xref: /freebsd/stand/common/gfx_fb.c (revision 410556f1f10fd35b350102725fd8504c3cb0afc8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2020 Toomas Soome
5  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
6  * Copyright 2020 RackTop Systems, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI
34  * GOP Blt, and allows us to fill the rectangle on screen, copy
35  * rectangle from video to buffer and buffer to video and video to video.
36  * Such implementation does allow us to have almost identical implementation
37  * for both BIOS VBE and UEFI.
38  *
39  * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red,
40  * Alpha) format, this allows us to only handle RGB data and not to worry
41  * about mixing RGB with indexed colors.
42  * Data exchange between memory buffer and video will translate BGRA
43  * and native format as following:
44  *
45  * 32-bit to/from 32-bit is trivial case.
46  * 32-bit to/from 24-bit is also simple - we just drop the alpha channel.
47  * 32-bit to/from 16-bit is more complicated, because we nee to handle
48  * data loss from 32-bit to 16-bit. While reading/writing from/to video, we
49  * need to apply masks of 16-bit color components. This will preserve
50  * colors for terminal text. For 32-bit truecolor PMG images, we need to
51  * translate 32-bit colors to 15/16 bit colors and this means data loss.
52  * There are different algorithms how to perform such color space reduction,
53  * we are currently using bitwise right shift to reduce color space and so far
54  * this technique seems to be sufficient (see also gfx_fb_putimage(), the
55  * end of for loop).
56  * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are
57  * indexed. From video, we do get color indexes, and we do translate
58  * color index values to RGB. To write to video, we again need to translate
59  * RGB to color index. Additionally, we need to translate between VGA and
60  * console colors.
61  *
62  * Our internal color data is represented using BGRA format. But the hardware
63  * used indexed colors for 8-bit colors (0-255) and for this mode we do
64  * need to perform translation to/from BGRA and index values.
65  *
66  *                   - paletteentry RGB <-> index -
67  * BGRA BUFFER <----/                              \ - VIDEO
68  *                  \                              /
69  *                   -  RGB (16/24/32)            -
70  *
71  * To perform index to RGB translation, we use palette table generated
72  * from when we set up 8-bit mode video. We cannot read palette data from
73  * the hardware, because not all hardware supports reading it.
74  *
75  * BGRA to index is implemented in rgb_to_color_index() by searching
76  * palette array for closest match of RBG values.
77  *
78  * Note: In 8-bit mode, We do store first 16 colors to palette registers
79  * in VGA color order, this serves two purposes; firstly,
80  * if palette update is not supported, we still have correct 16 colors.
81  * Secondly, the kernel does get correct 16 colors when some other boot
82  * loader is used. However, the palette map for 8-bit colors is using
83  * console color ordering - this does allow us to skip translation
84  * from VGA colors to console colors, while we are reading RGB data.
85  */
86 
87 #include <sys/cdefs.h>
88 #include <sys/param.h>
89 #include <stand.h>
90 #include <teken.h>
91 #include <gfx_fb.h>
92 #include <sys/font.h>
93 #include <sys/stdint.h>
94 #include <sys/endian.h>
95 #include <pnglite.h>
96 #include <bootstrap.h>
97 #include <lz4.h>
98 #if defined(EFI)
99 #include <efi.h>
100 #include <efilib.h>
101 #else
102 #include <vbe.h>
103 #endif
104 
105 /* VGA text mode does use bold font. */
106 #if !defined(VGA_8X16_FONT)
107 #define	VGA_8X16_FONT		"/boot/fonts/8x16b.fnt"
108 #endif
109 #if !defined(DEFAULT_8X16_FONT)
110 #define	DEFAULT_8X16_FONT	"/boot/fonts/8x16.fnt"
111 #endif
112 
113 /*
114  * Must be sorted by font size in descending order
115  */
116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts);
117 
118 #define	DEFAULT_FONT_DATA	font_data_8x16
119 extern vt_font_bitmap_data_t	font_data_8x16;
120 teken_gfx_t gfx_state = { 0 };
121 
122 static struct {
123 	unsigned char r;	/* Red percentage value. */
124 	unsigned char g;	/* Green percentage value. */
125 	unsigned char b;	/* Blue percentage value. */
126 } color_def[NCOLORS] = {
127 	{0,	0,	0},	/* black */
128 	{50,	0,	0},	/* dark red */
129 	{0,	50,	0},	/* dark green */
130 	{77,	63,	0},	/* dark yellow */
131 	{20,	40,	64},	/* dark blue */
132 	{50,	0,	50},	/* dark magenta */
133 	{0,	50,	50},	/* dark cyan */
134 	{75,	75,	75},	/* light gray */
135 
136 	{18,	20,	21},	/* dark gray */
137 	{100,	0,	0},	/* light red */
138 	{0,	100,	0},	/* light green */
139 	{100,	100,	0},	/* light yellow */
140 	{45,	62,	81},	/* light blue */
141 	{100,	0,	100},	/* light magenta */
142 	{0,	100,	100},	/* light cyan */
143 	{100,	100,	100},	/* white */
144 };
145 uint32_t cmap[NCMAP];
146 
147 /*
148  * Between console's palette and VGA's one:
149  *  - blue and red are swapped (1 <-> 4)
150  *  - yellow and cyan are swapped (3 <-> 6)
151  */
152 const int cons_to_vga_colors[NCOLORS] = {
153 	0,  4,  2,  6,  1,  5,  3,  7,
154 	8, 12, 10, 14,  9, 13, 11, 15
155 };
156 
157 static const int vga_to_cons_colors[NCOLORS] = {
158 	0,  1,  2,  3,  4,  5,  6,  7,
159 	8,  9, 10, 11,  12, 13, 14, 15
160 };
161 
162 struct text_pixel *screen_buffer;
163 #if defined(EFI)
164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer;
165 #else
166 static struct paletteentry *GlyphBuffer;
167 #endif
168 static size_t GlyphBufferSize;
169 
170 static bool insert_font(char *, FONT_FLAGS);
171 static int font_set(struct env_var *, int, const void *);
172 static void * allocate_glyphbuffer(uint32_t, uint32_t);
173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool);
174 
175 /*
176  * Initialize gfx framework.
177  */
178 void
179 gfx_framework_init(void)
180 {
181 	/*
182 	 * Setup font list to have builtin font.
183 	 */
184 	(void) insert_font(NULL, FONT_BUILTIN);
185 }
186 
187 static uint8_t *
188 gfx_get_fb_address(void)
189 {
190 	return (ptov((uint32_t)gfx_state.tg_fb.fb_addr));
191 }
192 
193 /*
194  * Utility function to parse gfx mode line strings.
195  */
196 bool
197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth)
198 {
199 	char *p, *end;
200 
201 	errno = 0;
202 	p = str;
203 	*x = strtoul(p, &end, 0);
204 	if (*x == 0 || errno != 0)
205 		return (false);
206 	if (*end != 'x')
207 		return (false);
208 	p = end + 1;
209 	*y = strtoul(p, &end, 0);
210 	if (*y == 0 || errno != 0)
211 		return (false);
212 	if (*end != 'x') {
213 		*depth = -1;    /* auto select */
214 	} else {
215 		p = end + 1;
216 		*depth = strtoul(p, &end, 0);
217 		if (*depth == 0 || errno != 0 || *end != '\0')
218 			return (false);
219 	}
220 
221 	return (true);
222 }
223 
224 static uint32_t
225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset,
226     uint32_t gmax, int goffset, uint32_t bmax, int boffset)
227 {
228 	uint32_t color, code, gray, level;
229 
230 	if (index < NCOLORS) {
231 #define	CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset)
232 		return (CF(r, index) | CF(g, index) | CF(b, index));
233 #undef  CF
234         }
235 
236 #define	CF(_f, _c) ((_f ## max & _c) << _f ## offset)
237         /* 6x6x6 color cube */
238         if (index > 15 && index < 232) {
239                 uint32_t red, green, blue;
240 
241                 for (red = 0; red < 6; red++) {
242                         for (green = 0; green < 6; green++) {
243                                 for (blue = 0; blue < 6; blue++) {
244                                         code = 16 + (red * 36) +
245                                             (green * 6) + blue;
246                                         if (code != index)
247                                                 continue;
248                                         red = red ? (red * 40 + 55) : 0;
249                                         green = green ? (green * 40 + 55) : 0;
250                                         blue = blue ? (blue * 40 + 55) : 0;
251                                         color = CF(r, red);
252 					color |= CF(g, green);
253 					color |= CF(b, blue);
254 					return (color);
255                                 }
256                         }
257                 }
258         }
259 
260         /* colors 232-255 are a grayscale ramp */
261         for (gray = 0; gray < 24; gray++) {
262                 level = (gray * 10) + 8;
263                 code = 232 + gray;
264                 if (code == index)
265                         break;
266         }
267         return (CF(r, level) | CF(g, level) | CF(b, level));
268 #undef  CF
269 }
270 
271 /*
272  * Support for color mapping.
273  * For 8, 24 and 32 bit depth, use mask size 8.
274  * 15/16 bit depth needs to use mask size from mode,
275  * or we will lose color information from 32-bit to 15/16 bit translation.
276  */
277 uint32_t
278 gfx_fb_color_map(uint8_t index)
279 {
280 	int rmask, gmask, bmask;
281 	int roff, goff, boff, bpp;
282 
283 	roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
284         goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
285         boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
286 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
287 
288 	if (bpp == 2)
289 		rmask = gfx_state.tg_fb.fb_mask_red >> roff;
290 	else
291 		rmask = 0xff;
292 
293 	if (bpp == 2)
294 		gmask = gfx_state.tg_fb.fb_mask_green >> goff;
295 	else
296 		gmask = 0xff;
297 
298 	if (bpp == 2)
299 		bmask = gfx_state.tg_fb.fb_mask_blue >> boff;
300 	else
301 		bmask = 0xff;
302 
303 	return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0));
304 }
305 
306 /*
307  * Get indexed color from RGB. This function is used to write data to video
308  * memory when the adapter is set to use indexed colors.
309  * Since UEFI does only support 32-bit colors, we do not implement it for
310  * UEFI because there is no need for it and we do not have palette array
311  * for UEFI.
