = nrow - 1; y >= 0; y--) {
1252 			s.tp_row = r->tr_begin.tp_row + y;
1253 			d.tp_row = p->tp_row + y;
1254 
1255 			gfx_fb_copy_line(state, ncol, &s, &d);
1256 		}
1257 	}
1258 
1259 	/* display the cursor */
1260 	if (state->tg_cursor_visible) {
1261 		const teken_pos_t *c;
1262 
1263 		c = teken_get_cursor(&state->tg_teken);
1264 		gfx_fb_cursor_draw(state, c, true);
1265 	}
1266 }
1267 
1268 /*
1269  * Implements alpha blending for RGBA data, could use pixels for arguments,
1270  * but byte stream seems more generic.
1271  * The generic alpha blending is:
1272  * blend = alpha * fg + (1.0 - alpha) * bg.
1273  * Since our alpha is not from range [0..1], we scale appropriately.
1274  */
1275 static uint8_t
1276 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha)
1277 {
1278 	uint16_t blend, h, l;
1279 
1280 	/* trivial corner cases */
1281 	if (alpha == 0)
1282 		return (bg);
1283 	if (alpha == 0xFF)
1284 		return (fg);
1285 	blend = (alpha * fg + (0xFF - alpha) * bg);
1286 	/* Division by 0xFF */
1287 	h = blend >> 8;
1288 	l = blend & 0xFF;
1289 	if (h + l >= 0xFF)
1290 		h++;
1291 	return (h);
1292 }
1293 
1294 /*
1295  * Implements alpha blending for RGBA data, could use pixels for arguments,
1296  * but byte stream seems more generic.
1297  * The generic alpha blending is:
1298  * blend = alpha * fg + (1.0 - alpha) * bg.
1299  * Since our alpha is not from range [0..1], we scale appropriately.
1300  */
1301 static void
1302 bitmap_cpy(void *dst, void *src, uint32_t size)
1303 {
1304 #if defined(EFI)
1305 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd;
1306 #else
1307 	struct paletteentry *ps, *pd;
1308 #endif
1309 	uint32_t i;
1310 	uint8_t a;
1311 
1312 	ps = src;
1313 	pd = dst;
1314 
1315 	/*
1316 	 * we only implement alpha blending for depth 32.
1317 	 */
1318 	for (i = 0; i < size; i ++) {
1319 		a = ps[i].Reserved;
1320 		pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a);
1321 		pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a);
1322 		pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a);
1323 		pd[i].Reserved = a;
1324 	}
1325 }
1326 
1327 static void *
1328 allocate_glyphbuffer(uint32_t width, uint32_t height)
1329 {
1330 	size_t size;
1331 
1332 	size = sizeof (*GlyphBuffer) * width * height;
1333 	if (size != GlyphBufferSize) {
1334 		free(GlyphBuffer);
1335 		GlyphBuffer = malloc(size);
1336 		if (GlyphBuffer == NULL)
1337 			return (NULL);
1338 		GlyphBufferSize = size;
1339 	}
1340 	return (GlyphBuffer);
1341 }
1342 
1343 void
1344 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height,
1345     void *data)
1346 {
1347 #if defined(EFI)
1348 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf, *p;
1349 #else
1350 	struct paletteentry *buf, *p;
1351 #endif
1352 	size_t size;
1353 
1354 	/*
1355 	 * If we do have shadow fb, we will use shadow to render data,
1356 	 * and copy shadow to video.
1357 	 */
1358 	if (gfx_state.tg_shadow_fb != NULL) {
1359 		uint32_t pitch = gfx_state.tg_fb.fb_width;
1360 
1361 		/* Copy rectangle line by line. */
1362 		p = data;
1363 		for (uint32_t sy = 0; sy < height; sy++) {
1364 			buf = (void *)(gfx_state.tg_shadow_fb +
1365 			    (y - gfx_state.tg_origin.tp_row) * pitch +
1366 			    x - gfx_state.tg_origin.tp_col);
1367 			bitmap_cpy(buf, &p[sy * width], width);
1368 			(void) gfxfb_blt(buf, GfxFbBltBufferToVideo,
1369 			    0, 0, x, y, width, 1, 0);
1370 			y++;
1371 		}
1372 		return;
1373 	}
1374 
1375 	/*
1376 	 * Common data to display is glyph, use preallocated
1377 	 * glyph buffer.
1378 	 */
1379         if (gfx_state.tg_glyph_size != GlyphBufferSize)
1380                 (void) allocate_glyphbuffer(width, height);
1381 
1382 	size = width * height * sizeof(*buf);
1383 	if (size == GlyphBufferSize)
1384 		buf = GlyphBuffer;
1385 	else
1386 		buf = malloc(size);
1387 	if (buf == NULL)
1388 		return;
1389 
1390 	if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0,
1391 	    width, height, 0) == 0) {
1392 		bitmap_cpy(buf, data, width * height);
1393 		(void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y,
1394 		    width, height, 0);
1395 	}
1396 	if (buf != GlyphBuffer)
1397 		free(buf);
1398 }
1399 
1400 /*
1401  * Public graphics primitives.
1402  */
1403 
1404 static int
1405 isqrt(int num)
1406 {
1407 	int res = 0;
1408 	int bit = 1 << 30;
1409 
1410 	/* "bit" starts at the highest power of four <= the argument. */
1411 	while (bit > num)
1412 		bit >>= 2;
1413 
1414 	while (bit != 0) {
1415 		if (num >= res + bit) {
1416 			num -= res + bit;
1417 			res = (res >> 1) + bit;
1418 		} else {
1419 			res >>= 1;
1420 		}
1421 		bit >>= 2;
1422 	}
1423 	return (res);
1424 }
1425 
1426 static uint32_t
1427 gfx_fb_getcolor(void)
1428 {
1429 	uint32_t c;
1430 	const teken_attr_t *ap;
1431 
1432 	ap = teken_get_curattr(&gfx_state.tg_teken);
1433         if (ap->ta_format & TF_REVERSE) {
1434 		c = ap->ta_bgcolor;
1435 		if (ap->ta_format & TF_BLINK)
1436 			c |= TC_LIGHT;
1437 	} else {
1438 		c = ap->ta_fgcolor;
1439 		if (ap->ta_format & TF_BOLD)
1440 			c |= TC_LIGHT;
1441 	}
1442 
1443 	return (gfx_fb_color_map(c));
1444 }
1445 
1446 /* set pixel in framebuffer using gfx coordinates */
1447 void
1448 gfx_fb_setpixel(uint32_t x, uint32_t y)
1449 {
1450 	uint32_t c;
1451 
1452 	if (gfx_state.tg_fb_type == FB_TEXT)
1453 		return;
1454 
1455 	c = gfx_fb_getcolor();
1456 
1457 	if (x >= gfx_state.tg_fb.fb_width ||
1458 	    y >= gfx_state.tg_fb.fb_height)
1459 		return;
1460 
1461 	gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0);
1462 }
1463 
1464 /*
1465  * draw rectangle in framebuffer using gfx coordinates.
