1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2020 Toomas Soome 5 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 6 * Copyright 2020 RackTop Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI 34 * GOP Blt, and allows us to fill the rectangle on screen, copy 35 * rectangle from video to buffer and buffer to video and video to video. 36 * Such implementation does allow us to have almost identical implementation 37 * for both BIOS VBE and UEFI. 38 * 39 * ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red, 40 * Alpha) format, this allows us to only handle RGB data and not to worry 41 * about mixing RGB with indexed colors. 42 * Data exchange between memory buffer and video will translate BGRA 43 * and native format as following: 44 * 45 * 32-bit to/from 32-bit is trivial case. 46 * 32-bit to/from 24-bit is also simple - we just drop the alpha channel. 47 * 32-bit to/from 16-bit is more complicated, because we nee to handle 48 * data loss from 32-bit to 16-bit. While reading/writing from/to video, we 49 * need to apply masks of 16-bit color components. This will preserve 50 * colors for terminal text. For 32-bit truecolor PMG images, we need to 51 * translate 32-bit colors to 15/16 bit colors and this means data loss. 52 * There are different algorithms how to perform such color space reduction, 53 * we are currently using bitwise right shift to reduce color space and so far 54 * this technique seems to be sufficient (see also gfx_fb_putimage(), the 55 * end of for loop). 56 * 32-bit to/from 8-bit is the most troublesome because 8-bit colors are 57 * indexed. From video, we do get color indexes, and we do translate 58 * color index values to RGB. To write to video, we again need to translate 59 * RGB to color index. Additionally, we need to translate between VGA and 60 * console colors. 61 * 62 * Our internal color data is represented using BGRA format. But the hardware 63 * used indexed colors for 8-bit colors (0-255) and for this mode we do 64 * need to perform translation to/from BGRA and index values. 65 * 66 * - paletteentry RGB <-> index - 67 * BGRA BUFFER <----/ \ - VIDEO 68 * \ / 69 * - RGB (16/24/32) - 70 * 71 * To perform index to RGB translation, we use palette table generated 72 * from when we set up 8-bit mode video. We cannot read palette data from 73 * the hardware, because not all hardware supports reading it. 74 * 75 * BGRA to index is implemented in rgb_to_color_index() by searching 76 * palette array for closest match of RBG values. 77 * 78 * Note: In 8-bit mode, We do store first 16 colors to palette registers 79 * in VGA color order, this serves two purposes; firstly, 80 * if palette update is not supported, we still have correct 16 colors. 81 * Secondly, the kernel does get correct 16 colors when some other boot 82 * loader is used. However, the palette map for 8-bit colors is using 83 * console color ordering - this does allow us to skip translation 84 * from VGA colors to console colors, while we are reading RGB data. 85 */ 86 87 #include <sys/cdefs.h> 88 #include <sys/param.h> 89 #include <stand.h> 90 #include <teken.h> 91 #include <gfx_fb.h> 92 #include <sys/font.h> 93 #include <sys/stdint.h> 94 #include <sys/endian.h> 95 #include <pnglite.h> 96 #include <bootstrap.h> 97 #include <lz4.h> 98 #if defined(EFI) 99 #include <efi.h> 100 #include <efilib.h> 101 #else 102 #include <vbe.h> 103 #endif 104 105 /* VGA text mode does use bold font. */ 106 #if !defined(VGA_8X16_FONT) 107 #define VGA_8X16_FONT "/boot/fonts/8x16b.fnt" 108 #endif 109 #if !defined(DEFAULT_8X16_FONT) 110 #define DEFAULT_8X16_FONT "/boot/fonts/8x16.fnt" 111 #endif 112 113 /* 114 * Must be sorted by font size in descending order 115 */ 116 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 117 118 #define DEFAULT_FONT_DATA font_data_8x16 119 extern