312  */
313 static uint8_t
314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b)
315 {
316 #if !defined(EFI)
317 	uint32_t color, best, dist, k;
318 	int diff;
319 
320 	color = 0;
321 	best = 255 * 255 * 255;
322 	for (k = 0; k < NCMAP; k++) {
323 		diff = r - pe8[k].Red;
324 		dist = diff * diff;
325 		diff = g - pe8[k].Green;
326 		dist += diff * diff;
327 		diff = b - pe8[k].Blue;
328 		dist += diff * diff;
329 
330 		/* Exact match, exit the loop */
331 		if (dist == 0)
332 			break;
333 
334 		if (dist < best) {
335 			color = k;
336 			best = dist;
337 		}
338 	}
339 	if (k == NCMAP)
340 		k = color;
341 	return (k);
342 #else
343 	(void) r;
344 	(void) g;
345 	(void) b;
346 	return (0);
347 #endif
348 }
349 
350 int
351 generate_cons_palette(uint32_t *palette, int format,
352     uint32_t rmax, int roffset, uint32_t gmax, int goffset,
353     uint32_t bmax, int boffset)
354 {
355 	int i;
356 
357 	switch (format) {
358 	case COLOR_FORMAT_VGA:
359 		for (i = 0; i < NCOLORS; i++)
360 			palette[i] = cons_to_vga_colors[i];
361 		for (; i < NCMAP; i++)
362 			palette[i] = i;
363 		break;
364 	case COLOR_FORMAT_RGB:
365 		for (i = 0; i < NCMAP; i++)
366 			palette[i] = rgb_color_map(i, rmax, roffset,
367 			    gmax, goffset, bmax, boffset);
368 		break;
369 	default:
370 		return (ENODEV);
371 	}
372 
373 	return (0);
374 }
375 
376 static void
377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v)
378 {
379 
380 	if (o >= size)
381 		return;
382 	*(uint8_t *)(base + o) = v;
383 }
384 
385 static void
386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v)
387 {
388 
389 	if (o >= size)
390 		return;
391 	*(uint16_t *)(base + o) = v;
392 }
393 
394 static void
395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v)
396 {
397 
398 	if (o >= size)
399 		return;
400 	*(uint32_t *)(base + o) = v;
401 }
402 
403 static int gfxfb_blt_fill(void *BltBuffer,
404     uint32_t DestinationX, uint32_t DestinationY,
405     uint32_t Width, uint32_t Height)
406 {
407 #if defined(EFI)
408 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
409 #else
410 	struct paletteentry *p;
411 #endif
412 	uint32_t data, bpp, pitch, y, x;
413 	int roff, goff, boff;
414 	size_t size;
415 	off_t off;
416 	uint8_t *destination;
417 
418 	if (BltBuffer == NULL)
419 		return (EINVAL);
420 
421 	if (DestinationY + Height > gfx_state.tg_fb.fb_height)
422 		return (EINVAL);
423 
424 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
425 		return (EINVAL);
426 
427 	if (Width == 0 || Height == 0)
428 		return (EINVAL);
429 
430 	p = BltBuffer;
431 	roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
432 	goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
433 	boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
434 
435 	if (gfx_state.tg_fb.fb_bpp == 8) {
436 		data = rgb_to_color_index(p->Red, p->Green, p->Blue);
437 	} else {
438 		data = (p->Red &
439 		    (gfx_state.tg_fb.fb_mask_red >> roff)) << roff;
440 		data |= (p->Green &
441 		    (gfx_state.tg_fb.fb_mask_green >> goff)) << goff;
442 		data |= (p->Blue &
443 		    (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff;
444 	}
445 
446 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
447 	pitch = gfx_state.tg_fb.fb_stride * bpp;
448 	destination = gfx_get_fb_address();
449 	size = gfx_state.tg_fb.fb_size;
450 
451 	for (y = DestinationY; y < Height + DestinationY; y++) {
452 		off = y * pitch + DestinationX * bpp;
453 		for (x = 0; x < Width; x++) {
454 			switch (bpp) {
455 			case 1:
456 				gfx_mem_wr1(destination, size, off,
457 				    (data < NCOLORS) ?
458 				    cons_to_vga_colors[data] : data);
459 				break;
460 			case 2:
461 				gfx_mem_wr2(destination, size, off, data);
462 				break;
463 			case 3:
464 				gfx_mem_wr1(destination, size, off,
465 				    (data >> 16) & 0xff);
466 				gfx_mem_wr1(destination, size, off + 1,
467 				    (data >> 8) & 0xff);
468 				gfx_mem_wr1(destination, size, off + 2,
469 				    data & 0xff);
470 				break;
471 			case 4:
472 				gfx_mem_wr4(destination, size, off, data);
473 				break;
474 			default:
475 				return (EINVAL);
476 			}
477 			off += bpp;
478 		}
479 	}
480 
481 	return (0);
482 }
483 
484 static int
485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
486     uint32_t DestinationX, uint32_t DestinationY,
487     uint32_t Width, uint32_t Height, uint32_t Delta)
488 {
489 #if defined(EFI)
490 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
491 #else
492 	struct paletteentry *p;
493 #endif
494 	uint32_t x, sy, dy;
495 	uint32_t bpp, pitch, copybytes;
496 	off_t off;
497 	uint8_t *source, *destination, *sb;
498 	uint8_t rm, rp, gm, gp, bm, bp;
499 	bool bgra;
500 
501 	if (BltBuffer == NULL)
502 		return (EINVAL);
503 
504 	if (SourceY + Height >
505 	    gfx_state.tg_fb.fb_height)
506 		return (EINVAL);
507 
508 	if (SourceX + Width > gfx_state.tg_fb.fb_width)
509 		return (EINVAL);
510 
511 	if (Width == 0 || Height == 0)
512 		return (EINVAL);
513 
514 	if (Delta == 0)
515 		Delta = Width * sizeof (*p);
516 
517 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
518 	pitch = gfx_state.tg_fb.fb_stride * bpp;
519 
520 	copybytes = Width * bpp;
521 
522 	rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
523 	gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
524 	bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
525 	rm = gfx_state.tg_fb.fb_mask_red >> rp;
526 	gm = gfx_state.tg_fb.fb_mask_green >> gp;
527 	bm = gfx_state.tg_fb.fb_mask_blue >> bp;
528 
529 	/* If FB pixel format is BGRA, we can use direct copy. */
530 	bgra = bpp == 4 &&
531 	    ffs(rm) - 1 == 8 && rp == 16 &&
532 	    ffs(gm) - 1 == 8 && gp == 8 &&
533 	    ffs(bm) - 1 == 8 && bp == 0;
534 
535 	for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY;
536 	    sy++, dy++) {
537 		off = sy * pitch + SourceX * bpp;
538 		source = gfx_get_fb_address() + off;
539 		destination = (uint8_t *)BltBuffer + dy * Delta +
540 		    DestinationX * sizeof (*p);
541 
542 		if (bgra) {
543 			bcopy(source, destination, copybytes);
544 		} else {
545 			for (x = 0; x < Width; x++) {
546 				uint32_t c = 0;
547 
548 				p = (void *)(destination + x * sizeof (*p));
549 				sb = source + x * bpp;
550 				switch (bpp) {
551 				case 1:
552 					c = *sb;
553 					break;
554 				case 2:
555 					c = *(uint16_t *)sb;
556 					break;
557 				case 3:
558 					c = sb[0] << 16 | sb[1] << 8 | sb[2];
559 					break;
560 				case 4:
561 					c = *(uint32_t *)sb;
562 					break;
563 				default:
564 					return (EINVAL);
565 				}
566 
567 				if (bpp == 1) {
568 					*(uint32_t *)p = gfx_fb_color_map(
569 					    (c < 16) ?
570 					    vga_to_cons_colors[c] : c);
571 				} else {
572 					p->Red = (c >> rp) & rm;
573 					p->Green = (c >> gp) & gm;
574 					p->Blue = (c >> bp) & bm;
575 					p->Reserved = 0;
576 				}
577 			}
578 		}
579 	}
580 
581 	return (0);
582 }
583 
584 static int
585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
586     uint32_t DestinationX, uint32_t DestinationY,
587     uint32_t Width, uint32_t Height, uint32_t Delta)
588 {
589 #if defined(EFI)
590 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
591 #else
592 	struct paletteentry *p;
593 #endif
594 	uint32_t x, sy, dy;
595 	uint32_t bpp, pitch, copybytes;
596 	off_t off;
597 	uint8_t *source, *destination;
598 	uint8_t rm, rp, gm, gp, bm, bp;
599 	bool bgra;
600 
601 	if (BltBuffer == NULL)
602 		return (EINVAL);
603 
604 	if (DestinationY + Height >
605 	    gfx_state.tg_fb.fb_height)
606 		return (EINVAL);
607 
608 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
609 		return (EINVAL);
610 
611 	if (Width == 0 || Height == 0)
612 		return (EINVAL);
613 
614 	if (Delta == 0)
615 		Delta = Width * sizeof (*p);
616 
617 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
618 	pitch = gfx_state.tg_fb.fb_stride * bpp;
619 
620 	copybytes = Width * bpp;
621 
622 	rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
623 	gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
624 	bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
625 	rm = gfx_state.tg_fb.fb_mask_red >> rp;
626 	gm = gfx_state.tg_fb.fb_mask_green >> gp;
627 	bm = gfx_state.tg_fb.fb_mask_blue >> bp;
628 
629 	/* If FB pixel format is BGRA, we can use direct copy. */
630 	bgra = bpp == 4 &&
631 	    ffs(rm) - 1 == 8 && rp == 16 &&
632 	    ffs(gm) - 1 == 8 && gp == 8 &&
633 	    ffs(bm) - 1 == 8 && bp == 0;
634 
635 	for (sy = SourceY, dy = DestinationY; sy < Height + SourceY;
636 	    sy++, dy++) {
637 		off = dy * pitch + DestinationX * bpp;
638 		destination = gfx_get_fb_address() + off;
639 
640 		if (bgra) {
641 			source = (uint8_t *)BltBuffer + sy * Delta +
642 			    SourceX * sizeof (*p);
643 			bcopy(source, destination, copybytes);
644 		} else {
645 			for (x = 0; x < Width; x++) {
646 				uint32_t c;
647 
648 				p = (void *)((uint8_t *)BltBuffer +
649 				    sy * Delta +
650 				    (SourceX + x) * sizeof (*p));
651 				if (bpp == 1) {
652 					c = rgb_to_color_index(p->Red,
653 					    p->Green, p->Blue);
654 				} else {
655 					c = (p->Red & rm) << rp |
656 					    (p->Green & gm) << gp |
657 					    (p->Blue & bm) << bp;
658 				}
659 				off = x * bpp;
660 				switch (bpp) {
661 				case 1:
662 					gfx_mem_wr1(destination, copybytes,
663 					    off, (c < 16) ?
664 					    cons_to_vga_colors[c] : c);
665 					break;
666 				case 2:
667 					gfx_mem_wr2(destination, copybytes,
668 					    off, c);
669 					break;
670 				case 3:
671 					gfx_mem_wr1(destination, copybytes,
672 					    off, (c >> 16) & 0xff);
673 					gfx_mem_wr1(destination, copybytes,
674 					    off + 1, (c >> 8) & 0xff);
675 					gfx_mem_wr1(destination, copybytes,
676 					    off + 2, c & 0xff);
677 					break;
678 				case 4:
679 					gfx_mem_wr4(destination, copybytes,
680 					    x * bpp, c);
681 					break;
682 				default:
683 					return (EINVAL);
684 				}
685 			}
686 		}
687 	}
688 
689 	return (0);
690 }
691 
692 static int
693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY,
694     uint32_t DestinationX, uint32_t DestinationY,
695     uint32_t Width, uint32_t Height)
696 {
697 	uint32_t bpp, copybytes;
698 	int pitch;
699 	uint8_t *source, *destination;
700 	off_t off;
701 
702 	if (SourceY + Height >
703 	    gfx_state.tg_fb.fb_height)
704 		return (EINVAL);
705 
706 	if (SourceX + Width > gfx_state.tg_fb.fb_width)
707 		return (EINVAL);
708 
709 	if (DestinationY + Height >
710 	    gfx_state.tg_fb.fb_height)
711 		return (EINVAL);
712 
713 	if (DestinationX + Width > gfx_state.tg_fb.fb_width)
714 		return (EINVAL);
715 
716 	if (Width == 0 || Height == 0)
717 		return (EINVAL);
718 
719 	bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
720 	pitch = gfx_state.tg_fb.fb_stride * bpp;
721 
722 	copybytes = Width * bpp;
723 
724 	off = SourceY * pitch + SourceX * bpp;
725 	source = gfx_get_fb_address() + off;
726 	off = DestinationY * pitch + DestinationX * bpp;
727 	destination = gfx_get_fb_address() + off;
728 
729 	if ((uintptr_t)destination > (uintptr_t)source) {
730 		source += Height * pitch;
731 		destination += Height * pitch;
732 		pitch = -pitch;
733 	}
734 
735 	while (Height-- > 0) {
736 		bcopy(source, destination, copybytes);
737 		source += pitch;
738 		destination += pitch;
739 	}
740 
741 	return (0);
742 }
743 
744 int
745 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation,
746     uint32_t SourceX, uint32_t SourceY,
747     uint32_t DestinationX, uint32_t DestinationY,
748     uint32_t Width, uint32_t Height, uint32_t Delta)
749 {
750 	int rv;
751 #if defined(EFI)
752 	EFI_STATUS status;
753 	EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private;
754 
755 	/*
756 	 * We assume Blt() does work, if not, we will need to build
757 	 * exception list case by case.