1466  */
1467 void
1468 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2,
1469     uint32_t fill)
1470 {
1471 	uint32_t c;
1472 
1473 	if (gfx_state.tg_fb_type == FB_TEXT)
1474 		return;
1475 
1476 	c = gfx_fb_getcolor();
1477 
1478 	if (fill != 0) {
1479 		gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1,
1480 		    y2 - y1, 0);
1481 	} else {
1482 		gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1, 0);
1483 		gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y2, x2 - x1, 1, 0);
1484 		gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, 1, y2 - y1, 0);
1485 		gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x2, y1, 1, y2 - y1, 0);
1486 	}
1487 }
1488 
1489 void
1490 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd)
1491 {
1492 	int dx, sx, dy, sy;
1493 	int err, e2, x2, y2, ed, width;
1494 
1495 	if (gfx_state.tg_fb_type == FB_TEXT)
1496 		return;
1497 
1498 	width = wd;
1499 	sx = x0 < x1? 1 : -1;
1500 	sy = y0 < y1? 1 : -1;
1501 	dx = x1 > x0? x1 - x0 : x0 - x1;
1502 	dy = y1 > y0? y1 - y0 : y0 - y1;
1503 	err = dx + dy;
1504 	ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy);
1505 
1506 	for (;;) {
1507 		gfx_fb_setpixel(x0, y0);
1508 		e2 = err;
1509 		x2 = x0;
1510 		if ((e2 << 1) >= -dx) {		/* x step */
1511 			e2 += dy;
1512 			y2 = y0;
1513 			while (e2 < ed * width &&
1514 			    (y1 != (uint32_t)y2 || dx > dy)) {
1515 				y2 += sy;
1516 				gfx_fb_setpixel(x0, y2);
1517 				e2 += dx;
1518 			}
1519 			if (x0 == x1)
1520 				break;
1521 			e2 = err;
1522 			err -= dy;
1523 			x0 += sx;
1524 		}
1525 		if ((e2 << 1) <= dy) {		/* y step */
1526 			e2 = dx-e2;
1527 			while (e2 < ed * width &&
1528 			    (x1 != (uint32_t)x2 || dx < dy)) {
1529 				x2 += sx;
1530 				gfx_fb_setpixel(x2, y0);
1531 				e2 += dy;
1532 			}
1533 			if (y0 == y1)
1534 				break;
1535 			err += dx;
1536 			y0 += sy;
1537 		}
1538 	}
1539 }
1540 
1541 /*
1542  * quadratic Bézier curve limited to gradients without sign change.
1543  */
1544 void
1545 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2,
1546     uint32_t y2, uint32_t wd)
1547 {
1548 	int sx, sy, xx, yy, xy, width;
1549 	int dx, dy, err, curvature;
1550 	int i;
1551 
1552 	if (gfx_state.tg_fb_type == FB_TEXT)
1553 		return;
1554 
1555 	width = wd;
1556 	sx = x2 - x1;
1557 	sy = y2 - y1;
1558 	xx = x0 - x1;
1559 	yy = y0 - y1;
1560 	curvature = xx*sy - yy*sx;
1561 
1562 	if (sx*sx + sy*sy > xx*xx+yy*yy) {
1563 		x2 = x0;
1564 		x0 = sx + x1;
1565 		y2 = y0;
1566 		y0 = sy + y1;
1567 		curvature = -curvature;
1568 	}
1569 	if (curvature != 0) {
1570 		xx += sx;
1571 		sx = x0 < x2? 1 : -1;
1572 		xx *= sx;
1573 		yy += sy;
1574 		sy = y0 < y2? 1 : -1;
1575 		yy *= sy;
1576 		xy = (xx*yy) << 1;
1577 		xx *= xx;
1578 		yy *= yy;
1579 		if (curvature * sx * sy < 0) {
1580 			xx = -xx;
1581 			yy = -yy;
1582 			xy = -xy;
1583 			curvature = -curvature;
1584 		}
1585 		dx = 4 * sy * curvature * (x1 - x0) + xx - xy;
1586 		dy = 4 * sx * curvature * (y0 - y1) + yy - xy;
1587 		xx += xx;
1588 		yy += yy;
1589 		err = dx + dy + xy;
1590 		do {
1591 			for (i = 0; i <= width; i++)
1592 				gfx_fb_setpixel(x0 + i, y0);
1593 			if (x0 == x2 && y0 == y2)
1594 				return;  /* last pixel -> curve finished */
1595 			y1 = 2 * err < dx;
1596 			if (2 * err > dy) {
1597 				x0 += sx;
1598 				dx -= xy;
1599 				dy += yy;
1600 				err += dy;
1601 			}
1602 			if (y1 != 0) {
1603 				y0 += sy;
1604 				dy -= xy;
1605 				dx += xx;
1606 				err += dx;
1607 			}
1608 		} while (dy < dx); /* gradient negates -> algorithm fails */
1609 	}
1610 	gfx_fb_line(x0, y0, x2, y2, width);
1611 }
1612 
1613 /*
1614  * draw rectangle using terminal coordinates and current foreground color.
1615  */
1616 void
1617 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2)
1618 {
1619 	int x1, y1, x2, y2;
1620 	int xshift, yshift;
1621 	int width, i;
1622 	uint32_t vf_width, vf_height;
1623 	teken_rect_t r;
1624 
1625 	if (gfx_state.tg_fb_type == FB_TEXT)
1626 		return;
1627 
1628 	vf_width = gfx_state.tg_font.vf_width;
1629 	vf_height = gfx_state.tg_font.vf_height;
1630 	width = vf_width / 4;			/* line width */
1631 	xshift = (vf_width - width) / 2;
1632 	yshift = (vf_height - width) / 2;
1633 
1634 	/* Shift coordinates */
1635 	if (ux1 != 0)
1636 		ux1--;
1637 	if (uy1 != 0)
1638 		uy1--;
1639 	ux2--;
1640 	uy2--;
1641 
1642 	/* mark area used in terminal */
1643 	r.tr_begin.tp_col = ux1;
1644 	r.tr_begin.tp_row = uy1;
1645 	r.tr_end.tp_col = ux2 + 1;
1646 	r.tr_end.tp_row = uy2 + 1;
1647 
1648 	term_image_display(&gfx_state, &r);
1649 
1650 	/*
1651 	 * Draw horizontal lines width points thick, shifted from outer edge.
1652 	 */
1653 	x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col;
1654 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1655 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1656 	gfx_fb_drawrect(x1, y1, x2, y1 + width, 1);
1657 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1658 	y2 += vf_height - yshift - width;
1659 	gfx_fb_drawrect(x1, y2, x2, y2 + width, 1);
1660 
1661 	/*
1662 	 * Draw vertical lines width points thick, shifted from outer edge.