vt_font_bitmap_data_t font_data_8x16; 120 teken_gfx_t gfx_state = { 0 }; 121 122 static struct { 123 unsigned char r; /* Red percentage value. */ 124 unsigned char g; /* Green percentage value. */ 125 unsigned char b; /* Blue percentage value. */ 126 } color_def[NCOLORS] = { 127 {0, 0, 0}, /* black */ 128 {50, 0, 0}, /* dark red */ 129 {0, 50, 0}, /* dark green */ 130 {77, 63, 0}, /* dark yellow */ 131 {20, 40, 64}, /* dark blue */ 132 {50, 0, 50}, /* dark magenta */ 133 {0, 50, 50}, /* dark cyan */ 134 {75, 75, 75}, /* light gray */ 135 136 {18, 20, 21}, /* dark gray */ 137 {100, 0, 0}, /* light red */ 138 {0, 100, 0}, /* light green */ 139 {100, 100, 0}, /* light yellow */ 140 {45, 62, 81}, /* light blue */ 141 {100, 0, 100}, /* light magenta */ 142 {0, 100, 100}, /* light cyan */ 143 {100, 100, 100}, /* white */ 144 }; 145 uint32_t cmap[NCMAP]; 146 147 /* 148 * Between console's palette and VGA's one: 149 * - blue and red are swapped (1 <-> 4) 150 * - yellow and cyan are swapped (3 <-> 6) 151 */ 152 const int cons_to_vga_colors[NCOLORS] = { 153 0, 4, 2, 6, 1, 5, 3, 7, 154 8, 12, 10, 14, 9, 13, 11, 15 155 }; 156 157 static const int vga_to_cons_colors[NCOLORS] = { 158 0, 1, 2, 3, 4, 5, 6, 7, 159 8, 9, 10, 11, 12, 13, 14, 15 160 }; 161 162 struct text_pixel *screen_buffer; 163 #if defined(EFI) 164 static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer; 165 #else 166 static struct paletteentry *GlyphBuffer; 167 #endif 168 static size_t GlyphBufferSize; 169 170 static bool insert_font(char *, FONT_FLAGS); 171 static int font_set(struct env_var *, int, const void *); 172 static void * allocate_glyphbuffer(uint32_t, uint32_t); 173 static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool); 174 175 /* 176 * Initialize gfx framework. 177 */ 178 void 179 gfx_framework_init(void) 180 { 181 /* 182 * Setup font list to have builtin font. 183 */ 184 (void) insert_font(NULL, FONT_BUILTIN); 185 } 186 187 static uint8_t * 188 gfx_get_fb_address(void) 189 { 190 return (ptov((uint32_t)gfx_state.tg_fb.fb_addr)); 191 } 192 193 /* 194 * Utility function to parse gfx mode line strings. 195 */ 196 bool 197 gfx_parse_mode_str(char *str, int *x, int *y, int *depth) 198 { 199 char *p, *end; 200 201 errno = 0; 202 p = str; 203 *x = strtoul(p, &end, 0); 204 if (*x == 0 || errno != 0) 205 return (false); 206 if (*end != 'x') 207 return (false); 208 p = end + 1; 209 *y = strtoul(p, &end, 0); 210 if (*y == 0 || errno != 0) 211 return (false); 212 if (*end != 'x') { 213 *depth = -1; /* auto select */ 214 } else { 215 p = end + 1; 216 *depth = strtoul(p, &end, 0); 217 if (*depth == 0 || errno != 0 || *end != '\0') 218 return (false); 219 } 220 221 return (true); 222 } 223 224 static uint32_t 225 rgb_color_map(uint8_t index, uint32_t rmax, int roffset, 226 uint32_t gmax, int goffset, uint32_t bmax, int boffset) 227 { 228 uint32_t color, code, gray, level; 229 230 if (index < NCOLORS) { 231 #define CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset) 232 return (CF(r, index) | CF(g, index) | CF(b, index)); 233 #undef CF 234 } 235 236 #define CF(_f, _c) ((_f ## max & _c) << _f ## offset) 237 /* 6x6x6 color cube */ 238 if (index > 15 && index < 232) { 239 uint32_t red, green, blue; 240 241 for (red = 0; red < 6; red++) { 242 for (green = 0; green < 6; green++) { 243 for (blue = 0; blue < 6; blue++) { 244 code = 16 + (red * 36) + 245 (green * 6) + blue; 246 if (code != index) 247 continue; 248 red = red ? (red * 40 + 55) : 0; 249 green = green ? (green * 40 + 55) : 0; 250 blue = blue ? (blue * 40 + 55) : 0; 251 color = CF(r, red); 252 color |= CF(g, green); 253 color |= CF(b, blue); 254 return (color); 255 } 256 } 257 } 258 } 259 260 /* colors 232-255 are a grayscale ramp */ 261 for (gray = 0; gray < 24; gray++) { 262 level = (gray * 10) + 8; 263 code = 232 + gray; 264 if (code == index) 265 break; 266 } 267 return (CF(r, level) | CF(g, level) | CF(b, level)); 268 #undef CF 269 } 270 271 /* 272 * Support for color mapping. 