758 	 */
759 	if (gop != NULL) {
760 		switch (BltOperation) {
761 		case GfxFbBltVideoFill:
762 			status = gop->Blt(gop, BltBuffer, EfiBltVideoFill,
763 			    SourceX, SourceY, DestinationX, DestinationY,
764 			    Width, Height, Delta);
765 			break;
766 
767 		case GfxFbBltVideoToBltBuffer:
768 			status = gop->Blt(gop, BltBuffer,
769 			    EfiBltVideoToBltBuffer,
770 			    SourceX, SourceY, DestinationX, DestinationY,
771 			    Width, Height, Delta);
772 			break;
773 
774 		case GfxFbBltBufferToVideo:
775 			status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo,
776 			    SourceX, SourceY, DestinationX, DestinationY,
777 			    Width, Height, Delta);
778 			break;
779 
780 		case GfxFbBltVideoToVideo:
781 			status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo,
782 			    SourceX, SourceY, DestinationX, DestinationY,
783 			    Width, Height, Delta);
784 			break;
785 
786 		default:
787 			status = EFI_INVALID_PARAMETER;
788 			break;
789 		}
790 
791 		switch (status) {
792 		case EFI_SUCCESS:
793 			rv = 0;
794 			break;
795 
796 		case EFI_INVALID_PARAMETER:
797 			rv = EINVAL;
798 			break;
799 
800 		case EFI_DEVICE_ERROR:
801 		default:
802 			rv = EIO;
803 			break;
804 		}
805 
806 		return (rv);
807 	}
808 #endif
809 
810 	switch (BltOperation) {
811 	case GfxFbBltVideoFill:
812 		rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY,
813 		    Width, Height);
814 		break;
815 
816 	case GfxFbBltVideoToBltBuffer:
817 		rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY,
818 		    DestinationX, DestinationY, Width, Height, Delta);
819 		break;
820 
821 	case GfxFbBltBufferToVideo:
822 		rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY,
823 		    DestinationX, DestinationY, Width, Height, Delta);
824 		break;
825 
826 	case GfxFbBltVideoToVideo:
827 		rv = gfxfb_blt_video_to_video(SourceX, SourceY,
828 		    DestinationX, DestinationY, Width, Height);
829 		break;
830 
831 	default:
832 		rv = EINVAL;
833 		break;
834 	}
835 	return (rv);
836 }
837 
838 void
839 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph,
840     const teken_attr_t *a, uint32_t alpha, bool cursor)
841 {
842 	uint32_t width, height;
843 	uint32_t fgc, bgc, bpl, cc, o;
844 	int bpp, bit, byte;
845 	bool invert = false;
846 
847 	bpp = 4;		/* We only generate BGRA */
848 	width = state->tg_font.vf_width;
849 	height = state->tg_font.vf_height;
850 	bpl = (width + 7) / 8;  /* Bytes per source line. */
851 
852 	fgc = a->ta_fgcolor;
853 	bgc = a->ta_bgcolor;
854 	if (a->ta_format & TF_BOLD)
855 		fgc |= TC_LIGHT;
856 	if (a->ta_format & TF_BLINK)
857 		bgc |= TC_LIGHT;
858 
859 	fgc = gfx_fb_color_map(fgc);
860 	bgc = gfx_fb_color_map(bgc);
861 
862 	if (a->ta_format & TF_REVERSE)
863 		invert = !invert;
864 	if (cursor)
865 		invert = !invert;
866 	if (invert) {
867 		uint32_t tmp;
868 
869 		tmp = fgc;
870 		fgc = bgc;
871 		bgc = tmp;
872 	}
873 
874 	alpha = alpha << 24;
875 	fgc |= alpha;
876 	bgc |= alpha;
877 
878 	for (uint32_t y = 0; y < height; y++) {
879 		for (uint32_t x = 0; x < width; x++) {
880 			byte = y * bpl + x / 8;
881 			bit = 0x80 >> (x % 8);
882 			o = y * width * bpp + x * bpp;
883 			cc = glyph[byte] & bit ? fgc : bgc;
884 
885 			gfx_mem_wr4(state->tg_glyph,
886 			    state->tg_glyph_size, o, cc);
887 		}
888 	}
889 }
890 
891 /*
892  * Draw prepared glyph on terminal point p.
893  */
894 static void
895 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p)
896 {
897 	unsigned x, y, width, height;
898 
899 	width = state->tg_font.vf_width;
900 	height = state->tg_font.vf_height;
901 	x = state->tg_origin.tp_col + p->tp_col * width;
902 	y = state->tg_origin.tp_row + p->tp_row * height;
903 
904 	gfx_fb_cons_display(x, y, width, height, state->tg_glyph);
905 }
906 
907 /*
908  * Store char with its attribute to buffer and put it on screen.
909  */
910 void
911 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c,
912     const teken_attr_t *a)
913 {
914 	teken_gfx_t *state = arg;
915 	const uint8_t *glyph;
916 	int idx;
917 
918 	idx = p->tp_col + p->tp_row * state->tg_tp.tp_col;
919 	if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
920 		return;
921 
922 	/* remove the cursor */
923 	if (state->tg_cursor_visible)
924 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
925 
926 	screen_buffer[idx].c = c;
927 	screen_buffer[idx].a = *a;
928 
929 	glyph = font_lookup(&state->tg_font, c, a);
930 	gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
931 	gfx_fb_printchar(state, p);
932 
933 	/* display the cursor */
934 	if (state->tg_cursor_visible) {
935 		const teken_pos_t *c;
936 
937 		c = teken_get_cursor(&state->tg_teken);
938 		gfx_fb_cursor_draw(state, c, true);
939 	}
940 }
941 
942 void
943 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c,
944     const teken_attr_t *a)
945 {
946 	teken_gfx_t *state = arg;
947 	const uint8_t *glyph;
948 	teken_pos_t p;
949 	struct text_pixel *row;
950 
951 	/* remove the cursor */
952 	if (state->tg_cursor_visible)
953 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
954 
955 	glyph = font_lookup(&state->tg_font, c, a);
956 	gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
957 
958 	for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row;
959 	    p.tp_row++) {
960 		row = &screen_buffer[p.tp_row * state->tg_tp.tp_col];
961 		for (p.tp_col = r->tr_begin.tp_col;
962 		    p.tp_col < r->tr_end.tp_col; p.tp_col++) {
963 			row[p.tp_col].c = c;
964 			row[p.tp_col].a = *a;
965 			gfx_fb_printchar(state, &p);
966 		}
967 	}
968 
969 	/* display the cursor */
970 	if (state->tg_cursor_visible) {
971 		const teken_pos_t *c;
972 
973 		c = teken_get_cursor(&state->tg_teken);
974 		gfx_fb_cursor_draw(state, c, true);
975 	}
976 }
977 
978 static void
979 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *p, bool on)
980 {
981 	unsigned x, y, width, height;
982 	const uint8_t *glyph;
983 	int idx;
984 
985 	idx = p->tp_col + p->tp_row * state->tg_tp.tp_col;
986 	if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
987 		return;
988 
989 	width = state->tg_font.vf_width;
990 	height = state->tg_font.vf_height;
991 	x = state->tg_origin.tp_col + p->tp_col * width;
992 	y = state->tg_origin.tp_row + p->tp_row * height;
993 
994 	/*
995 	 * Save original display content to preserve image data.
996 	 */
997 	if (on) {
998 		if (state->tg_cursor_image == NULL ||
999 		    state->tg_cursor_size != width * height * 4) {
1000 			free(state->tg_cursor_image);
1001 			state->tg_cursor_size = width * height * 4;
1002 			state->tg_cursor_image = malloc(state->tg_cursor_size);
1003 		}
1004 		if (state->tg_cursor_image != NULL) {
1005 			if (gfxfb_blt(state->tg_cursor_image,
1006 			    GfxFbBltVideoToBltBuffer, x, y, 0, 0,
1007 			    width, height, 0) != 0) {
1008 				free(state->tg_cursor_image);
1009 				state->tg_cursor_image = NULL;
1010 			}
1011 		}
1012 	} else {
1013 		/*
1014 		 * Restore display from tg_cursor_image.
1015 		 * If there is no image, restore char from screen_buffer.
1016 		 */
1017 		if (state->tg_cursor_image != NULL &&
1018 		    gfxfb_blt(state->tg_cursor_image, GfxFbBltBufferToVideo,
1019 		    0, 0, x, y, width, height, 0) == 0) {
1020 			state->tg_cursor = *p;
1021 			return;
1022 		}
1023 	}
1024 
1025 	glyph = font_lookup(&state->tg_font, screen_buffer[idx].c,
1026 	    &screen_buffer[idx].a);
1027 	gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on);
1028 	gfx_fb_printchar(state, p);
1029 
1030 	state->tg_cursor = *p;
1031 }
1032 
1033 void
1034 gfx_fb_cursor(void *arg, const teken_pos_t *p)
1035 {
1036 	teken_gfx_t *state = arg;
1037 #if defined(EFI)
1038 	EFI_TPL tpl;
1039 
1040 	tpl = BS->RaiseTPL(TPL_NOTIFY);
1041 #endif
1042 
1043 	/* Switch cursor off in old location and back on in new. */
1044 	if (state->tg_cursor_visible) {
1045 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
1046 		gfx_fb_cursor_draw(state, p, true);
1047 	}
1048 #if defined(EFI)
1049 	BS->RestoreTPL(tpl);
1050 #endif
1051 }
1052 
1053 void
1054 gfx_fb_param(void *arg, int cmd, unsigned int value)
1055 {
1056 	teken_gfx_t *state = arg;
1057 	const teken_pos_t *c;
1058 
1059 	switch (cmd) {
1060 	case TP_SETLOCALCURSOR:
1061 		/*
1062 		 * 0 means normal (usually block), 1 means hidden, and
1063 		 * 2 means blinking (always block) for compatibility with
1064 		 * syscons.  We don't support any changes except hiding,
1065 		 * so must map 2 to 0.