1663 	 */
1664 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1665 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1666 	y1 += vf_height;
1667 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1668 	gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
1669 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1670 	x1 += vf_width - xshift - width;
1671 	gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
1672 
1673 	/* Draw upper left corner. */
1674 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1675 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1676 	y1 += vf_height;
1677 
1678 	x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
1679 	x2 += vf_width;
1680 	y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1681 	for (i = 0; i <= width; i++)
1682 		gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i);
1683 
1684 	/* Draw lower left corner. */
1685 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
1686 	x1 += vf_width;
1687 	y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1688 	y1 += vf_height - yshift;
1689 	x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1690 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1691 	for (i = 0; i <= width; i++)
1692 		gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
1693 
1694 	/* Draw upper right corner. */
1695 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1696 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1697 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1698 	x2 += vf_width - xshift - width;
1699 	y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1700 	y2 += vf_height;
1701 	for (i = 0; i <= width; i++)
1702 		gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i);
1703 
1704 	/* Draw lower right corner. */
1705 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1706 	y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1707 	y1 += vf_height - yshift;
1708 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1709 	x2 += vf_width - xshift - width;
1710 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1711 	for (i = 0; i <= width; i++)
1712 		gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
1713 }
1714 
1715 int
1716 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2,
1717     uint32_t uy2, uint32_t flags)
1718 {
1719 #if defined(EFI)
1720 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
1721 #else
1722 	struct paletteentry *p;
1723 #endif
1724 	uint8_t *data;
1725 	uint32_t i, j, x, y, fheight, fwidth;
1726 	int rs, gs, bs;
1727 	uint8_t r, g, b, a;
1728 	bool scale = false;
1729 	bool trace = false;
1730 	teken_rect_t rect;
1731 
1732 	trace = (flags & FL_PUTIMAGE_DEBUG) != 0;
1733 
1734 	if (gfx_state.tg_fb_type == FB_TEXT) {
1735 		if (trace)
1736 			printf("Framebuffer not active.\n");
1737 		return (1);
1738 	}
1739 
1740 	if (png->color_type != PNG_TRUECOLOR_ALPHA) {
1741 		if (trace)
1742 			printf("Not truecolor image.\n");
1743 		return (1);
1744 	}
1745 
1746 	if (ux1 > gfx_state.tg_fb.fb_width ||
1747 	    uy1 > gfx_state.tg_fb.fb_height) {
1748 		if (trace)
1749 			printf("Top left coordinate off screen.\n");
1750 		return (1);
1751 	}
1752 
1753 	if (png->width > UINT16_MAX || png->height > UINT16_MAX) {
1754 		if (trace)
1755 			printf("Image too large.\n");
1756 		return (1);
1757 	}
1758 
1759 	if (png->width < 1 || png->height < 1) {
1760 		if (trace)
1761 			printf("Image too small.\n");
1762 		return (1);
1763 	}
1764 
1765 	/*
1766 	 * If 0 was passed for either ux2 or uy2, then calculate the missing
1767 	 * part of the bottom right coordinate.
1768 	 */
1769 	scale = true;
1770 	if (ux2 == 0 && uy2 == 0) {
1771 		/* Both 0, use the native resolution of the image */
1772 		ux2 = ux1 + png->width;
1773 		uy2 = uy1 + png->height;
1774 		scale = false;
1775 	} else if (ux2 == 0) {
1776 		/* Set ux2 from uy2/uy1 to maintain aspect ratio */
1777 		ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height;
1778 	} else if (uy2 == 0) {
1779 		/* Set uy2 from ux2/ux1 to maintain aspect ratio */
1780 		uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width;
1781 	}
1782 
1783 	if (ux2 > gfx_state.tg_fb.fb_width ||
1784 	    uy2 > gfx_state.tg_fb.fb_height) {
1785 		if (trace)
1786 			printf("Bottom right coordinate off screen.\n");
1787 		return (1);
1788 	}
1789 
1790 	fwidth = ux2 - ux1;
1791 	fheight = uy2 - uy1;
1792 
1793 	/*
1794 	 * If the original image dimensions have been passed explicitly,
1795 	 * disable scaling.
1796 	 */
1797 	if (fwidth == png->width && fheight == png->height)
1798 		scale = false;
1799 
1800 	if (ux1 == 0) {
1801 		/*
1802 		 * No top left X co-ordinate (real coordinates start at 1),
1803 		 * place as far right as it will fit.
1804 		 */
1805 		ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col;
1806 		ux1 = ux2 - fwidth;
1807 	}
1808 
1809 	if (uy1 == 0) {
1810 		/*
1811 		 * No top left Y co-ordinate (real coordinates start at 1),
1812 		 * place as far down as it will fit.
1813 		 */
1814 		uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row;
1815 		uy1 = uy2 - fheight;
1816 	}
1817 
1818 	if (ux1 >= ux2 || uy1 >= uy2) {
1819 		if (trace)
1820 			printf("Image dimensions reversed.\n");
1821 		return (1);
1822 	}
1823 
1824 	if (fwidth < 2 || fheight < 2) {
1825 		if (trace)
1826 			printf("Target area too small\n");
1827 		return (1);
1828 	}
1829 
1830 	if (trace)
1831 		printf("Image %ux%u -> %ux%u @%ux%u\n",
1832 		    png->width, png->height, fwidth, fheight, ux1, uy1);
1833 
1834 	rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width;
1835 	rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height;
1836 	rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width;
1837 	rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height;
1838 
1839 	/*
1840 	 * mark area used in terminal
1841 	 */
1842 	if (!(flags & FL_PUTIMAGE_NOSCROLL))
1843 		term_image_display(&gfx_state, &rect);
1844 
1845 	if ((flags & FL_PUTIMAGE_BORDER))
1846 		gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0);
1847 
1848 	data = malloc(fwidth * fheight * sizeof(*p));
1849 	p = (void *)data;
1850 	if (data == NULL) {
1851 		if (trace)
1852 			printf("Out of memory.\n");
1853 		return (1);
1854 	}
1855 
1856 	/*
1857 	 * Build image for our framebuffer.
1858 	 */
1859 
1860 	/* Helper to calculate the pixel index from the source png */
1861 #define	GETPIXEL(xx, yy)	(((yy) * png->width + (xx)) * png->bpp)
1862 
1863 	/*
1864 	 * For each of the x and y directions, calculate the number of pixels
1865 	 * in the source image that correspond to a single pixel in the target.
1866 	 * Use fixed-point arithmetic with 16-bits for each of the integer and
1867 	 * fractional parts.
1868 	 */
1869 	const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1);
1870 	const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1);
1871 
1872 	rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) -
1873 	    ffs(gfx_state.tg_fb.fb_mask_red) + 1);
1874 	gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) -
1875 	    ffs(gfx_state.tg_fb.fb_mask_green) + 1);
1876 	bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) -
1877 	    ffs(gfx_state.tg_fb.fb_mask_blue) + 1);
1878 
1879 	uint32_t hc = 0;
1880 	for (y = 0; y < fheight; y++) {
1881 		uint32_t hc2 = (hc >> 9) & 0x7f;
1882 		uint32_t hc1 = 0x80 - hc2;
1883 
1884 		uint32_t offset_y = hc >> 16;
1885 		uint32_t offset_y1 = offset_y + 1;
1886 
1887 		uint32_t wc = 0;
1888 		for (x = 0; x < fwidth; x++) {
1889 			uint32_t wc2 = (wc >> 9) & 0x7f;
1890 			uint32_t wc1 = 0x80 - wc2;
1891 
1892 			uint32_t offset_x = wc >> 16;
1893 			uint32_t offset_x1 = offset_x + 1;
1894 
1895 			/* Target pixel index */
1896 			j = y * fwidth + x;
1897 
1898 			if (!scale) {
1899 				i = GETPIXEL(x, y);
1900 				r = png->image[i];
1901 				g = png->image[i + 1];
1902 				b = png->image[i + 2];
1903 				a = png->image[i + 3];
1904 			} else {
1905 				uint8_t pixel[4];
1906 
1907 				uint32_t p00 = GETPIXEL(offset_x, offset_y);
1908 				uint32_t p01 = GETPIXEL(offset_x, offset_y1);
1909 				uint32_t p10 = GETPIXEL(offset_x1, offset_y);
1910 				uint32_t p11 = GETPIXEL(offset_x1, offset_y1);
1911 
1912 				/*
1913 				 * Given a 2x2 array of pixels in the source
1914 				 * image, combine them to produce a single
1915 				 * value for the pixel in the target image.