273 * For 8, 24 and 32 bit depth, use mask size 8. 274 * 15/16 bit depth needs to use mask size from mode, 275 * or we will lose color information from 32-bit to 15/16 bit translation. 276 */ 277 uint32_t 278 gfx_fb_color_map(uint8_t index) 279 { 280 int rmask, gmask, bmask; 281 int roff, goff, boff, bpp; 282 283 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 284 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 285 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 286 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 287 288 if (bpp == 2) 289 rmask = gfx_state.tg_fb.fb_mask_red >> roff; 290 else 291 rmask = 0xff; 292 293 if (bpp == 2) 294 gmask = gfx_state.tg_fb.fb_mask_green >> goff; 295 else 296 gmask = 0xff; 297 298 if (bpp == 2) 299 bmask = gfx_state.tg_fb.fb_mask_blue >> boff; 300 else 301 bmask = 0xff; 302 303 return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0)); 304 } 305 306 /* 307 * Get indexed color from RGB. This function is used to write data to video 308 * memory when the adapter is set to use indexed colors. 309 * Since UEFI does only support 32-bit colors, we do not implement it for 310 * UEFI because there is no need for it and we do not have palette array 311 * for UEFI. 312 */ 313 static uint8_t 314 rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b) 315 { 316 #if !defined(EFI) 317 uint32_t color, best, dist, k; 318 int diff; 319 320 color = 0; 321 best = 255 * 255 * 255; 322 for (k = 0; k < NCMAP; k++) { 323 diff = r - pe8[k].Red; 324 dist = diff * diff; 325 diff = g - pe8[k].Green; 326 dist += diff * diff; 327 diff = b - pe8[k].Blue; 328 dist += diff * diff; 329 330 /* Exact match, exit the loop */ 331 if (dist == 0) 332 break; 333 334 if (dist < best) { 335 color = k; 336 best = dist; 337 } 338 } 339 if (k == NCMAP) 340 k = color; 341 return (k); 342 #else 343 (void) r; 344 (void) g; 345 (void) b; 346 return (0); 347 #endif 348 } 349 350 int 351 generate_cons_palette(uint32_t *palette, int format, 352 uint32_t rmax, int roffset, uint32_t gmax, int goffset, 353 uint32_t bmax, int boffset) 354 { 355 int i; 356 357 switch (format) { 358 case COLOR_FORMAT_VGA: 359 for (i = 0; i < NCOLORS; i++) 360 palette[i] = cons_to_vga_colors[i]; 361 for (; i < NCMAP; i++) 362 palette[i] = i; 363 break; 364 case COLOR_FORMAT_RGB: 365 for (i = 0; i < NCMAP; i++) 366 palette[i] = rgb_color_map(i, rmax, roffset, 367 gmax, goffset, bmax, boffset); 368 break; 369 default: 370 return (ENODEV); 371 } 372 373 return (0); 374 } 375 376 static void 377 gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v) 378 { 379 380 if (o >= size) 381 return; 382 *(uint8_t *)(base + o) = v; 383 } 384 385 static void 386 gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v) 387 { 388 389 if (o >= size) 390 return; 391 *(uint16_t *)(base + o) = v; 392 } 393 394 static void 395 gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v) 396 { 397 398 if (o >= size) 399 return; 400 *(uint32_t *)(base + o) = v; 401 } 402 403 static int gfxfb_blt_fill(void *BltBuffer, 404 uint32_t DestinationX, uint32_t DestinationY, 405 uint32_t Width, uint32_t Height) 406 { 407 #if defined(EFI) 408 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 409 #else 410 struct paletteentry *p; 411 #endif 412 uint32_t data, bpp, pitch, y, x; 413 int roff, goff, boff; 414 size_t size; 415 off_t off; 416 uint8_t *destination; 417 418 if (BltBuffer == NULL) 419 return (EINVAL); 420 421 if (DestinationY + Height > gfx_state.tg_fb.fb_height) 422 return (EINVAL); 423 424 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 425 return (EINVAL); 426 427 if (Width == 0 || Height == 0) 428 return (EINVAL); 429 430 p = BltBuffer; 431 roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 432 goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 433 boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 434 435 if (gfx_state.tg_fb.fb_bpp == 8) { 436 data = rgb_to_color_index(p->Red, p->Green, p->Blue); 437 } else { 438 data = (p->Red & 439 (gfx_state.tg_fb.fb_mask_red >> roff)) << roff; 440 data |= (p->Green & 441 (gfx_state.tg_fb.fb_mask_green >> goff)) << goff; 442 data |= (p->Blue & 443 (gfx_state.tg_fb.fb_mask_blue >> boff)) << boff; 444 } 445 446 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 447 pitch = gfx_state.tg_fb.fb_stride * bpp; 448 destination = gfx_get_fb_address(); 449 size = gfx_state.tg_fb.fb_size; 450 451 for (y = DestinationY; y < Height + DestinationY; y++) { 452 off = y * pitch + DestinationX * bpp; 453 for (x = 0; x < Width; x++) { 454 switch (bpp) { 455 case 1: 456 gfx_mem_wr1(destination, size, off, 457 (data < NCOLORS) ? 458 cons_to_vga_colors[data] : data); 459 break; 460 case 2: 461 gfx_mem_wr2(destination, size, off, data); 462 break; 463 case 3: 464 gfx_mem_wr1(destination, size, off, 465 (data >> 16) & 0xff); 466 gfx_mem_wr1(destination, size, off + 1, 467 (data >> 8) & 0xff); 468 gfx_mem_wr1(destination, size, off + 2, 469 data & 0xff); 470 break; 471 case 4: 472 gfx_mem_wr4(destination, size, off, data); 473 break; 474 default: 475 return (EINVAL); 476 } 477 off += bpp; 478 } 479 } 480 481 return (0); 482 } 483 484 static int 485 gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 486 uint32_t DestinationX, uint32_t DestinationY, 487 uint32_t Width, uint32_t Height, uint32_t Delta) 488 { 489 #if defined(EFI) 490 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 491 #else 492 struct paletteentry *p; 493 #endif 494 uint32_t x, sy, dy; 495 uint32_t bpp, pitch, copybytes; 496 off_t off; 497 uint8_t *source, *destination, *sb; 498 uint8_t rm, rp, gm, gp, bm, bp; 499 bool bgra; 500 501 if (BltBuffer == NULL) 502 return (EINVAL); 503 504 if (SourceY + Height > 505 gfx_state.tg_fb.fb_height) 506 return (EINVAL); 507 508 if (SourceX + Width > gfx_state.tg_fb.fb_width) 509 return (EINVAL); 510 511 if (Width == 0 || Height == 0) 512 return (EINVAL); 513 514 if (Delta == 0) 515 Delta = Width * sizeof (*p); 516 517 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 518 pitch = gfx_state.tg_fb.fb_stride * bpp; 519 520 copybytes = Width * bpp; 521 522 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 523 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 524 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 525 rm = gfx_state.tg_fb.fb_mask_red >> rp; 526 gm = gfx_state.tg_fb.fb_mask_green >> gp; 527 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 528 529 /* If FB pixel format is BGRA, we can use direct copy. */ 530 bgra = bpp == 4 && 531 ffs(rm) - 1 == 8 && rp == 16 && 532 ffs(gm) - 1 == 8 && gp == 8 && 533 ffs(bm) - 1 == 8 && bp == 0; 534 535 for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY; 536 sy++, dy++) { 537 off = sy * pitch + SourceX * bpp; 538 source = gfx_get_fb_address() + off; 539 destination = (uint8_t *)BltBuffer + dy * Delta + 540 DestinationX * sizeof (*p); 541 542 if (bgra) { 543 bcopy(source, destination, copybytes); 544 } else { 545 for (x = 0; x < Width; x++) { 546 uint32_t c = 0; 547 548 p = (void *)(destination + x * sizeof (*p)); 549 sb = source + x * bpp; 550 switch (bpp) { 551 case 1: 552 c = *sb; 553 break; 554 case 2: 555 c = *(uint16_t *)sb; 556 break; 557 case 3: 558 c = sb[0] << 16 | sb[1] << 8 | sb[2]; 559 break; 560 case 4: 561 c = *(uint32_t *)sb; 562 break; 563 default: 564 return (EINVAL); 565 } 566 567 if (bpp == 1) { 568 *(uint32_t *)p = gfx_fb_color_map( 569 (c < 16) ? 