1066 		 */
1067 		value = (value == 1) ? 0 : 1;
1068 		/* FALLTHROUGH */
1069 	case TP_SHOWCURSOR:
1070 		c = teken_get_cursor(&state->tg_teken);
1071 		gfx_fb_cursor_draw(state, c, true);
1072 		if (value != 0)
1073 			state->tg_cursor_visible = true;
1074 		else
1075 			state->tg_cursor_visible = false;
1076 		break;
1077 	default:
1078 		/* Not yet implemented */
1079 		break;
1080 	}
1081 }
1082 
1083 bool
1084 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2)
1085 {
1086 	if (px1->c != px2->c)
1087 		return (false);
1088 
1089 	/* Is there image stored? */
1090 	if ((px1->a.ta_format & TF_IMAGE) ||
1091 	    (px2->a.ta_format & TF_IMAGE))
1092 		return (false);
1093 
1094 	if (px1->a.ta_format != px2->a.ta_format)
1095 		return (false);
1096 	if (px1->a.ta_fgcolor != px2->a.ta_fgcolor)
1097 		return (false);
1098 	if (px1->a.ta_bgcolor != px2->a.ta_bgcolor)
1099 		return (false);
1100 
1101 	return (true);
1102 }
1103 
1104 static void
1105 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s,
1106     const teken_pos_t *d)
1107 {
1108 	uint32_t sx, sy, dx, dy, width, height;
1109 
1110 	width = state->tg_font.vf_width;
1111 	height = state->tg_font.vf_height;
1112 
1113 	sx = state->tg_origin.tp_col + s->tr_begin.tp_col * width;
1114 	sy = state->tg_origin.tp_row + s->tr_begin.tp_row * height;
1115 	dx = state->tg_origin.tp_col + d->tp_col * width;
1116 	dy = state->tg_origin.tp_row + d->tp_row * height;
1117 
1118 	width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1);
1119 
1120 	(void) gfxfb_blt(NULL, GfxFbBltVideoToVideo, sx, sy, dx, dy,
1121 		    width, height, 0);
1122 }
1123 
1124 static void
1125 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d)
1126 {
1127 	teken_rect_t sr;
1128 	teken_pos_t dp;
1129 	unsigned soffset, doffset;
1130 	bool mark = false;
1131 	int x;
1132 
1133 	soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col;
1134 	doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col;
1135 
1136 	for (x = 0; x < ncol; x++) {
1137 		if (is_same_pixel(&screen_buffer[soffset + x],
1138 		    &screen_buffer[doffset + x])) {
1139 			if (mark) {
1140 				gfx_fb_copy_area(state, &sr, &dp);
1141 				mark = false;
1142 			}
1143 		} else {
1144 			screen_buffer[doffset + x] = screen_buffer[soffset + x];
1145 			if (mark) {
1146 				/* update end point */
1147 				sr.tr_end.tp_col = s->tp_col + x;;
1148 			} else {
1149 				/* set up new rectangle */
1150 				mark = true;
1151 				sr.tr_begin.tp_col = s->tp_col + x;
1152 				sr.tr_begin.tp_row = s->tp_row;
1153 				sr.tr_end.tp_col = s->tp_col + x;
1154 				sr.tr_end.tp_row = s->tp_row;
1155 				dp.tp_col = d->tp_col + x;
1156 				dp.tp_row = d->tp_row;
1157 			}
1158 		}
1159 	}
1160 	if (mark) {
1161 		gfx_fb_copy_area(state, &sr, &dp);
1162 	}
1163 }
1164 
1165 void
1166 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p)
1167 {
1168 	teken_gfx_t *state = arg;
1169 	unsigned doffset, soffset;
1170 	teken_pos_t d, s;
1171 	int nrow, ncol, y; /* Has to be signed - >= 0 comparison */
1172 
1173 	/*
1174 	 * Copying is a little tricky. We must make sure we do it in
1175 	 * correct order, to make sure we don't overwrite our own data.
1176 	 */
1177 
1178 	nrow = r->tr_end.tp_row - r->tr_begin.tp_row;
1179 	ncol = r->tr_end.tp_col - r->tr_begin.tp_col;
1180 
1181 	if (p->tp_row + nrow > state->tg_tp.tp_row ||
1182 	    p->tp_col + ncol > state->tg_tp.tp_col)
1183 		return;
1184 
1185 	soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col;
1186 	doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col;
1187 
1188 	/* remove the cursor */
1189 	if (state->tg_cursor_visible)
1190 		gfx_fb_cursor_draw(state, &state->tg_cursor, false);
1191 
1192 	/*
1193 	 * Copy line by line.
1194 	 */
1195 	if (doffset <= soffset) {
1196 		s = r->tr_begin;
1197 		d = *p;
1198 		for (y = 0; y < nrow; y++) {
1199 			s.tp_row = r->tr_begin.tp_row + y;
1200 			d.tp_row = p->tp_row + y;
1201 
1202 			gfx_fb_copy_line(state, ncol, &s, &d);
1203 		}
1204 	} else {
1205 		for (y = nrow - 1; y >= 0; y--) {
1206 			s.tp_row = r->tr_begin.tp_row + y;
1207 			d.tp_row = p->tp_row + y;
1208 
1209 			gfx_fb_copy_line(state, ncol, &s, &d);
1210 		}
1211 	}
1212 
1213 	/* display the cursor */
1214 	if (state->tg_cursor_visible) {
1215 		const teken_pos_t *c;
1216 
1217 		c = teken_get_cursor(&state->tg_teken);
1218 		gfx_fb_cursor_draw(state, c, true);
1219 	}
1220 }
1221 
1222 /*
1223  * Implements alpha blending for RGBA data, could use pixels for arguments,
1224  * but byte stream seems more generic.
1225  * The generic alpha blending is:
1226  * blend = alpha * fg + (1.0 - alpha) * bg.
1227  * Since our alpha is not from range [0..1], we scale appropriately.
1228  */
1229 static uint8_t
1230 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha)
1231 {
1232 	uint16_t blend, h, l;
1233 
1234 	/* trivial corner cases */
1235 	if (alpha == 0)
1236 		return (bg);
1237 	if (alpha == 0xFF)
1238 		return (fg);
1239 	blend = (alpha * fg + (0xFF - alpha) * bg);
1240 	/* Division by 0xFF */
1241 	h = blend >> 8;
1242 	l = blend & 0xFF;
1243 	if (h + l >= 0xFF)
1244 		h++;
1245 	return (h);
1246 }
1247 
1248 /*
1249  * Implements alpha blending for RGBA data, could use pixels for arguments,
1250  * but byte stream seems more generic.
1251  * The generic alpha blending is:
1252  * blend = alpha * fg + (1.0 - alpha) * bg.
1253  * Since our alpha is not from range [0..1], we scale appropriately.
1254  */
1255 static void
1256 bitmap_cpy(void *dst, void *src, uint32_t size)
1257 {
1258 #if defined(EFI)
1259 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd;
1260 #else
1261 	struct paletteentry *ps, *pd;
1262 #endif
1263 	uint32_t i;
1264 	uint8_t a;
1265 
1266 	ps = src;
1267 	pd = dst;
1268 
1269 	/*
1270 	 * we only implement alpha blending for depth 32.
1271 	 */
1272 	for (i = 0; i < size; i ++) {
1273 		a = ps[i].Reserved;
1274 		pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a);
1275 		pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a);
1276 		pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a);
1277 		pd[i].Reserved = a;
1278 	}
1279 }
1280 
1281 static void *
1282 allocate_glyphbuffer(uint32_t width, uint32_t height)
1283 {
1284 	size_t size;
1285 
1286 	size = sizeof (*GlyphBuffer) * width * height;
1287 	if (size != GlyphBufferSize) {
1288 		free(GlyphBuffer);
1289 		GlyphBuffer = malloc(size);
1290 		if (GlyphBuffer == NULL)
1291 			return (NULL);
1292 		GlyphBufferSize = size;
1293 	}
1294 	return (GlyphBuffer);
1295 }
1296 
1297 void
1298 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height,
1299     void *data)
1300 {
1301 #if defined(EFI)
1302 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf;
1303 #else
1304 	struct paletteentry *buf;
1305 #endif
1306 	size_t size;
1307 
1308 	size = width * height * sizeof(*buf);
1309 
1310 	/*
1311 	 * Common data to display is glyph, use preallocated
1312 	 * glyph buffer.
1313 	 */
1314         if (gfx_state.tg_glyph_size != GlyphBufferSize)
1315                 (void) allocate_glyphbuffer(width, height);
1316 
1317 	if (size == GlyphBufferSize)
1318 		buf = GlyphBuffer;
1319 	else
1320 		buf = malloc(size);
1321 	if (buf == NULL)
1322 		return;
1323 
1324 	if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0,
1325 	    width, height, 0) == 0) {
1326 		bitmap_cpy(buf, data, width * height);
1327 		(void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y,
1328 		    width, height, 0);
1329 	}
1330 	if (buf != GlyphBuffer)
1331 		free(buf);
1332 }
1333 
1334 /*
1335  * Public graphics primitives.
1336  */
1337 
1338 static int
1339 isqrt(int num)
1340 {
1341 	int res = 0;
1342 	int bit = 1 << 30;
1343 
1344 	/* "bit" starts at the highest power of four <= the argument. */
1345 	while (bit > num)
1346 		bit >>= 2;
1347 
1348 	while (bit != 0) {
1349 		if (num >= res + bit) {
1350 			num -= res + bit;
1351 			res = (res >> 1) + bit;
1352 		} else {
1353 			res >>= 1;
1354 		}
1355 		bit >>= 2;
1356 	}
1357 	return (res);
1358 }
1359 
1360 /* set pixel in framebuffer using gfx coordinates */
1361 void
1362 gfx_fb_setpixel(uint32_t x, uint32_t y)
1363 {
1364 	uint32_t c;
1365 	const teken_attr_t *ap;
1366 
1367 	if (gfx_state.tg_fb_type == FB_TEXT)
1368 		return;
1369 
1370 	ap = teken_get_curattr(&gfx_state.tg_teken);
1371         if (ap->ta_format & TF_REVERSE) {
1372 		c = ap->ta_bgcolor;
1373 		if (ap->ta_format & TF_BLINK)
1374 			c |= TC_LIGHT;
1375 	} else {
1376 		c = ap->ta_fgcolor;
1377 		if (ap->ta_format & TF_BOLD)
1378 			c |= TC_LIGHT;
1379 	}
1380 
1381 	c = gfx_fb_color_map(c);
1382 
1383 	if (x >= gfx_state.tg_fb.fb_width ||
1384 	    y >= gfx_state.tg_fb.fb_height)
1385 		return;
1386 
1387 	gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0);
1388 }
1389 
1390 /*
1391  * draw rectangle in framebuffer using gfx coordinates.
1392  * The function is borrowed from vt_fb.c
1393  */
1394 void
1395 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2,
1396     uint32_t fill)
1397 {
1398 	uint32_t x, y;
1399 
1400 	if (gfx_state.tg_fb_type == FB_TEXT)
1401 		return;
1402 
1403 	for (y = y1; y <= y2; y++) {
1404 		if (fill || (y == y1) || (y == y2)) {
1405 			for (x = x1; x <= x2; x++)
1406 				gfx_fb_setpixel(x, y);
1407 		} else {
1408 			gfx_fb_setpixel(x1, y);
1409 			gfx_fb_setpixel(x2, y);
1410 		}
1411 	}
1412 }
1413 
1414 void
1415 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd)
1416 {
1417 	int dx, sx, dy, sy;
1418 	int err, e2, x2, y2, ed, width;
1419 
1420 	if (gfx_state.tg_fb_type == FB_TEXT)
1421 		return;
1422 
1423 	width = wd;
1424 	sx = x0 < x1? 1 : -1;
1425 	sy = y0 < y1? 1 : -1;
1426 	dx = x1 > x0? x1 - x0 : x0 - x1;
1427 	dy = y1 > y0? y1 - y0 : y0 - y1;
1428 	err = dx + dy;
1429 	ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy);
1430 
1431 	for (;;) {
1432 		gfx_fb_setpixel(x0, y0);
1433 		e2 = err;
1434 		x2 = x0;
1435 		if ((e2 << 1) >= -dx) {		/* x step */
1436 			e2 += dy;
1437 			y2 = y0;
1438 			while (e2 < ed * width &&
1439 			    (y1 != (uint32_t)y2 || dx > dy)) {
1440 				y2 += sy;
1441 				gfx_fb_setpixel(x0, y2);
1442 				e2 += dx;
1443 			}
1444 			if (x0 == x1)
1445 				break;
1446 			e2 = err;
1447 			err -= dy;
1448 			x0 += sx;
1449 		}
1450 		if ((e2 << 1) <= dy) {		/* y step */
1451 			e2 = dx-e2;
1452 			while (e2 < ed * width &&
1453 			    (x1 != (uint32_t)x2 || dx < dy)) {
1454 				x2 += sx;
1455 				gfx_fb_setpixel(x2, y0);
1456 				e2 += dy;
1457 			}
1458 			if (y0 == y1)
1459 				break;
1460 			err += dx;
1461 			y0 += sy;
1462 		}
1463 	}
1464 }
1465 
1466 /*
1467  * quadratic Bézier curve limited to gradients without sign change.