1916 				 * Each column of pixels is combined using
1917 				 * a weighted average where the top and bottom
1918 				 * pixels contribute hc1 and hc2 respectively.
1919 				 * The calculation for bottom pixel pB and
1920 				 * top pixel pT is:
1921 				 *   (pT * hc1 + pB * hc2) / (hc1 + hc2)
1922 				 * Once the values are determined for the two
1923 				 * columns of pixels, then the columns are
1924 				 * averaged together in the same way but using
1925 				 * wc1 and wc2 for the weightings.
1926 				 *
1927 				 * Since hc1 and hc2 are chosen so that
1928 				 * hc1 + hc2 == 128 (and same for wc1 + wc2),
1929 				 * the >> 14 below is a quick way to divide by
1930 				 * (hc1 + hc2) * (wc1 + wc2)
1931 				 */
1932 				for (i = 0; i < 4; i++)
1933 					pixel[i] = (
1934 					    (png->image[p00 + i] * hc1 +
1935 					    png->image[p01 + i] * hc2) * wc1 +
1936 					    (png->image[p10 + i] * hc1 +
1937 					    png->image[p11 + i] * hc2) * wc2)
1938 					    >> 14;
1939 
1940 				r = pixel[0];
1941 				g = pixel[1];
1942 				b = pixel[2];
1943 				a = pixel[3];
1944 			}
1945 
1946 			if (trace)
1947 				printf("r/g/b: %x/%x/%x\n", r, g, b);
1948 			/*
1949 			 * Rough colorspace reduction for 15/16 bit colors.
1950 			 */
1951 			p[j].Red = r >> rs;
1952                         p[j].Green = g >> gs;
1953                         p[j].Blue = b >> bs;
1954                         p[j].Reserved = a;
1955 
1956 			wc += wcstep;
1957 		}
1958 		hc += hcstep;
1959 	}
1960 
1961 	gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data);
1962 	free(data);
1963 	return (0);
1964 }
1965 
1966 /*
1967  * Reset font flags to FONT_AUTO.
1968  */
1969 void
1970 reset_font_flags(void)
1971 {
1972 	struct fontlist *fl;
1973 
1974 	STAILQ_FOREACH(fl, &fonts, font_next) {
1975 		fl->font_flags = FONT_AUTO;
1976 	}
1977 }
1978 
1979 /* Return  w^2 + h^2 or 0, if the dimensions are unknown */
1980 static unsigned
1981 edid_diagonal_squared(void)
1982 {
1983 	unsigned w, h;
1984 
1985 	if (edid_info == NULL)
1986 		return (0);
1987 
1988 	w = edid_info->display.max_horizontal_image_size;
1989 	h = edid_info->display.max_vertical_image_size;
1990 
1991 	/* If either one is 0, we have aspect ratio, not size */
1992 	if (w == 0 || h == 0)
1993 		return (0);
1994 
1995 	/*
1996 	 * some monitors encode the aspect ratio instead of the physical size.
1997 	 */
1998 	if ((w == 16 && h == 9) || (w == 16 && h == 10) ||
1999 	    (w == 4 && h == 3) || (w == 5 && h == 4))
2000 		return (0);
2001 
2002 	/*
2003 	 * translate cm to inch, note we scale by 100 here.
2004 	 */
2005 	w = w * 100 / 254;
2006 	h = h * 100 / 254;
2007 
2008 	/* Return w^2 + h^2 */
2009 	return (w * w + h * h);
2010 }
2011 
2012 /*
2013  * calculate pixels per inch.
2014  */
2015 static unsigned
2016 gfx_get_ppi(void)
2017 {
2018 	unsigned dp, di;
2019 
2020 	di = edid_diagonal_squared();
2021 	if (di == 0)
2022 		return (0);
2023 
2024 	dp = gfx_state.tg_fb.fb_width *
2025 	    gfx_state.tg_fb.fb_width +
2026 	    gfx_state.tg_fb.fb_height *
2027 	    gfx_state.tg_fb.fb_height;
2028 
2029 	return (isqrt(dp / di));
2030 }
2031 
2032 /*
2033  * Calculate font size from density independent pixels (dp):
2034  * ((16dp * ppi) / 160) * display_factor.
2035  * Here we are using fixed constants: 1dp == 160 ppi and
2036  * display_factor 2.
2037  *
2038  * We are rounding font size up and are searching for font which is
2039  * not smaller than calculated size value.
2040  */
2041 static vt_font_bitmap_data_t *
2042 gfx_get_font(void)
2043 {
2044 	unsigned ppi, size;
2045 	vt_font_bitmap_data_t *font = NULL;
2046 	struct fontlist *fl, *next;
2047 
2048 	/* Text mode is not supported here. */
2049 	if (gfx_state.tg_fb_type == FB_TEXT)
2050 		return (NULL);
2051 
2052 	ppi = gfx_get_ppi();
2053 	if (ppi == 0)
2054 		return (NULL);
2055 
2056 	/*
2057 	 * We will search for 16dp font.
2058 	 * We are using scale up by 10 for roundup.
2059 	 */
2060 	size = (16 * ppi * 10) / 160;
2061 	/* Apply display factor 2.  */
2062 	size = roundup(size * 2, 10) / 10;
2063 
2064 	STAILQ_FOREACH(fl, &fonts, font_next) {
2065 		next = STAILQ_NEXT(fl, font_next);
2066 
2067 		/*
2068 		 * If this is last font or, if next font is smaller,
2069 		 * we have our font. Make sure, it actually is loaded.
2070 		 */
2071 		if (next == NULL || next->font_data->vfbd_height < size) {
2072 			font = fl->font_data;
2073 			if (font->vfbd_font == NULL ||
2074 			    fl->font_flags == FONT_RELOAD) {
2075 				if (fl->font_load != NULL &&
2076 				    fl->font_name != NULL)
2077 					font = fl->font_load(fl->font_name);
2078 			}
2079 			break;
2080 		}
2081 	}
2082 
2083 	return (font);
2084 }
2085 
2086 static vt_font_bitmap_data_t *
2087 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w)
2088 {
2089 	vt_font_bitmap_data_t *font = NULL;
2090 	struct fontlist *fl;
2091 	unsigned height = h;
2092 	unsigned width = w;
2093 
2094 	/*
2095 	 * First check for manually loaded font.