570 vga_to_cons_colors[c] : c); 571 } else { 572 p->Red = (c >> rp) & rm; 573 p->Green = (c >> gp) & gm; 574 p->Blue = (c >> bp) & bm; 575 p->Reserved = 0; 576 } 577 } 578 } 579 } 580 581 return (0); 582 } 583 584 static int 585 gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY, 586 uint32_t DestinationX, uint32_t DestinationY, 587 uint32_t Width, uint32_t Height, uint32_t Delta) 588 { 589 #if defined(EFI) 590 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 591 #else 592 struct paletteentry *p; 593 #endif 594 uint32_t x, sy, dy; 595 uint32_t bpp, pitch, copybytes; 596 off_t off; 597 uint8_t *source, *destination; 598 uint8_t rm, rp, gm, gp, bm, bp; 599 bool bgra; 600 601 if (BltBuffer == NULL) 602 return (EINVAL); 603 604 if (DestinationY + Height > 605 gfx_state.tg_fb.fb_height) 606 return (EINVAL); 607 608 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 609 return (EINVAL); 610 611 if (Width == 0 || Height == 0) 612 return (EINVAL); 613 614 if (Delta == 0) 615 Delta = Width * sizeof (*p); 616 617 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 618 pitch = gfx_state.tg_fb.fb_stride * bpp; 619 620 copybytes = Width * bpp; 621 622 rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1; 623 gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1; 624 bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1; 625 rm = gfx_state.tg_fb.fb_mask_red >> rp; 626 gm = gfx_state.tg_fb.fb_mask_green >> gp; 627 bm = gfx_state.tg_fb.fb_mask_blue >> bp; 628 629 /* If FB pixel format is BGRA, we can use direct copy. */ 630 bgra = bpp == 4 && 631 ffs(rm) - 1 == 8 && rp == 16 && 632 ffs(gm) - 1 == 8 && gp == 8 && 633 ffs(bm) - 1 == 8 && bp == 0; 634 635 for (sy = SourceY, dy = DestinationY; sy < Height + SourceY; 636 sy++, dy++) { 637 off = dy * pitch + DestinationX * bpp; 638 destination = gfx_get_fb_address() + off; 639 640 if (bgra) { 641 source = (uint8_t *)BltBuffer + sy * Delta + 642 SourceX * sizeof (*p); 643 bcopy(source, destination, copybytes); 644 } else { 645 for (x = 0; x < Width; x++) { 646 uint32_t c; 647 648 p = (void *)((uint8_t *)BltBuffer + 649 sy * Delta + 650 (SourceX + x) * sizeof (*p)); 651 if (bpp == 1) { 652 c = rgb_to_color_index(p->Red, 653 p->Green, p->Blue); 654 } else { 655 c = (p->Red & rm) << rp | 656 (p->Green & gm) << gp | 657 (p->Blue & bm) << bp; 658 } 659 off = x * bpp; 660 switch (bpp) { 661 case 1: 662 gfx_mem_wr1(destination, copybytes, 663 off, (c < 16) ? 664 cons_to_vga_colors[c] : c); 665 break; 666 case 2: 667 gfx_mem_wr2(destination, copybytes, 668 off, c); 669 break; 670 case 3: 671 gfx_mem_wr1(destination, copybytes, 672 off, (c >> 16) & 0xff); 673 gfx_mem_wr1(destination, copybytes, 674 off + 1, (c >> 8) & 0xff); 675 gfx_mem_wr1(destination, copybytes, 676 off + 2, c & 0xff); 677 break; 678 case 4: 679 gfx_mem_wr4(destination, copybytes, 680 x * bpp, c); 681 break; 682 default: 683 return (EINVAL); 684 } 685 } 686 } 687 } 688 689 return (0); 690 } 691 692 static int 693 gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY, 694 uint32_t DestinationX, uint32_t DestinationY, 695 uint32_t Width, uint32_t Height) 696 { 697 uint32_t bpp, copybytes; 698 int pitch; 699 uint8_t *source, *destination; 700 off_t off; 701 702 if (SourceY + Height > 703 gfx_state.tg_fb.fb_height) 704 return (EINVAL); 705 706 if (SourceX + Width > gfx_state.tg_fb.fb_width) 707 return (EINVAL); 708 709 if (DestinationY + Height > 710 gfx_state.tg_fb.fb_height) 711 return (EINVAL); 712 713 if (DestinationX + Width > gfx_state.tg_fb.fb_width) 714 return (EINVAL); 715 716 if (Width == 0 || Height == 0) 717 return (EINVAL); 718 719 bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3; 720 pitch = gfx_state.tg_fb.fb_stride * bpp; 721 722 copybytes = Width * bpp; 723 724 off = SourceY * pitch + SourceX * bpp; 725 source = gfx_get_fb_address() + off; 726 off = DestinationY * pitch + DestinationX * bpp; 727 destination = gfx_get_fb_address() + off; 728 729 if ((uintptr_t)destination > (uintptr_t)source) { 730 source += Height * pitch; 731 destination += Height * pitch; 732 pitch = -pitch; 733 } 734 735 while (Height-- > 0) { 736 bcopy(source, destination, copybytes); 737 source += pitch; 738 destination += pitch; 739 } 740 741 return (0); 742 } 743 744 int 745 gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation, 746 uint32_t SourceX, uint32_t SourceY, 747 uint32_t DestinationX, uint32_t DestinationY, 748 uint32_t Width, uint32_t Height, uint32_t Delta) 749 { 750 int rv; 751 #if defined(EFI) 752 EFI_STATUS status; 753 EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private; 754 extern int boot_services_gone; 755 EFI_TPL tpl; 756 757 /* 758 * We assume Blt() does work, if not, we will need to build 759 * exception list case by case. 760 */ 761 if (gop != NULL && boot_services_gone == 0) { 762 tpl = BS->RaiseTPL(TPL_NOTIFY); 763 switch (BltOperation) { 764 case GfxFbBltVideoFill: 765 status = gop->Blt(gop, BltBuffer, EfiBltVideoFill, 766 SourceX, SourceY, DestinationX, DestinationY, 767 Width, Height, Delta); 768 break; 769 770 case GfxFbBltVideoToBltBuffer: 771 status = gop->Blt(gop, BltBuffer, 772 EfiBltVideoToBltBuffer, 773 SourceX, SourceY, DestinationX, DestinationY, 774 Width, Height, Delta); 775 break; 776 777 case GfxFbBltBufferToVideo: 778 status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo, 779 SourceX, SourceY, DestinationX, DestinationY, 780 Width, Height, Delta); 781 break; 782 783 case GfxFbBltVideoToVideo: 784 status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo, 785 SourceX, SourceY, DestinationX, DestinationY, 786 Width, Height, Delta); 787 break; 788 789 default: 790 status = EFI_INVALID_PARAMETER; 791 break; 792 } 793 794 switch (status) { 795 case EFI_SUCCESS: 796 rv = 0; 797 break; 798 799 case EFI_INVALID_PARAMETER: 800 rv = EINVAL; 801 break; 802 803 case EFI_DEVICE_ERROR: 804 default: 805 rv = EIO; 806 break; 807 } 808 809 BS->RestoreTPL(tpl); 810 return (rv); 811 } 812 #endif 813 814 switch (BltOperation) { 815 case GfxFbBltVideoFill: 816 rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY, 817 Width, Height); 818 break; 819 820 case GfxFbBltVideoToBltBuffer: 821 rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY, 822 DestinationX, DestinationY, Width, Height, Delta); 823 break; 824 825 case GfxFbBltBufferToVideo: 826 rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY, 827 DestinationX, DestinationY, Width, Height, Delta); 828 break; 829 830 case GfxFbBltVideoToVideo: 831 rv = gfxfb_blt_video_to_video(SourceX, SourceY, 832 DestinationX, DestinationY, Width, Height); 833 break; 834 835 default: 836 rv = EINVAL; 837 break; 838 } 839 return (rv); 840 } 841 842 void 843 gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph, 844 const teken_attr_t *a, uint32_t alpha, bool cursor) 845 { 846 uint32_t width, height; 847 uint32_t fgc, bgc, bpl, cc, o; 848 int bpp, bit, byte; 849 bool invert = false; 850 851 bpp = 4; /* We only generate BGRA */ 852 width = state->tg_font.vf_width; 853 height = state->tg_font.vf_height; 854 bpl = (width + 7) / 8; /* Bytes per source line. */ 855 856 fgc = a->ta_fgcolor; 857 bgc = a->ta_bgcolor; 858 if (a->ta_format & TF_BOLD) 859 fgc |= TC_LIGHT; 860 if (a->ta_format & TF_BLINK) 861 bgc |= TC_LIGHT; 862 863 fgc = gfx_fb_color_map(fgc); 864 bgc = gfx_fb_color_map(bgc); 865 866 if (a->ta_format & TF_REVERSE) 867 invert = !invert; 868 if (cursor) 869 invert = !invert; 870 if (invert) { 871 uint32_t tmp; 872 873 tmp = fgc; 874 fgc = bgc; 875 bgc = tmp; 876 } 877 878 alpha = alpha << 24; 879 fgc |= alpha; 880 bgc |= alpha; 881 882 for (uint32_t y = 0; y < height; y++) { 883 for (uint32_t x = 0; x < width; x++) { 884 byte = y * bpl + x / 8; 885 bit = 0x80 >> (x % 8); 886 o = y * width * bpp + x * bpp; 887 cc = glyph[byte] & bit ? fgc : bgc; 888 889 gfx_mem_wr4(state->tg_glyph, 890 state->tg_glyph_size, o, cc); 891 } 892 } 893 } 894 895 /* 896 * Draw prepared glyph on terminal point p. 897 */ 898 static void 899 gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p) 900 { 901 unsigned x, y, width, height; 902 903 width = state->tg_font.vf_width; 904 height = state->tg_font.vf_height; 905 x = state->tg_origin.tp_col + p->tp_col * width; 906 y = state->tg_origin.tp_row + p->tp_row * height; 907 908 gfx_fb_cons_display(x, y, width, height, state->tg_glyph); 909 } 910 911 /* 912 * Store char with its attribute to buffer and put it on screen. 913 */ 914 void 915 gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c, 916 const teken_attr_t *a) 917 { 918 teken_gfx_t *state = arg; 919 const uint8_t *glyph; 920 int idx; 921 922 idx = p->tp_col + p->tp_row * state->tg_tp.tp_col; 923 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 924 return; 925 926 /* remove the cursor */ 927 if (state->tg_cursor_visible) 928 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 929 930 screen_buffer[idx].c = c; 931 screen_buffer[idx].a = *a; 932 933 glyph = font_lookup(&state->tg_font, c, a); 934 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 935 gfx_fb_printchar(state, p); 936 937 /* display the cursor */ 938 if (state->tg_cursor_visible) { 939 const teken_pos_t *c; 940 941 c = teken_get_cursor(&state->tg_teken); 942 gfx_fb_cursor_draw(state, c, true); 943 } 944 } 945 946 void 947 gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c, 948 const teken_attr_t *a) 949 { 950 teken_gfx_t *state = arg; 951 const uint8_t *glyph; 952 teken_pos_t p; 953 struct text_pixel *row; 954 955 /* remove the cursor */ 956 if (state->tg_cursor_visible) 957 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 958 959 glyph = font_lookup(&state->tg_font, c, a); 960 gfx_bitblt_bitmap(state, glyph, a, 0xff, false); 961 962 for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row; 963 p.tp_row++) { 964 row = &screen_buffer[p.tp_row * state->tg_tp.tp_col]; 965 for (p.tp_col = r->tr_begin.tp_col; 966 p.tp_col < r->tr_end.tp_col; p.tp_col++) { 967 row[p.tp_col].c = c; 968 row[p.tp_col].a = *a; 969 gfx_fb_printchar(state, &p); 970 } 971 } 972 973 /* display the cursor */ 974 if (state->tg_cursor_visible) { 975 const teken_pos_t *c; 976 977 c = teken_get_cursor(&state->tg_teken); 978 gfx_fb_cursor_draw(state, c, true); 979 } 980 } 981 982 static void 983 gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *pos, bool on) 984 { 985 unsigned x, y, width, height; 986 const uint8_t *glyph; 987 teken_pos_t p; 988 int idx; 989 990 p = *pos; 991 if (p.tp_col >= state->tg_tp.tp_col) 992 p.tp_col = state->tg_tp.tp_col - 1; 993 if (p.tp_row >= state->tg_tp.tp_row) 994 p.tp_row = state->tg_tp.tp_row - 1; 995 idx = p.tp_col + p.tp_row * state->tg_tp.tp_col; 996 if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row) 997 return; 998 999 width = state->tg_font.vf_width; 1000 height = state->tg_font.vf_height; 1001 x = state->tg_origin.tp_col + p.tp_col * width; 1002 y = state->tg_origin.tp_row + p.tp_row * height; 1003 1004 /* 1005 * Save original display content to preserve image data. 1006 */ 1007 if (on) { 1008 if (state->tg_cursor_image == NULL || 1009 state->tg_cursor_size != width * height * 4) { 1010 free(state->tg_cursor_image); 1011 state->tg_cursor_size = width * height * 4; 1012 state->tg_cursor_image = malloc(state->tg_cursor_size); 1013 } 1014 if (state->tg_cursor_image != NULL) { 1015 if (gfxfb_blt(state->tg_cursor_image, 1016 GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1017 width, height, 0) != 0) { 1018 free(state->tg_cursor_image); 1019 state->tg_cursor_image = NULL; 1020 } 1021 } 1022 } else { 1023 /* 1024 * Restore display from tg_cursor_image. 1025 * If there is no image, restore char from screen_buffer. 