1468  */
1469 void
1470 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2,
1471     uint32_t y2, uint32_t wd)
1472 {
1473 	int sx, sy, xx, yy, xy, width;
1474 	int dx, dy, err, curvature;
1475 	int i;
1476 
1477 	if (gfx_state.tg_fb_type == FB_TEXT)
1478 		return;
1479 
1480 	width = wd;
1481 	sx = x2 - x1;
1482 	sy = y2 - y1;
1483 	xx = x0 - x1;
1484 	yy = y0 - y1;
1485 	curvature = xx*sy - yy*sx;
1486 
1487 	if (sx*sx + sy*sy > xx*xx+yy*yy) {
1488 		x2 = x0;
1489 		x0 = sx + x1;
1490 		y2 = y0;
1491 		y0 = sy + y1;
1492 		curvature = -curvature;
1493 	}
1494 	if (curvature != 0) {
1495 		xx += sx;
1496 		sx = x0 < x2? 1 : -1;
1497 		xx *= sx;
1498 		yy += sy;
1499 		sy = y0 < y2? 1 : -1;
1500 		yy *= sy;
1501 		xy = (xx*yy) << 1;
1502 		xx *= xx;
1503 		yy *= yy;
1504 		if (curvature * sx * sy < 0) {
1505 			xx = -xx;
1506 			yy = -yy;
1507 			xy = -xy;
1508 			curvature = -curvature;
1509 		}
1510 		dx = 4 * sy * curvature * (x1 - x0) + xx - xy;
1511 		dy = 4 * sx * curvature * (y0 - y1) + yy - xy;
1512 		xx += xx;
1513 		yy += yy;
1514 		err = dx + dy + xy;
1515 		do {
1516 			for (i = 0; i <= width; i++)
1517 				gfx_fb_setpixel(x0 + i, y0);
1518 			if (x0 == x2 && y0 == y2)
1519 				return;  /* last pixel -> curve finished */
1520 			y1 = 2 * err < dx;
1521 			if (2 * err > dy) {
1522 				x0 += sx;
1523 				dx -= xy;
1524 				dy += yy;
1525 				err += dy;
1526 			}
1527 			if (y1 != 0) {
1528 				y0 += sy;
1529 				dy -= xy;
1530 				dx += xx;
1531 				err += dx;
1532 			}
1533 		} while (dy < dx); /* gradient negates -> algorithm fails */
1534 	}
1535 	gfx_fb_line(x0, y0, x2, y2, width);
1536 }
1537 
1538 /*
1539  * draw rectangle using terminal coordinates and current foreground color.
1540  */
1541 void
1542 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2)
1543 {
1544 	int x1, y1, x2, y2;
1545 	int xshift, yshift;
1546 	int width, i;
1547 	uint32_t vf_width, vf_height;
1548 	teken_rect_t r;
1549 
1550 	if (gfx_state.tg_fb_type == FB_TEXT)
1551 		return;
1552 
1553 	vf_width = gfx_state.tg_font.vf_width;
1554 	vf_height = gfx_state.tg_font.vf_height;
1555 	width = vf_width / 4;			/* line width */
1556 	xshift = (vf_width - width) / 2;
1557 	yshift = (vf_height - width) / 2;
1558 
1559 	/* Shift coordinates */
1560 	if (ux1 != 0)
1561 		ux1--;
1562 	if (uy1 != 0)
1563 		uy1--;
1564 	ux2--;
1565 	uy2--;
1566 
1567 	/* mark area used in terminal */
1568 	r.tr_begin.tp_col = ux1;
1569 	r.tr_begin.tp_row = uy1;
1570 	r.tr_end.tp_col = ux2 + 1;
1571 	r.tr_end.tp_row = uy2 + 1;
1572 
1573 	term_image_display(&gfx_state, &r);
1574 
1575 	/*
1576 	 * Draw horizontal lines width points thick, shifted from outer edge.
1577 	 */
1578 	x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col;
1579 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1580 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1581 	gfx_fb_drawrect(x1, y1, x2, y1 + width, 1);
1582 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1583 	y2 += vf_height - yshift - width;
1584 	gfx_fb_drawrect(x1, y2, x2, y2 + width, 1);
1585 
1586 	/*
1587 	 * Draw vertical lines width points thick, shifted from outer edge.
1588 	 */
1589 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1590 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1591 	y1 += vf_height;
1592 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1593 	gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
1594 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1595 	x1 += vf_width - xshift - width;
1596 	gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
1597 
1598 	/* Draw upper left corner. */
1599 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1600 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1601 	y1 += vf_height;
1602 
1603 	x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
1604 	x2 += vf_width;
1605 	y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1606 	for (i = 0; i <= width; i++)
1607 		gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i);
1608 
1609 	/* Draw lower left corner. */
1610 	x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
1611 	x1 += vf_width;
1612 	y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1613 	y1 += vf_height - yshift;
1614 	x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
1615 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1616 	for (i = 0; i <= width; i++)
1617 		gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
1618 
1619 	/* Draw upper right corner. */
1620 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1621 	y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
1622 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1623 	x2 += vf_width - xshift - width;
1624 	y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
1625 	y2 += vf_height;
1626 	for (i = 0; i <= width; i++)
1627 		gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i);
1628 
1629 	/* Draw lower right corner. */
1630 	x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1631 	y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1632 	y1 += vf_height - yshift;
1633 	x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
1634 	x2 += vf_width - xshift - width;
1635 	y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
1636 	for (i = 0; i <= width; i++)
1637 		gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
1638 }
1639 
1640 int
1641 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2,
1642     uint32_t uy2, uint32_t flags)
1643 {
1644 #if defined(EFI)
1645 	EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
1646 #else
1647 	struct paletteentry *p;
1648 #endif
1649 	uint8_t *data;
1650 	uint32_t i, j, x, y, fheight, fwidth;
1651 	int rs, gs, bs;
1652 	uint8_t r, g, b, a;
1653 	bool scale = false;
1654 	bool trace = false;
1655 	teken_rect_t rect;
1656 
1657 	trace = (flags & FL_PUTIMAGE_DEBUG) != 0;
1658 
1659 	if (gfx_state.tg_fb_type == FB_TEXT) {
1660 		if (trace)
1661 			printf("Framebuffer not active.\n");
1662 		return (1);
1663 	}
1664 
1665 	if (png->color_type != PNG_TRUECOLOR_ALPHA) {
1666 		if (trace)
1667 			printf("Not truecolor image.\n");
1668 		return (1);
1669 	}
1670 
1671 	if (ux1 > gfx_state.tg_fb.fb_width ||
1672 	    uy1 > gfx_state.tg_fb.fb_height) {
1673 		if (trace)
1674 			printf("Top left coordinate off screen.\n");
1675 		return (1);
1676 	}
1677 
1678 	if (png->width > UINT16_MAX || png->height > UINT16_MAX) {
1679 		if (trace)
1680 			printf("Image too large.\n");
1681 		return (1);
1682 	}
1683 
1684 	if (png->width < 1 || png->height < 1) {
1685 		if (trace)
1686 			printf("Image too small.\n");
1687 		return (1);
1688 	}
1689 
1690 	/*
1691 	 * If 0 was passed for either ux2 or uy2, then calculate the missing
1692 	 * part of the bottom right coordinate.
1693 	 */
1694 	scale = true;
1695 	if (ux2 == 0 && uy2 == 0) {
1696 		/* Both 0, use the native resolution of the image */
1697 		ux2 = ux1 + png->width;
1698 		uy2 = uy1 + png->height;
1699 		scale = false;
1700 	} else if (ux2 == 0) {
1701 		/* Set ux2 from uy2/uy1 to maintain aspect ratio */
1702 		ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height;
1703 	} else if (uy2 == 0) {
1704 		/* Set uy2 from ux2/ux1 to maintain aspect ratio */
1705 		uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width;
1706 	}
1707 
1708 	if (ux2 > gfx_state.tg_fb.fb_width ||
1709 	    uy2 > gfx_state.tg_fb.fb_height) {
1710 		if (trace)
1711 			printf("Bottom right coordinate off screen.\n");
1712 		return (1);
1713 	}
1714 
1715 	fwidth = ux2 - ux1;
1716 	fheight = uy2 - uy1;
1717 
1718 	/*
1719 	 * If the original image dimensions have been passed explicitly,
1720 	 * disable scaling.
1721 	 */
1722 	if (fwidth == png->width && fheight == png->height)
1723 		scale = false;
1724 
1725 	if (ux1 == 0) {
1726 		/*
1727 		 * No top left X co-ordinate (real coordinates start at 1),
1728 		 * place as far right as it will fit.
1729 		 */
1730 		ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col;
1731 		ux1 = ux2 - fwidth;
1732 	}
1733 
1734 	if (uy1 == 0) {
1735 		/*
1736 		 * No top left Y co-ordinate (real coordinates start at 1),
1737 		 * place as far down as it will fit.
1738 		 */
1739 		uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row;
1740 		uy1 = uy2 - fheight;
1741 	}
1742 
1743 	if (ux1 >= ux2 || uy1 >= uy2) {
1744 		if (trace)
1745 			printf("Image dimensions reversed.\n");
1746 		return (1);
1747 	}
1748 
1749 	if (fwidth < 2 || fheight < 2) {
1750 		if (trace)
1751 			printf("Target area too small\n");
1752 		return (1);
1753 	}
1754 
1755 	if (trace)
1756 		printf("Image %ux%u -> %ux%u @%ux%u\n",
1757 		    png->width, png->height, fwidth, fheight, ux1, uy1);
1758 
1759 	rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width;
1760 	rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height;
1761 	rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width;
1762 	rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height;
1763 
1764 	/*
1765 	 * mark area used in terminal
1766 	 */
1767 	if (!(flags & FL_PUTIMAGE_NOSCROLL))
1768 		term_image_display(&gfx_state, &rect);
1769 
1770 	if ((flags & FL_PUTIMAGE_BORDER))
1771 		gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0);
1772 
1773 	data = malloc(fwidth * fheight * sizeof(*p));
1774 	p = (void *)data;
1775 	if (data == NULL) {
1776 		if (trace)
1777 			printf("Out of memory.\n");
1778 		return (1);
1779 	}
1780 
1781 	/*
1782 	 * Build image for our framebuffer.
1783 	 */
1784 
1785 	/* Helper to calculate the pixel index from the source png */
1786 #define	GETPIXEL(xx, yy)	(((yy) * png->width + (xx)) * png->bpp)
1787 
1788 	/*
1789 	 * For each of the x and y directions, calculate the number of pixels
1790 	 * in the source image that correspond to a single pixel in the target.
1791 	 * Use fixed-point arithmetic with 16-bits for each of the integer and
1792 	 * fractional parts.