2096 	 */
2097 	STAILQ_FOREACH(fl, &fonts, font_next) {
2098 		if (fl->font_flags == FONT_MANUAL) {
2099 			font = fl->font_data;
2100 			if (font->vfbd_font == NULL && fl->font_load != NULL &&
2101 			    fl->font_name != NULL) {
2102 				font = fl->font_load(fl->font_name);
2103 			}
2104 			if (font == NULL || font->vfbd_font == NULL)
2105 				font = NULL;
2106 			break;
2107 		}
2108 	}
2109 
2110 	if (font == NULL)
2111 		font = gfx_get_font();
2112 
2113 	if (font != NULL) {
2114 		*rows = height / font->vfbd_height;
2115 		*cols = width / font->vfbd_width;
2116 		return (font);
2117 	}
2118 
2119 	/*
2120 	 * Find best font for these dimensions, or use default.
2121 	 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH,
2122 	 * do not use smaller font than our DEFAULT_FONT_DATA.
2123 	 */
2124 	STAILQ_FOREACH(fl, &fonts, font_next) {
2125 		font = fl->font_data;
2126 		if ((*rows * font->vfbd_height <= height &&
2127 		    *cols * font->vfbd_width <= width) ||
2128 		    (height >= VT_FB_MAX_HEIGHT &&
2129 		    width >= VT_FB_MAX_WIDTH &&
2130 		    font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height &&
2131 		    font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) {
2132 			if (font->vfbd_font == NULL ||
2133 			    fl->font_flags == FONT_RELOAD) {
2134 				if (fl->font_load != NULL &&
2135 				    fl->font_name != NULL) {
2136 					font = fl->font_load(fl->font_name);
2137 				}
2138 				if (font == NULL)
2139 					continue;
2140 			}
2141 			*rows = height / font->vfbd_height;
2142 			*cols = width / font->vfbd_width;
2143 			break;
2144 		}
2145 		font = NULL;
2146 	}
2147 
2148 	if (font == NULL) {
2149 		/*
2150 		 * We have fonts sorted smallest last, try it before
2151 		 * falling back to builtin.
2152 		 */
2153 		fl = STAILQ_LAST(&fonts, fontlist, font_next);
2154 		if (fl != NULL && fl->font_load != NULL &&
2155 		    fl->font_name != NULL) {
2156 			font = fl->font_load(fl->font_name);
2157 		}
2158 		if (font == NULL)
2159 			font = &DEFAULT_FONT_DATA;
2160 
2161 		*rows = height / font->vfbd_height;
2162 		*cols = width / font->vfbd_width;
2163 	}
2164 
2165 	return (font);
2166 }
2167 
2168 static void
2169 cons_clear(void)
2170 {
2171 	char clear[] = { '\033', 'c' };
2172 
2173 	/* Reset terminal */
2174 	teken_input(&gfx_state.tg_teken, clear, sizeof(clear));
2175 	gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0);
2176 }
2177 
2178 void
2179 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width)
2180 {
2181 	vt_font_bitmap_data_t *font_data;
2182 	teken_pos_t *tp = &state->tg_tp;
2183 	char env[8];
2184 	int i;
2185 
2186 	/*
2187 	 * set_font() will select a appropriate sized font for
2188 	 * the number of rows and columns selected.  If we don't
2189 	 * have a font that will fit, then it will use the
2190 	 * default builtin font and adjust the rows and columns
2191 	 * to fit on the screen.
2192 	 */
2193 	font_data = set_font(&tp->tp_row, &tp->tp_col, height, width);
2194 
2195         if (font_data == NULL)
2196 		panic("out of memory");
2197 
2198 	for (i = 0; i < VFNT_MAPS; i++) {
2199 		state->tg_font.vf_map[i] =
2200 		    font_data->vfbd_font->vf_map[i];
2201 		state->tg_font.vf_map_count[i] =
2202 		    font_data->vfbd_font->vf_map_count[i];
2203 	}
2204 
2205 	state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes;
2206 	state->tg_font.vf_height = font_data->vfbd_font->vf_height;
2207 	state->tg_font.vf_width = font_data->vfbd_font->vf_width;
2208 
2209 	snprintf(env, sizeof (env), "%ux%u",
2210 	    state->tg_font.vf_width, state->tg_font.vf_height);
2211 	env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK,
2212 	    env, font_set, env_nounset);
2213 }
2214 
2215 /* Binary search for the glyph. Return 0 if not found. */
2216 static uint16_t
2217 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src)
2218 {
2219 	unsigned min, mid, max;
2220 
2221 	min = 0;
2222 	max = len - 1;
2223 
2224 	/* Empty font map. */
2225 	if (len == 0)
2226 		return (0);
2227 	/* Character below minimal entry. */
2228 	if (src < map[0].vfm_src)
2229 		return (0);
2230 	/* Optimization: ASCII characters occur very often. */
2231 	if (src <= map[0].vfm_src + map[0].vfm_len)
2232 		return (src - map[0].vfm_src + map[0].vfm_dst);
2233 	/* Character above maximum entry. */
2234 	if (src > map[max].vfm_src + map[max].vfm_len)
2235 		return (0);
2236 
2237 	/* Binary search. */
2238 	while (max >= min) {
2239 		mid = (min + max) / 2;
2240 		if (src < map[mid].vfm_src)
2241 			max = mid - 1;
2242 		else if (src > map[mid].vfm_src + map[mid].vfm_len)
2243 			min = mid + 1;
2244 		else
2245 			return (src - map[mid].vfm_src + map[mid].vfm_dst);
2246 	}
2247 
2248 	return (0);
2249 }
2250 
2251 /*
2252  * Return glyph bitmap. If glyph is not found, we will return bitmap
2253  * for the first (offset 0) glyph.
2254  */
2255 uint8_t *
2256 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a)
2257 {
2258 	uint16_t dst;
2259 	size_t stride;
2260 
2261 	/* Substitute bold with normal if not found. */
2262 	if (a->ta_format & TF_BOLD) {
2263 		dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD],
2264 		    vf->vf_map_count[VFNT_MAP_BOLD], c);
2265 		if (dst != 0)
2266 			goto found;
2267 	}
2268 	dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL],
2269 	    vf->vf_map_count[VFNT_MAP_NORMAL], c);
2270 
2271 found:
2272 	stride = howmany(vf->vf_width, 8) * vf->vf_height;
2273 	return (&vf->vf_bytes[dst * stride]);
2274 }
2275 
2276 static int
2277 load_mapping(int fd, struct vt_font *fp, int n)
2278 {
2279 	size_t i, size;
2280 	ssize_t rv;
2281 	vfnt_map_t *mp;
2282 
2283 	if (fp->vf_map_count[n] == 0)
2284 		return (0);
2285 
2286 	size = fp->vf_map_count[n] * sizeof(*mp);
2287 	mp = malloc(size);
2288 	if (mp == NULL)
2289 		return (ENOMEM);
2290 	fp->vf_map[n] = mp;
2291 
2292 	rv = read(fd, mp, size);
2293 	if (rv < 0 || (size_t)rv != size) {
2294 		free(fp->vf_map[n]);
2295 		fp->vf_map[n] = NULL;
2296 		return (EIO);
2297 	}
2298 
2299 	for (i = 0; i < fp->vf_map_count[n]; i++) {
2300 		mp[i].vfm_src = be32toh(mp[i].vfm_src);
2301 		mp[i].vfm_dst = be16toh(mp[i].vfm_dst);
2302 		mp[i].vfm_len = be16toh(mp[i].vfm_len);
2303 	}
2304 	return (0);
2305 }
2306 
2307 static int
2308 builtin_mapping(struct vt_font *fp, int n)
2309 {
2310 	size_t size;
2311 	struct vfnt_map *mp;
2312 
2313 	if (n >= VFNT_MAPS)
2314 		return (EINVAL);
2315 
2316 	if (fp->vf_map_count[n] == 0)
2317 		return (0);
2318 
2319 	size = fp->vf_map_count[n] * sizeof(*mp);
2320 	mp = malloc(size);
2321 	if (mp == NULL)
2322 		return (ENOMEM);
2323 	fp->vf_map[n] = mp;
2324 
2325 	memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size);
2326 	return (0);
2327 }
2328 
2329 /*
2330  * Load font from builtin or from file.