1793 	 */
1794 	const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1);
1795 	const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1);
1796 
1797 	rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) -
1798 	    ffs(gfx_state.tg_fb.fb_mask_red) + 1);
1799 	gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) -
1800 	    ffs(gfx_state.tg_fb.fb_mask_green) + 1);
1801 	bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) -
1802 	    ffs(gfx_state.tg_fb.fb_mask_blue) + 1);
1803 
1804 	uint32_t hc = 0;
1805 	for (y = 0; y < fheight; y++) {
1806 		uint32_t hc2 = (hc >> 9) & 0x7f;
1807 		uint32_t hc1 = 0x80 - hc2;
1808 
1809 		uint32_t offset_y = hc >> 16;
1810 		uint32_t offset_y1 = offset_y + 1;
1811 
1812 		uint32_t wc = 0;
1813 		for (x = 0; x < fwidth; x++) {
1814 			uint32_t wc2 = (wc >> 9) & 0x7f;
1815 			uint32_t wc1 = 0x80 - wc2;
1816 
1817 			uint32_t offset_x = wc >> 16;
1818 			uint32_t offset_x1 = offset_x + 1;
1819 
1820 			/* Target pixel index */
1821 			j = y * fwidth + x;
1822 
1823 			if (!scale) {
1824 				i = GETPIXEL(x, y);
1825 				r = png->image[i];
1826 				g = png->image[i + 1];
1827 				b = png->image[i + 2];
1828 				a = png->image[i + 3];
1829 			} else {
1830 				uint8_t pixel[4];
1831 
1832 				uint32_t p00 = GETPIXEL(offset_x, offset_y);
1833 				uint32_t p01 = GETPIXEL(offset_x, offset_y1);
1834 				uint32_t p10 = GETPIXEL(offset_x1, offset_y);
1835 				uint32_t p11 = GETPIXEL(offset_x1, offset_y1);
1836 
1837 				/*
1838 				 * Given a 2x2 array of pixels in the source
1839 				 * image, combine them to produce a single
1840 				 * value for the pixel in the target image.
1841 				 * Each column of pixels is combined using
1842 				 * a weighted average where the top and bottom
1843 				 * pixels contribute hc1 and hc2 respectively.
1844 				 * The calculation for bottom pixel pB and
1845 				 * top pixel pT is:
1846 				 *   (pT * hc1 + pB * hc2) / (hc1 + hc2)
1847 				 * Once the values are determined for the two
1848 				 * columns of pixels, then the columns are
1849 				 * averaged together in the same way but using
1850 				 * wc1 and wc2 for the weightings.
1851 				 *
1852 				 * Since hc1 and hc2 are chosen so that
1853 				 * hc1 + hc2 == 128 (and same for wc1 + wc2),
1854 				 * the >> 14 below is a quick way to divide by
1855 				 * (hc1 + hc2) * (wc1 + wc2)
1856 				 */
1857 				for (i = 0; i < 4; i++)
1858 					pixel[i] = (
1859 					    (png->image[p00 + i] * hc1 +
1860 					    png->image[p01 + i] * hc2) * wc1 +
1861 					    (png->image[p10 + i] * hc1 +
1862 					    png->image[p11 + i] * hc2) * wc2)
1863 					    >> 14;
1864 
1865 				r = pixel[0];
1866 				g = pixel[1];
1867 				b = pixel[2];
1868 				a = pixel[3];
1869 			}
1870 
1871 			if (trace)
1872 				printf("r/g/b: %x/%x/%x\n", r, g, b);
1873 			/*
1874 			 * Rough colorspace reduction for 15/16 bit colors.
1875 			 */
1876 			p[j].Red = r >> rs;
1877                         p[j].Green = g >> gs;
1878                         p[j].Blue = b >> bs;
1879                         p[j].Reserved = a;
1880 
1881 			wc += wcstep;
1882 		}
1883 		hc += hcstep;
1884 	}
1885 
1886 	gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data);
1887 	free(data);
1888 	return (0);
1889 }
1890 
1891 /*
1892  * Reset font flags to FONT_AUTO.
1893  */
1894 void
1895 reset_font_flags(void)
1896 {
1897 	struct fontlist *fl;
1898 
1899 	STAILQ_FOREACH(fl, &fonts, font_next) {
1900 		fl->font_flags = FONT_AUTO;
1901 	}
1902 }
1903 
1904 /* Return  w^2 + h^2 or 0, if the dimensions are unknown */
1905 static unsigned
1906 edid_diagonal_squared(void)
1907 {
1908 	unsigned w, h;
1909 
1910 	if (edid_info == NULL)
1911 		return (0);
1912 
1913 	w = edid_info->display.max_horizontal_image_size;
1914 	h = edid_info->display.max_vertical_image_size;
1915 
1916 	/* If either one is 0, we have aspect ratio, not size */
1917 	if (w == 0 || h == 0)
1918 		return (0);
1919 
1920 	/*
1921 	 * some monitors encode the aspect ratio instead of the physical size.
1922 	 */
1923 	if ((w == 16 && h == 9) || (w == 16 && h == 10) ||
1924 	    (w == 4 && h == 3) || (w == 5 && h == 4))
1925 		return (0);
1926 
1927 	/*
1928 	 * translate cm to inch, note we scale by 100 here.
1929 	 */
1930 	w = w * 100 / 254;
1931 	h = h * 100 / 254;
1932 
1933 	/* Return w^2 + h^2 */
1934 	return (w * w + h * h);
1935 }
1936 
1937 /*
1938  * calculate pixels per inch.
1939  */
1940 static unsigned
1941 gfx_get_ppi(void)
1942 {
1943 	unsigned dp, di;
1944 
1945 	di = edid_diagonal_squared();
1946 	if (di == 0)
1947 		return (0);
1948 
1949 	dp = gfx_state.tg_fb.fb_width *
1950 	    gfx_state.tg_fb.fb_width +
1951 	    gfx_state.tg_fb.fb_height *
1952 	    gfx_state.tg_fb.fb_height;
1953 
1954 	return (isqrt(dp / di));
1955 }
1956 
1957 /*
1958  * Calculate font size from density independent pixels (dp):
1959  * ((16dp * ppi) / 160) * display_factor.
1960  * Here we are using fixed constants: 1dp == 160 ppi and
1961  * display_factor 2.
1962  *
1963  * We are rounding font size up and are searching for font which is
1964  * not smaller than calculated size value.
1965  */
1966 static vt_font_bitmap_data_t *
1967 gfx_get_font(void)
1968 {
1969 	unsigned ppi, size;
1970 	vt_font_bitmap_data_t *font = NULL;
1971 	struct fontlist *fl, *next;
1972 
1973 	/* Text mode is not supported here. */
1974 	if (gfx_state.tg_fb_type == FB_TEXT)
1975 		return (NULL);
1976 
1977 	ppi = gfx_get_ppi();
1978 	if (ppi == 0)
1979 		return (NULL);
1980 
1981 	/*
1982 	 * We will search for 16dp font.
1983 	 * We are using scale up by 10 for roundup.
1984 	 */
1985 	size = (16 * ppi * 10) / 160;
1986 	/* Apply display factor 2.  */
1987 	size = roundup(size * 2, 10) / 10;
1988 
1989 	STAILQ_FOREACH(fl, &fonts, font_next) {
1990 		next = STAILQ_NEXT(fl, font_next);
1991 
1992 		/*
1993 		 * If this is last font or, if next font is smaller,
1994 		 * we have our font. Make sure, it actually is loaded.
1995 		 */
1996 		if (next == NULL || next->font_data->vfbd_height < size) {
1997 			font = fl->font_data;
1998 			if (font->vfbd_font == NULL ||
1999 			    fl->font_flags == FONT_RELOAD) {
2000 				if (fl->font_load != NULL &&
2001 				    fl->font_name != NULL)
2002 					font = fl->font_load(fl->font_name);
2003 			}
2004 			break;
2005 		}
2006 	}
2007 
2008 	return (font);
2009 }
2010 
2011 static vt_font_bitmap_data_t *
2012 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w)
2013 {
2014 	vt_font_bitmap_data_t *font = NULL;
2015 	struct fontlist *fl;
2016 	unsigned height = h;
2017 	unsigned width = w;
2018 
2019 	/*
2020 	 * First check for manually loaded font.
2021 	 */
2022 	STAILQ_FOREACH(fl, &fonts, font_next) {
2023 		if (fl->font_flags == FONT_MANUAL) {
2024 			font = fl->font_data;
2025 			if (font->vfbd_font == NULL && fl->font_load != NULL &&
2026 			    fl->font_name != NULL) {
2027 				font = fl->font_load(fl->font_name);
2028 			}
2029 			if (font == NULL || font->vfbd_font == NULL)
2030 				font = NULL;
2031 			break;
2032 		}
2033 	}
2034 
2035 	if (font == NULL)
2036 		font = gfx_get_font();
2037 
2038 	if (font != NULL) {
2039 		*rows = height / font->vfbd_height;
2040 		*cols = width / font->vfbd_width;
2041 		return (font);
2042 	}
2043 
2044 	/*
2045 	 * Find best font for these dimensions, or use default.
2046 	 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH,
2047 	 * do not use smaller font than our DEFAULT_FONT_DATA.
2048 	 */
2049 	STAILQ_FOREACH(fl, &fonts, font_next) {
2050 		font = fl->font_data;
2051 		if ((*rows * font->vfbd_height <= height &&
2052 		    *cols * font->vfbd_width <= width) ||
2053 		    (height >= VT_FB_MAX_HEIGHT &&
2054 		    width >= VT_FB_MAX_WIDTH &&
2055 		    font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height &&
2056 		    font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) {
2057 			if (font->vfbd_font == NULL ||
2058 			    fl->font_flags == FONT_RELOAD) {
2059 				if (fl->font_load != NULL &&
2060 				    fl->font_name != NULL) {
2061 					font = fl->font_load(fl->font_name);
2062 				}
2063 				if (font == NULL)
2064 					continue;
2065 			}
2066 			*rows = height / font->vfbd_height;
2067 			*cols = width / font->vfbd_width;
2068 			break;
2069 		}
2070 		font = NULL;
2071 	}
2072 
2073 	if (font == NULL) {
2074 		/*
2075 		 * We have fonts sorted smallest last, try it before
2076 		 * falling back to builtin.
2077 		 */
2078 		fl = STAILQ_LAST(&fonts, fontlist, font_next);
2079 		if (fl != NULL && fl->font_load != NULL &&
2080 		    fl->font_name != NULL) {
2081 			font = fl->font_load(fl->font_name);
2082 		}
2083 		if (font == NULL)
2084 			font = &DEFAULT_FONT_DATA;
2085 
2086 		*rows = height / font->vfbd_height;
2087 		*cols = width / font->vfbd_width;
2088 	}
2089 
2090 	return (font);
2091 }
2092 
2093 static void
2094 cons_clear(void)
2095 {
2096 	char clear[] = { '\033', 'c' };
2097 
2098 	/* Reset terminal */
2099 	teken_input(&gfx_state.tg_teken, clear, sizeof(clear));
2100 	gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0);
2101 }
2102 
2103 void
2104 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width)
2105 {
2106 	vt_font_bitmap_data_t *font_data;
2107 	teken_pos_t *tp = &state->tg_tp;
2108 	char env[8];
2109 	int i;
2110 
2111 	/*
2112 	 * set_font() will select a appropriate sized font for
2113 	 * the number of rows and columns selected.  If we don't
2114 	 * have a font that will fit, then it will use the
2115 	 * default builtin font and adjust the rows and columns
2116 	 * to fit on the screen.
2117 	 */
2118 	font_data = set_font(&tp->tp_row, &tp->tp_col, height, width);
2119 
2120         if (font_data == NULL)
2121 		panic("out of memory");
2122 
2123 	for (i = 0; i < VFNT_MAPS; i++) {
2124 		state->tg_font.vf_map[i] =
2125 		    font_data->vfbd_font->vf_map[i];
2126 		state->tg_font.vf_map_count[i] =
2127 		    font_data->vfbd_font->vf_map_count[i];
2128 	}
2129 
2130 	state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes;
2131 	state->tg_font.vf_height = font_data->vfbd_font->vf_height;
2132 	state->tg_font.vf_width = font_data->vfbd_font->vf_width;
2133 
2134 	snprintf(env, sizeof (env), "%ux%u",
2135 	    state->tg_font.vf_width, state->tg_font.vf_height);
2136 	env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK,
2137 	    env, font_set, env_nounset);
2138 }
2139 
2140 /* Binary search for the glyph. Return 0 if not found. */
2141 static uint16_t
2142 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src)
2143 {
2144 	unsigned min, mid, max;
2145 
2146 	min = 0;
2147 	max = len - 1;
2148 
2149 	/* Empty font map. */
2150 	if (len == 0)
2151 		return (0);
2152 	/* Character below minimal entry. */
2153 	if (src < map[0].vfm_src)
2154 		return (0);
2155 	/* Optimization: ASCII characters occur very often. */
2156 	if (src <= map[0].vfm_src + map[0].vfm_len)
2157 		return (src - map[0].vfm_src + map[0].vfm_dst);
2158 	/* Character above maximum entry. */
2159 	if (src > map[max].vfm_src + map[max].vfm_len)
2160 		return (0);
2161 
2162 	/* Binary search. */
2163 	while (max >= min) {
2164 		mid = (min + max) / 2;
2165 		if (src < map[mid].vfm_src)
2166 			max = mid - 1;
2167 		else if (src > map[mid].vfm_src + map[mid].vfm_len)
2168 			min = mid + 1;
2169 		else
2170 			return (src - map[mid].vfm_src + map[mid].vfm_dst);
2171 	}
2172 
2173 	return (0);
2174 }
2175 
2176 /*
2177  * Return glyph bitmap. If glyph is not found, we will return bitmap
2178  * for the first (offset 0) glyph.