2331  * We do need special case for builtin because the builtin font glyphs
2332  * are compressed and we do need to uncompress them.
2333  * Having single load_font() for both cases will help us to simplify
2334  * font switch handling.
2335  */
2336 static vt_font_bitmap_data_t *
2337 load_font(char *path)
2338 {
2339 	int fd, i;
2340 	uint32_t glyphs;
2341 	struct font_header fh;
2342 	struct fontlist *fl;
2343 	vt_font_bitmap_data_t *bp;
2344 	struct vt_font *fp;
2345 	size_t size;
2346 	ssize_t rv;
2347 
2348 	/* Get our entry from the font list. */
2349 	STAILQ_FOREACH(fl, &fonts, font_next) {
2350 		if (strcmp(fl->font_name, path) == 0)
2351 			break;
2352 	}
2353 	if (fl == NULL)
2354 		return (NULL);	/* Should not happen. */
2355 
2356 	bp = fl->font_data;
2357 	if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD)
2358 		return (bp);
2359 
2360 	fd = -1;
2361 	/*
2362 	 * Special case for builtin font.
2363 	 * Builtin font is the very first font we load, we do not have
2364 	 * previous loads to be released.
2365 	 */
2366 	if (fl->font_flags == FONT_BUILTIN) {
2367 		if ((fp = calloc(1, sizeof(struct vt_font))) == NULL)
2368 			return (NULL);
2369 
2370 		fp->vf_width = DEFAULT_FONT_DATA.vfbd_width;
2371 		fp->vf_height = DEFAULT_FONT_DATA.vfbd_height;
2372 
2373 		fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size);
2374 		if (fp->vf_bytes == NULL) {
2375 			free(fp);
2376 			return (NULL);
2377 		}
2378 
2379 		bp->vfbd_uncompressed_size =
2380 		    DEFAULT_FONT_DATA.vfbd_uncompressed_size;
2381 		bp->vfbd_compressed_size =
2382 		    DEFAULT_FONT_DATA.vfbd_compressed_size;
2383 
2384 		if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data,
2385 		    fp->vf_bytes,
2386 		    DEFAULT_FONT_DATA.vfbd_compressed_size,
2387 		    DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) {
2388 			free(fp->vf_bytes);
2389 			free(fp);
2390 			return (NULL);
2391 		}
2392 
2393 		for (i = 0; i < VFNT_MAPS; i++) {
2394 			fp->vf_map_count[i] =
2395 			    DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i];
2396 			if (builtin_mapping(fp, i) != 0)
2397 				goto free_done;
2398 		}
2399 
2400 		bp->vfbd_font = fp;
2401 		return (bp);
2402 	}
2403 
2404 	fd = open(path, O_RDONLY);
2405 	if (fd < 0)
2406 		return (NULL);
2407 
2408 	size = sizeof(fh);
2409 	rv = read(fd, &fh, size);
2410 	if (rv < 0 || (size_t)rv != size) {
2411 		bp = NULL;
2412 		goto done;
2413 	}
2414 	if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) {
2415 		bp = NULL;
2416 		goto done;
2417 	}
2418 	if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) {
2419 		bp = NULL;
2420 		goto done;
2421 	}
2422 	for (i = 0; i < VFNT_MAPS; i++)
2423 		fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]);
2424 
2425 	glyphs = be32toh(fh.fh_glyph_count);
2426 	fp->vf_width = fh.fh_width;
2427 	fp->vf_height = fh.fh_height;
2428 
2429 	size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs;
2430 	bp->vfbd_uncompressed_size = size;
2431 	if ((fp->vf_bytes = malloc(size)) == NULL)
2432 		goto free_done;
2433 
2434 	rv = read(fd, fp->vf_bytes, size);
2435 	if (rv < 0 || (size_t)rv != size)
2436 		goto free_done;
2437 	for (i = 0; i < VFNT_MAPS; i++) {
2438 		if (load_mapping(fd, fp, i) != 0)
2439 			goto free_done;
2440 	}
2441 
2442 	/*
2443 	 * Reset builtin flag now as we have full font loaded.
2444 	 */
2445 	if (fl->font_flags == FONT_BUILTIN)
2446 		fl->font_flags = FONT_AUTO;
2447 
2448 	/*
2449 	 * Release previously loaded entries. We can do this now, as
2450 	 * the new font is loaded. Note, there can be no console
2451 	 * output till the new font is in place and teken is notified.
2452 	 * We do need to keep fl->font_data for glyph dimensions.
2453 	 */
2454 	STAILQ_FOREACH(fl, &fonts, font_next) {
2455 		if (fl->font_data->vfbd_font == NULL)
2456 			continue;
2457 
2458 		for (i = 0; i < VFNT_MAPS; i++)
2459 			free(fl->font_data->vfbd_font->vf_map[i]);
2460 		free(fl->font_data->vfbd_font->vf_bytes);
2461 		free(fl->font_data->vfbd_font);
2462 		fl->font_data->vfbd_font = NULL;
2463 	}
2464 
2465 	bp->vfbd_font = fp;
2466 	bp->vfbd_compressed_size = 0;
2467 
2468 done:
2469 	if (fd != -1)
2470 		close(fd);
2471 	return (bp);
2472 
2473 free_done:
2474 	for (i = 0; i < VFNT_MAPS; i++)
2475 		free(fp->vf_map[i]);
2476 	free(fp->vf_bytes);
2477 	free(fp);
2478 	bp = NULL;
2479 	goto done;
2480 }
2481 
2482 struct name_entry {
2483 	char			*n_name;
2484 	SLIST_ENTRY(name_entry)	n_entry;
2485 };
2486 
2487 SLIST_HEAD(name_list, name_entry);
2488 
2489 /* Read font names from index file. */
2490 static struct name_list *
2491 read_list(char *fonts)
2492 {
2493 	struct name_list *nl;
2494 	struct name_entry *np;
2495 	char *dir, *ptr;
2496 	char buf[PATH_MAX];
2497 	int fd, len;
2498 
2499 	TSENTER();
2500 
2501 	dir = strdup(fonts);
2502 	if (dir == NULL)
2503 		return (NULL);
2504 
2505 	ptr = strrchr(dir, '/');
2506 	*ptr = '\0';
2507 
2508 	fd = open(fonts, O_RDONLY);
2509 	if (fd < 0)
2510 		return (NULL);
2511 
2512 	nl = malloc(sizeof(*nl));
2513 	if (nl == NULL) {
2514 		close(fd);
2515 		return (nl);
2516 	}
2517 
2518 	SLIST_INIT(nl);
2519 	while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) {
2520 		if (*buf == '#' || *buf == '\0')
2521 			continue;
2522 
2523 		if (bcmp(buf, "MENU", 4) == 0)
2524 			continue;
2525 
2526 		if (bcmp(buf, "FONT", 4) == 0)
2527 			continue;
2528 
2529 		ptr = strchr(buf, ':');
2530 		if (ptr == NULL)
2531 			continue;
2532 		else
2533 			*ptr = '\0';
2534 
2535 		np = malloc(sizeof(*np));
2536 		if (np == NULL) {
2537 			close(fd);
2538 			return (nl);	/* return what we have */
2539 		}
2540 		if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) {
2541 			free(np);
2542 			close(fd);
2543 			return (nl);    /* return what we have */
2544 		}
2545 		SLIST_INSERT_HEAD(nl, np, n_entry);
2546 	}
2547 	close(fd);
2548 	TSEXIT();
2549 	return (nl);
2550 }
2551 
2552 /*
2553  * Read the font properties and insert new entry into the list.