2179  */
2180 uint8_t *
2181 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a)
2182 {
2183 	uint16_t dst;
2184 	size_t stride;
2185 
2186 	/* Substitute bold with normal if not found. */
2187 	if (a->ta_format & TF_BOLD) {
2188 		dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD],
2189 		    vf->vf_map_count[VFNT_MAP_BOLD], c);
2190 		if (dst != 0)
2191 			goto found;
2192 	}
2193 	dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL],
2194 	    vf->vf_map_count[VFNT_MAP_NORMAL], c);
2195 
2196 found:
2197 	stride = howmany(vf->vf_width, 8) * vf->vf_height;
2198 	return (&vf->vf_bytes[dst * stride]);
2199 }
2200 
2201 static int
2202 load_mapping(int fd, struct vt_font *fp, int n)
2203 {
2204 	size_t i, size;
2205 	ssize_t rv;
2206 	vfnt_map_t *mp;
2207 
2208 	if (fp->vf_map_count[n] == 0)
2209 		return (0);
2210 
2211 	size = fp->vf_map_count[n] * sizeof(*mp);
2212 	mp = malloc(size);
2213 	if (mp == NULL)
2214 		return (ENOMEM);
2215 	fp->vf_map[n] = mp;
2216 
2217 	rv = read(fd, mp, size);
2218 	if (rv < 0 || (size_t)rv != size) {
2219 		free(fp->vf_map[n]);
2220 		fp->vf_map[n] = NULL;
2221 		return (EIO);
2222 	}
2223 
2224 	for (i = 0; i < fp->vf_map_count[n]; i++) {
2225 		mp[i].vfm_src = be32toh(mp[i].vfm_src);
2226 		mp[i].vfm_dst = be16toh(mp[i].vfm_dst);
2227 		mp[i].vfm_len = be16toh(mp[i].vfm_len);
2228 	}
2229 	return (0);
2230 }
2231 
2232 static int
2233 builtin_mapping(struct vt_font *fp, int n)
2234 {
2235 	size_t size;
2236 	struct vfnt_map *mp;
2237 
2238 	if (n >= VFNT_MAPS)
2239 		return (EINVAL);
2240 
2241 	if (fp->vf_map_count[n] == 0)
2242 		return (0);
2243 
2244 	size = fp->vf_map_count[n] * sizeof(*mp);
2245 	mp = malloc(size);
2246 	if (mp == NULL)
2247 		return (ENOMEM);
2248 	fp->vf_map[n] = mp;
2249 
2250 	memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size);
2251 	return (0);
2252 }
2253 
2254 /*
2255  * Load font from builtin or from file.
2256  * We do need special case for builtin because the builtin font glyphs
2257  * are compressed and we do need to uncompress them.
2258  * Having single load_font() for both cases will help us to simplify
2259  * font switch handling.
2260  */
2261 static vt_font_bitmap_data_t *
2262 load_font(char *path)
2263 {
2264 	int fd, i;
2265 	uint32_t glyphs;
2266 	struct font_header fh;
2267 	struct fontlist *fl;
2268 	vt_font_bitmap_data_t *bp;
2269 	struct vt_font *fp;
2270 	size_t size;
2271 	ssize_t rv;
2272 
2273 	/* Get our entry from the font list. */
2274 	STAILQ_FOREACH(fl, &fonts, font_next) {
2275 		if (strcmp(fl->font_name, path) == 0)
2276 			break;
2277 	}
2278 	if (fl == NULL)
2279 		return (NULL);	/* Should not happen. */
2280 
2281 	bp = fl->font_data;
2282 	if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD)
2283 		return (bp);
2284 
2285 	fd = -1;
2286 	/*
2287 	 * Special case for builtin font.
2288 	 * Builtin font is the very first font we load, we do not have
2289 	 * previous loads to be released.
2290 	 */
2291 	if (fl->font_flags == FONT_BUILTIN) {
2292 		if ((fp = calloc(1, sizeof(struct vt_font))) == NULL)
2293 			return (NULL);
2294 
2295 		fp->vf_width = DEFAULT_FONT_DATA.vfbd_width;
2296 		fp->vf_height = DEFAULT_FONT_DATA.vfbd_height;
2297 
2298 		fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size);
2299 		if (fp->vf_bytes == NULL) {
2300 			free(fp);
2301 			return (NULL);
2302 		}
2303 
2304 		bp->vfbd_uncompressed_size =
2305 		    DEFAULT_FONT_DATA.vfbd_uncompressed_size;
2306 		bp->vfbd_compressed_size =
2307 		    DEFAULT_FONT_DATA.vfbd_compressed_size;
2308 
2309 		if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data,
2310 		    fp->vf_bytes,
2311 		    DEFAULT_FONT_DATA.vfbd_compressed_size,
2312 		    DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) {
2313 			free(fp->vf_bytes);
2314 			free(fp);
2315 			return (NULL);
2316 		}
2317 
2318 		for (i = 0; i < VFNT_MAPS; i++) {
2319 			fp->vf_map_count[i] =
2320 			    DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i];
2321 			if (builtin_mapping(fp, i) != 0)
2322 				goto free_done;
2323 		}
2324 
2325 		bp->vfbd_font = fp;
2326 		return (bp);
2327 	}
2328 
2329 	fd = open(path, O_RDONLY);
2330 	if (fd < 0)
2331 		return (NULL);
2332 
2333 	size = sizeof(fh);
2334 	rv = read(fd, &fh, size);
2335 	if (rv < 0 || (size_t)rv != size) {
2336 		bp = NULL;
2337 		goto done;
2338 	}
2339 	if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) {
2340 		bp = NULL;
2341 		goto done;
2342 	}
2343 	if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) {
2344 		bp = NULL;
2345 		goto done;
2346 	}
2347 	for (i = 0; i < VFNT_MAPS; i++)
2348 		fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]);
2349 
2350 	glyphs = be32toh(fh.fh_glyph_count);
2351 	fp->vf_width = fh.fh_width;
2352 	fp->vf_height = fh.fh_height;
2353 
2354 	size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs;
2355 	bp->vfbd_uncompressed_size = size;
2356 	if ((fp->vf_bytes = malloc(size)) == NULL)
2357 		goto free_done;
2358 
2359 	rv = read(fd, fp->vf_bytes, size);
2360 	if (rv < 0 || (size_t)rv != size)
2361 		goto free_done;
2362 	for (i = 0; i < VFNT_MAPS; i++) {
2363 		if (load_mapping(fd, fp, i) != 0)
2364 			goto free_done;
2365 	}
2366 
2367 	/*
2368 	 * Reset builtin flag now as we have full font loaded.
2369 	 */
2370 	if (fl->font_flags == FONT_BUILTIN)
2371 		fl->font_flags = FONT_AUTO;
2372 
2373 	/*
2374 	 * Release previously loaded entries. We can do this now, as
2375 	 * the new font is loaded. Note, there can be no console
2376 	 * output till the new font is in place and teken is notified.
2377 	 * We do need to keep fl->font_data for glyph dimensions.
2378 	 */
2379 	STAILQ_FOREACH(fl, &fonts, font_next) {
2380 		if (fl->font_data->vfbd_font == NULL)
2381 			continue;
2382 
2383 		for (i = 0; i < VFNT_MAPS; i++)
2384 			free(fl->font_data->vfbd_font->vf_map[i]);
2385 		free(fl->font_data->vfbd_font->vf_bytes);
2386 		free(fl->font_data->vfbd_font);
2387 		fl->font_data->vfbd_font = NULL;
2388 	}
2389 
2390 	bp->vfbd_font = fp;
2391 	bp->vfbd_compressed_size = 0;
2392 
2393 done:
2394 	if (fd != -1)
2395 		close(fd);
2396 	return (bp);
2397 
2398 free_done:
2399 	for (i = 0; i < VFNT_MAPS; i++)
2400 		free(fp->vf_map[i]);
2401 	free(fp->vf_bytes);
2402 	free(fp);
2403 	bp = NULL;
2404 	goto done;
2405 }
2406 
2407 struct name_entry {
2408 	char			*n_name;
2409 	SLIST_ENTRY(name_entry)	n_entry;
2410 };
2411 
2412 SLIST_HEAD(name_list, name_entry);
2413 
2414 /* Read font names from index file. */
2415 static struct name_list *
2416 read_list(char *fonts)
2417 {
2418 	struct name_list *nl;
2419 	struct name_entry *np;
2420 	char *dir, *ptr;
2421 	char buf[PATH_MAX];
2422 	int fd, len;
2423 
2424 	dir = strdup(fonts);
2425 	if (dir == NULL)
2426 		return (NULL);
2427 
2428 	ptr = strrchr(dir, '/');
2429 	*ptr = '\0';
2430 
2431 	fd = open(fonts, O_RDONLY);
2432 	if (fd < 0)
2433 		return (NULL);
2434 
2435 	nl = malloc(sizeof(*nl));
2436 	if (nl == NULL) {
2437 		close(fd);
2438 		return (nl);
2439 	}
2440 
2441 	SLIST_INIT(nl);
2442 	while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) {
2443 		if (*buf == '#' || *buf == '\0')
2444 			continue;
2445 
2446 		if (bcmp(buf, "MENU", 4) == 0)
2447 			continue;
2448 
2449 		if (bcmp(buf, "FONT", 4) == 0)
2450 			continue;
2451 
2452 		ptr = strchr(buf, ':');
2453 		if (ptr == NULL)
2454 			continue;
2455 		else
2456 			*ptr = '\0';
2457 
2458 		np = malloc(sizeof(*np));
2459 		if (np == NULL) {
2460 			close(fd);
2461 			return (nl);	/* return what we have */
2462 		}
2463 		if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) {
2464 			free(np);
2465 			close(fd);
2466 			return (nl);    /* return what we have */
2467 		}
2468 		SLIST_INSERT_HEAD(nl, np, n_entry);
2469 	}
2470 	close(fd);
2471 	return (nl);
2472 }
2473 
2474 /*
2475  * Read the font properties and insert new entry into the list.
2476  * The font list is built in descending order.
2477  */
2478 static bool
2479 insert_font(char *name, FONT_FLAGS flags)
2480 {
2481 	struct font_header fh;
2482 	struct fontlist *fp, *previous, *entry, *next;
2483 	size_t size;
2484 	ssize_t rv;
2485 	int fd;
2486 	char *font_name;
2487 
2488 	font_name = NULL;
2489 	if (flags == FONT_BUILTIN) {
2490 		/*
2491 		 * We only install builtin font once, while setting up
2492 		 * initial console. Since this will happen very early,
2493 		 * we assume asprintf will not fail. Once we have access to
2494 		 * files, the builtin font will be replaced by font loaded
2495 		 * from file.
2496 		 */
2497 		if (!STAILQ_EMPTY(&fonts))
2498 			return (false);
2499 
2500 		fh.fh_width = DEFAULT_FONT_DATA.vfbd_width;
2501 		fh.fh_height = DEFAULT_FONT_DATA.vfbd_height;
2502 
2503 		(void) asprintf(&font_name, "%dx%d",
2504 		    DEFAULT_FONT_DATA.vfbd_width,
2505 		    DEFAULT_FONT_DATA.vfbd_height);
2506 	} else {
2507 		fd = open(name, O_RDONLY);
2508 		if (fd < 0)
2509 			return (false);
2510 		rv = read(fd, &fh, sizeof(fh));
2511 		close(fd);
2512 		if (rv < 0 || (size_t)rv != sizeof(fh))
2513 			return (false);
2514 
2515 		if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC,
2516 		    sizeof(fh.fh_magic)) != 0)
2517 			return (false);
2518 		font_name = strdup(name);
2519 	}
2520 
2521 	if (font_name == NULL)
2522 		return (false);
2523 
2524 	/*
2525 	 * If we have an entry with the same glyph dimensions, replace
2526 	 * the file name and mark us. We only support unique dimensions.
2527 	 */
2528 	STAILQ_FOREACH(entry, &fonts, font_next) {
2529 		if (fh.fh_width == entry->font_data->vfbd_width &&
2530 		    fh.fh_height == entry->font_data->vfbd_height) {
2531 			free(entry->font_name);
2532 			entry->font_name = font_name;
2533 			entry->font_flags = FONT_RELOAD;
2534 			return (true);
2535 		}
2536 	}
2537 
2538 	fp = calloc(sizeof(*fp), 1);
2539 	if (fp == NULL) {
2540 		free(font_name);
2541 		return (false);
2542 	}
2543 	fp->font_data = calloc(sizeof(*fp->font_data), 1);
2544 	if (fp->font_data == NULL) {
2545 		free(font_name);
2546 		free(fp);
2547 		return (false);
2548 	}
2549 	fp->font_name = font_name;
2550 	fp->font_flags = flags;
2551 	fp->font_load = load_font;
2552 	fp->font_data->vfbd_width = fh.fh_width;
2553 	fp->font_data->vfbd_height = fh.fh_height;
2554 
2555 	if (STAILQ_EMPTY(&fonts)) {
2556 		STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2557 		return (true);
2558 	}
2559 
2560 	previous = NULL;
2561 	size = fp->font_data->vfbd_width * fp->font_data->vfbd_height;
2562 
2563 	STAILQ_FOREACH(entry, &fonts, font_next) {
2564 		vt_font_bitmap_data_t *bd;
2565 
2566 		bd = entry->font_data;
2567 		/* Should fp be inserted before the entry? */
2568 		if (size > bd->vfbd_width * bd->vfbd_height) {
2569 			if (previous == NULL) {
2570 				STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2571 			} else {
2572 				STAILQ_INSERT_AFTER(&fonts, previous, fp,
2573 				    font_next);
2574 			}
2575 			return (true);
2576 		}
2577 		next = STAILQ_NEXT(entry, font_next);
2578 		if (next == NULL ||
2579 		    size > next->font_data->vfbd_width *
2580 		    next->font_data->vfbd_height) {
2581 			STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next);
2582 			return (true);
2583 		}
2584 		previous = entry;
2585 	}
2586 	return (true);
2587 }
2588 
2589 static int
2590 font_set(struct env_var *ev __unused, int flags __unused, const void *value)
2591 {
2592 	struct fontlist *fl;
2593 	char *eptr;
2594 	unsigned long x = 0, y = 0;
2595 
2596 	/*
2597 	 * Attempt to extract values from "XxY" string. In case of error,
2598 	 * we have unmaching glyph dimensions and will just output the
2599 	 * available values.
2600 	 */
2601 	if (value != NULL) {
2602 		x = strtoul(value, &eptr, 10);
2603 		if (*eptr == 'x')
2604 			y = strtoul(eptr + 1, &eptr, 10);
2605 	}
2606 	STAILQ_FOREACH(fl, &fonts, font_next) {
2607 		if (fl->font_data->vfbd_width == x &&
2608 		    fl->font_data->vfbd_height == y)
2609 			break;
2610 	}
2611 	if (fl != NULL) {
2612 		/* Reset any FONT_MANUAL flag. */
2613 		reset_font_flags();
2614 
2615 		/* Mark this font manually loaded */
2616 		fl->font_flags = FONT_MANUAL;
2617 		cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2618 		return (CMD_OK);
2619 	}
2620 
2621 	printf("Available fonts:\n");
2622 	STAILQ_FOREACH(fl, &fonts, font_next) {
2623 		printf("    %dx%d\n", fl->font_data->vfbd_width,
2624 		    fl->font_data->vfbd_height);
2625 	}
2626 	return (CMD_OK);
2627 }
2628 
2629 void
2630 bios_text_font(bool use_vga_font)
2631 {
2632 	if (use_vga_font)
2633 		(void) insert_font(VGA_8X16_FONT, FONT_MANUAL);
2634 	else
2635 		(void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL);
2636 }
2637 
2638 void
2639 autoload_font(bool bios)
2640 {
2641 	struct name_list *nl;
2642 	struct name_entry *np;
2643 
2644 	nl = read_list("/boot/fonts/INDEX.fonts");
2645 	if (nl == NULL)
2646 		return;
2647 
2648 	while (!SLIST_EMPTY(nl)) {
2649 		np = SLIST_FIRST(nl);
2650 		SLIST_REMOVE_HEAD(nl, n_entry);
2651 		if (insert_font(np->n_name, FONT_AUTO) == false)
2652 			printf("failed to add font: %s\n", np->n_name);
2653 		free(np->n_name);
2654 		free(np);
2655 	}
2656 
2657 	/*
2658 	 * If vga text mode was requested, load vga.font (8x16 bold) font.
2659 	 */
2660 	if (bios) {
2661 		bios_text_font(true);
2662 	}
2663 
2664 	(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2665 }
2666 
2667 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font);
2668 
2669 static int
2670 command_font(int argc, char *argv[])
2671 {
2672 	int i, c, rc;
2673 	struct fontlist *fl;
2674 	vt_font_bitmap_data_t *bd;
2675 	bool list;
2676 
2677 	list = false;
2678 	optind = 1;
2679 	optreset = 1;
2680 	rc = CMD_OK;
2681 
2682 	while ((c = getopt(argc, argv, "l")) != -1) {
2683 		switch (c) {
2684 		case 'l':
2685 			list = true;
2686 			break;
2687 		case '?':
2688 		default:
2689 			return (CMD_ERROR);
2690 		}
2691 	}
2692 
2693 	argc -= optind;
2694 	argv += optind;
2695 
2696 	if (argc > 1 || (list && argc != 0)) {
2697 		printf("Usage: loadfont [-l] | [file.fnt]\n");
2698 		return (CMD_ERROR);
2699 	}
2700 
2701 	if (list) {
2702 		STAILQ_FOREACH(fl, &fonts, font_next) {
2703 			printf("font %s: %dx%d%s\n", fl->font_name,
2704 			    fl->font_data->vfbd_width,
2705 			    fl->font_data->vfbd_height,
2706 			    fl->font_data->vfbd_font == NULL? "" : " loaded");
2707 		}
2708 		return (CMD_OK);
2709 	}
2710 
2711 	/* Clear scren */
2712 	cons_clear();
2713 
2714 	if (argc == 1) {
2715 		char *name = argv[0];
2716 
2717 		if (insert_font(name, FONT_MANUAL) == false) {
2718 			printf("loadfont error: failed to load: %s\n", name);
2719 			return (CMD_ERROR);
2720 		}
2721 
2722 		(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2723 		return (CMD_OK);
2724 	}
2725 
2726 	if (argc == 0) {
2727 		/*
2728 		 * Walk entire font list, release any loaded font, and set
2729 		 * autoload flag. The font list does have at least the builtin
2730 		 * default font.
2731 		 */
2732 		STAILQ_FOREACH(fl, &fonts, font_next) {
2733 			if (fl->font_data->vfbd_font != NULL) {
2734 
2735 				bd = fl->font_data;
2736 				/*
2737 				 * Note the setup_font() is releasing
2738 				 * font bytes.
2739 				 */
2740 				for (i = 0; i < VFNT_MAPS; i++)
2741 					free(bd->vfbd_font->vf_map[i]);
2742 				free(fl->font_data->vfbd_font);
2743 				fl->font_data->vfbd_font = NULL;
2744 				fl->font_data->vfbd_uncompressed_size = 0;
2745 				fl->font_flags = FONT_AUTO;
2746 			}
2747 		}
2748 		(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
2749 	}
2750 	return (rc);
2751 }
2752 
2753 bool
2754 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res)
2755 {
2756 	struct resolution *rp, *p;
2757 
2758 	/*
2759 	 * Walk detailed timings tables (4).
2760 	 */
2761 	if ((edid->display.supported_features
2762 	    & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) {
2763 		/* Walk detailed timing descriptors (4) */
2764 		for (int i = 0; i < DET_TIMINGS; i++) {
2765 			/*
2766 			 * Reserved value 0 is not used for display decriptor.
2767 			 */
2768 			if (edid->detailed_timings[i].pixel_clock == 0)
2769 				continue;
2770 			if ((rp = malloc(sizeof(*rp))) == NULL)
2771 				continue;
2772 			rp->width = GET_EDID_INFO_WIDTH(edid, i);
2773 			rp->height = GET_EDID_INFO_HEIGHT(edid, i);
2774 			if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS &&
2775 			    rp->height > 0 && rp->height <= EDID_MAX_LINES)
2776 				TAILQ_INSERT_TAIL(res, rp, next);
2777 			else
2778 				free(rp);
2779 		}
2780 	}
2781 
2782 	/*
2783 	 * Walk standard timings list (8).
2784 	 */
2785 	for (int i = 0; i < STD_TIMINGS; i++) {
2786 		/* Is this field unused? */
2787 		if (edid->standard_timings[i] == 0x0101)
2788 			continue;
2789 
2790 		if ((rp = malloc(sizeof(*rp))) == NULL)
2791 			continue;
2792 
2793 		rp->width = HSIZE(edid->standard_timings[i]);
2794 		switch (RATIO(edid->standard_timings[i])) {
2795 		case RATIO1_1:
2796 			rp->height = HSIZE(edid->standard_timings[i]);
2797 			if (edid->header.version > 1 ||
2798 			    edid->header.revision > 2) {
2799 				rp->height = rp->height * 10 / 16;
2800 			}
2801 			break;
2802 		case RATIO4_3:
2803 			rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4;
2804 			break;
2805 		case RATIO5_4:
2806 			rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5;
2807 			break;
2808 		case RATIO16_9:
2809 			rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16;
2810 			break;
2811 		}
2812 
2813 		/*
2814 		 * Create resolution list in decreasing order, except keep
2815 		 * first entry (preferred timing mode).
2816 		 */
2817 		TAILQ_FOREACH(p, res, next) {
2818 			if (p->width * p->height < rp->width * rp->height) {
2819 				/* Keep preferred mode first */
2820 				if (TAILQ_FIRST(res) == p)
2821 					TAILQ_INSERT_AFTER(res, p, rp, next);
2822 				else
2823 					TAILQ_INSERT_BEFORE(p, rp, next);
2824 				break;
2825 			}
2826 			if (TAILQ_NEXT(p, next) == NULL) {
2827 				TAILQ_INSERT_TAIL(res, rp, next);
2828 				break;
2829 			}
2830 		}
2831 	}
2832 	return (!TAILQ_EMPTY(res));
2833 }
2834