2554  * The font list is built in descending order.
2555  */
2556 static bool
2557 insert_font(char *name, FONT_FLAGS flags)
2558 {
2559 	struct font_header fh;
2560 	struct fontlist *fp, *previous, *entry, *next;
2561 	size_t size;
2562 	ssize_t rv;
2563 	int fd;
2564 	char *font_name;
2565 
2566 	TSENTER();
2567 
2568 	font_name = NULL;
2569 	if (flags == FONT_BUILTIN) {
2570 		/*
2571 		 * We only install builtin font once, while setting up
2572 		 * initial console. Since this will happen very early,
2573 		 * we assume asprintf will not fail. Once we have access to
2574 		 * files, the builtin font will be replaced by font loaded
2575 		 * from file.
2576 		 */
2577 		if (!STAILQ_EMPTY(&fonts))
2578 			return (false);
2579 
2580 		fh.fh_width = DEFAULT_FONT_DATA.vfbd_width;
2581 		fh.fh_height = DEFAULT_FONT_DATA.vfbd_height;
2582 
2583 		(void) asprintf(&font_name, "%dx%d",
2584 		    DEFAULT_FONT_DATA.vfbd_width,
2585 		    DEFAULT_FONT_DATA.vfbd_height);
2586 	} else {
2587 		fd = open(name, O_RDONLY);
2588 		if (fd < 0)
2589 			return (false);
2590 		rv = read(fd, &fh, sizeof(fh));
2591 		close(fd);
2592 		if (rv < 0 || (size_t)rv != sizeof(fh))
2593 			return (false);
2594 
2595 		if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC,
2596 		    sizeof(fh.fh_magic)) != 0)
2597 			return (false);
2598 		font_name = strdup(name);
2599 	}
2600 
2601 	if (font_name == NULL)
2602 		return (false);
2603 
2604 	/*
2605 	 * If we have an entry with the same glyph dimensions, replace
2606 	 * the file name and mark us. We only support unique dimensions.
2607 	 */
2608 	STAILQ_FOREACH(entry, &fonts, font_next) {
2609 		if (fh.fh_width == entry->font_data->vfbd_width &&
2610 		    fh.fh_height == entry->font_data->vfbd_height) {
2611 			free(entry->font_name);
2612 			entry->font_name = font_name;
2613 			entry->font_flags = FONT_RELOAD;
2614 			TSEXIT();
2615 			return (true);
2616 		}
2617 	}
2618 
2619 	fp = calloc(sizeof(*fp), 1);
2620 	if (fp == NULL) {
2621 		free(font_name);
2622 		return (false);
2623 	}
2624 	fp->font_data = calloc(sizeof(*fp->font_data), 1);
2625 	if (fp->font_data == NULL) {
2626 		free(font_name);
2627 		free(fp);
2628 		return (false);
2629 	}
2630 	fp->font_name = font_name;
2631 	fp->font_flags = flags;
2632 	fp->font_load = load_font;
2633 	fp->font_data->vfbd_width = fh.fh_width;
2634 	fp->font_data->vfbd_height = fh.fh_height;
2635 
2636 	if (STAILQ_EMPTY(&fonts)) {
2637 		STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2638 		TSEXIT();
2639 		return (true);
2640 	}
2641 
2642 	previous = NULL;
2643 	size = fp->font_data->vfbd_width * fp->font_data->vfbd_height;
2644 
2645 	STAILQ_FOREACH(entry, &fonts, font_next) {
2646 		vt_font_bitmap_data_t *bd;
2647 
2648 		bd = entry->font_data;
2649 		/* Should fp be inserted before the entry? */
2650 		if (size > bd->vfbd_width * bd->vfbd_height) {
2651 			if (previous == NULL) {
2652 				STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2653 			} else {
2654 				STAILQ_INSERT_AFTER(&fonts, previous, fp,
2655 				    font_next);
2656 			}
2657 			TSEXIT();
2658 			return (true);
2659 		}
2660 		next = STAILQ_NEXT(entry, font_next);
2661 		if (next == NULL ||
2662 		    size > next->font_data->vfbd_width *
2663 		    next->font_data->vfbd_height) {
2664 			STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next);
2665 			TSEXIT();
2666 			return (true);
2667 		}
2668 		previous = entry;
2669 	}
2670 	TSEXIT();
2671 	return (true);
2672 }
2673 
2674 static int
2675 font_set(struct env_var *ev __unused, int flags __unused, const void *value)
2676 {
2677 	struct fontlist *fl;
2678 	char *eptr;
2679 	unsigned long x = 0, y = 0;
2680 
2681 	/*
2682 	 * Attempt to extract values from "XxY" string. In case of error,
2683 	 * we have unmaching glyph dimensions and will just output the
2684 	 * available values.
2685 	 */
2686 	if (value != NULL) {
2687 		x = strtoul(value, &eptr, 10);
2688 		if (*eptr == 'x')
2689 			y = strtoul(eptr + 1, &eptr, 10);
2690 	}
2691 	STAILQ_FOREACH(fl, &fonts, font_next) {
2692 		if (fl->font_data->vfbd_width == x &&
2693 		    fl->font_data->vfbd_height == y)
2694 			break;
2695 	}
2696 	if (fl != NULL) {
2697 		/* Reset any FONT_MANUAL flag. */
2698 		reset_font_flags();
2699 
2700 		/* Mark this font manually loaded */
2701 		fl->font_flags = FONT_MANUAL;
2702 		cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2703 		return (CMD_OK);
2704 	}
2705 
2706 	printf("Available fonts:\n");
2707 	STAILQ_FOREACH(fl, &fonts, font_next) {
2708 		printf("    %dx%d\n", fl->font_data->vfbd_width,
2709 		    fl->font_data->vfbd_height);
2710 	}
2711 	return (CMD_OK);
2712 }
2713 
2714 void
2715 bios_text_font(bool use_vga_font)
2716 {
2717 	if (use_vga_font)
2718 		(void) insert_font(VGA_8X16_FONT, FONT_MANUAL);
2719 	else
2720 		(void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL);
2721 }
2722 
2723 void
2724 autoload_font(bool bios)
2725 {
2726 	struct name_list *nl;
2727 	struct name_entry *np;
2728 
2729 	TSENTER();
2730 
2731 	nl = read_list("/boot/fonts/INDEX.fonts");
2732 	if (nl == NULL)
2733 		return;
2734 
2735 	while (!SLIST_EMPTY(nl)) {
2736 		np = SLIST_FIRST(nl);
2737 		SLIST_REMOVE_HEAD(nl, n_entry);
2738 		if (insert_font(np->n_name, FONT_AUTO) == false)
2739 			printf("failed to add font: %s\n", np->n_name);
2740 		free(np->n_name);
2741 		free(np);
2742 	}
2743 
2744 	/*
2745 	 * If vga text mode was requested, load vga.font (8x16 bold) font.
2746 	 */
2747 	if (bios) {
2748 		bios_text_font(true);
2749 	}
2750 
2751 	(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2752 
2753 	TSEXIT();
2754 }
2755 
2756 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font);
2757 
2758 static int
2759 command_font(int argc, char *argv[])
2760 {
2761 	int i, c, rc;
2762 	struct fontlist *fl;
2763 	vt_font_bitmap_data_t *bd;
2764 	bool list;
2765 
2766 	list = false;
2767 	optind = 1;
2768 	optreset = 1;
2769 	rc = CMD_OK;
2770 
2771 	while ((c = getopt(argc, argv, "l")) != -1) {
2772 		switch (c) {
2773 		case 'l':
2774 			list = true;
2775 			break;
2776 		case '?':
2777 		default:
2778 			return (CMD_ERROR);
2779 		}
2780 	}
2781 
2782 	argc -= optind;
2783 	argv += optind;
2784 
2785 	if (argc > 1 || (list && argc != 0)) {
2786 		printf("Usage: loadfont [-l] | [file.fnt]\n");
2787 		return (CMD_ERROR);
2788 	}
2789 
2790 	if (list) {
2791 		STAILQ_FOREACH(fl, &fonts, font_next) {
2792 			printf("font %s: %dx%d%s\n", fl->font_name,
2793 			    fl->font_data->vfbd_width,
2794 			    fl->font_data->vfbd_height,
2795 			    fl->font_data->vfbd_font == NULL? "" : " loaded");
2796 		}
2797 		return (CMD_OK);
2798 	}
2799 
2800 	/* Clear scren */
2801 	cons_clear();
2802 
2803 	if (argc == 1) {
2804 		char *name = argv[0];
2805 
2806 		if (insert_font(name, FONT_MANUAL) == false) {
2807 			printf("loadfont error: failed to load: %s\n", name);
2808 			return (CMD_ERROR);
2809 		}
2810 
2811 		(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2812 		return (CMD_OK);
2813 	}
2814 
2815 	if (argc == 0) {
2816 		/*
2817 		 * Walk entire font list, release any loaded font, and set
2818 		 * autoload flag. The font list does have at least the builtin
2819 		 * default font.
2820 		 */
2821 		STAILQ_FOREACH(fl, &fonts, font_next) {
2822 			if (fl->font_data->vfbd_font != NULL) {
2823 
2824 				bd = fl->font_data;
2825 				/*
2826 				 * Note the setup_font() is releasing
2827 				 * font bytes.
2828 				 */
2829 				for (i = 0; i < VFNT_MAPS; i++)
2830 					free(bd->vfbd_font->vf_map[i]);
2831 				free(fl->font_data->vfbd_font);
2832 				fl->font_data->vfbd_font = NULL;
2833 				fl->font_data->vfbd_uncompressed_size = 0;
2834 				fl->font_flags = FONT_AUTO;
2835 			}
2836 		}
2837 		(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2838 	}
2839 	return (rc);
2840 }
2841 
2842 bool
2843 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res)
2844 {
2845 	struct resolution *rp, *p;
2846 
2847 	/*
2848 	 * Walk detailed timings tables (4).
2849 	 */
2850 	if ((edid->display.supported_features
2851 	    & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) {
2852 		/* Walk detailed timing descriptors (4) */
2853 		for (int i = 0; i < DET_TIMINGS; i++) {
2854 			/*
2855 			 * Reserved value 0 is not used for display descriptor.
2856 			 */
2857 			if (edid->detailed_timings[i].pixel_clock == 0)
2858 				continue;
2859 			if ((rp = malloc(sizeof(*rp))) == NULL)
2860 				continue;
2861 			rp->width = GET_EDID_INFO_WIDTH(edid, i);
2862 			rp->height = GET_EDID_INFO_HEIGHT(edid, i);
2863 			if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS &&
2864 			    rp->height > 0 && rp->height <= EDID_MAX_LINES)
2865 				TAILQ_INSERT_TAIL(res, rp, next);
2866 			else
2867 				free(rp);
2868 		}
2869 	}
2870 
2871 	/*
2872 	 * Walk standard timings list (8).
2873 	 */
2874 	for (int i = 0; i < STD_TIMINGS; i++) {
2875 		/* Is this field unused? */
2876 		if (edid->standard_timings[i] == 0x0101)
2877 			continue;
2878 
2879 		if ((rp = malloc(sizeof(*rp))) == NULL)
2880 			continue;
2881 
2882 		rp->width = HSIZE(edid->standard_timings[i]);
2883 		switch (RATIO(edid->standard_timings[i])) {
2884 		case RATIO1_1:
2885 			rp->height = HSIZE(edid->standard_timings[i]);
2886 			if (edid->header.version > 1 ||
2887 			    edid->header.revision > 2) {
2888 				rp->height = rp->height * 10 / 16;
2889 			}
2890 			break;
2891 		case RATIO4_3:
2892 			rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4;
2893 			break;
2894 		case RATIO5_4:
2895 			rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5;
2896 			break;
2897 		case RATIO16_9:
2898 			rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16;
2899 			break;
2900 		}
2901 
2902 		/*
2903 		 * Create resolution list in decreasing order, except keep
2904 		 * first entry (preferred timing mode).
2905 		 */
2906 		TAILQ_FOREACH(p, res, next) {
2907 			if (p->width * p->height < rp->width * rp->height) {
2908 				/* Keep preferred mode first */
2909 				if (TAILQ_FIRST(res) == p)
2910 					TAILQ_INSERT_AFTER(res, p, rp, next);
2911 				else
2912 					TAILQ_INSERT_BEFORE(p, rp, next);
2913 				break;
2914 			}
2915 			if (TAILQ_NEXT(p, next) == NULL) {
2916 				TAILQ_INSERT_TAIL(res, rp, next);
2917 				break;
2918 			}
2919 		}
2920 	}
2921 	return (!TAILQ_EMPTY(res));
2922 }
2923