1026 */ 1027 if (state->tg_cursor_image != NULL && 1028 gfxfb_blt(state->tg_cursor_image, GfxFbBltBufferToVideo, 1029 0, 0, x, y, width, height, 0) == 0) { 1030 state->tg_cursor = p; 1031 return; 1032 } 1033 } 1034 1035 glyph = font_lookup(&state->tg_font, screen_buffer[idx].c, 1036 &screen_buffer[idx].a); 1037 gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on); 1038 gfx_fb_printchar(state, &p); 1039 1040 state->tg_cursor = p; 1041 } 1042 1043 void 1044 gfx_fb_cursor(void *arg, const teken_pos_t *p) 1045 { 1046 teken_gfx_t *state = arg; 1047 1048 /* Switch cursor off in old location and back on in new. */ 1049 if (state->tg_cursor_visible) { 1050 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1051 gfx_fb_cursor_draw(state, p, true); 1052 } 1053 } 1054 1055 void 1056 gfx_fb_param(void *arg, int cmd, unsigned int value) 1057 { 1058 teken_gfx_t *state = arg; 1059 const teken_pos_t *c; 1060 1061 switch (cmd) { 1062 case TP_SETLOCALCURSOR: 1063 /* 1064 * 0 means normal (usually block), 1 means hidden, and 1065 * 2 means blinking (always block) for compatibility with 1066 * syscons. We don't support any changes except hiding, 1067 * so must map 2 to 0. 1068 */ 1069 value = (value == 1) ? 0 : 1; 1070 /* FALLTHROUGH */ 1071 case TP_SHOWCURSOR: 1072 c = teken_get_cursor(&state->tg_teken); 1073 gfx_fb_cursor_draw(state, c, true); 1074 if (value != 0) 1075 state->tg_cursor_visible = true; 1076 else 1077 state->tg_cursor_visible = false; 1078 break; 1079 default: 1080 /* Not yet implemented */ 1081 break; 1082 } 1083 } 1084 1085 bool 1086 is_same_pixel(struct text_pixel *px1, struct text_pixel *px2) 1087 { 1088 if (px1->c != px2->c) 1089 return (false); 1090 1091 /* Is there image stored? */ 1092 if ((px1->a.ta_format & TF_IMAGE) || 1093 (px2->a.ta_format & TF_IMAGE)) 1094 return (false); 1095 1096 if (px1->a.ta_format != px2->a.ta_format) 1097 return (false); 1098 if (px1->a.ta_fgcolor != px2->a.ta_fgcolor) 1099 return (false); 1100 if (px1->a.ta_bgcolor != px2->a.ta_bgcolor) 1101 return (false); 1102 1103 return (true); 1104 } 1105 1106 static void 1107 gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s, 1108 const teken_pos_t *d) 1109 { 1110 uint32_t sx, sy, dx, dy, width, height; 1111 1112 width = state->tg_font.vf_width; 1113 height = state->tg_font.vf_height; 1114 1115 sx = state->tg_origin.tp_col + s->tr_begin.tp_col * width; 1116 sy = state->tg_origin.tp_row + s->tr_begin.tp_row * height; 1117 dx = state->tg_origin.tp_col + d->tp_col * width; 1118 dy = state->tg_origin.tp_row + d->tp_row * height; 1119 1120 width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1); 1121 1122 (void) gfxfb_blt(NULL, GfxFbBltVideoToVideo, sx, sy, dx, dy, 1123 width, height, 0); 1124 } 1125 1126 static void 1127 gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d) 1128 { 1129 teken_rect_t sr; 1130 teken_pos_t dp; 1131 unsigned soffset, doffset; 1132 bool mark = false; 1133 int x; 1134 1135 soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col; 1136 doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col; 1137 1138 for (x = 0; x < ncol; x++) { 1139 if (is_same_pixel(&screen_buffer[soffset + x], 1140 &screen_buffer[doffset + x])) { 1141 if (mark) { 1142 gfx_fb_copy_area(state, &sr, &dp); 1143 mark = false; 1144 } 1145 } else { 1146 screen_buffer[doffset + x] = screen_buffer[soffset + x]; 1147 if (mark) { 1148 /* update end point */ 1149 sr.tr_end.tp_col = s->tp_col + x;; 1150 } else { 1151 /* set up new rectangle */ 1152 mark = true; 1153 sr.tr_begin.tp_col = s->tp_col + x; 1154 sr.tr_begin.tp_row = s->tp_row; 1155 sr.tr_end.tp_col = s->tp_col + x; 1156 sr.tr_end.tp_row = s->tp_row; 1157 dp.tp_col = d->tp_col + x; 1158 dp.tp_row = d->tp_row; 1159 } 1160 } 1161 } 1162 if (mark) { 1163 gfx_fb_copy_area(state, &sr, &dp); 1164 } 1165 } 1166 1167 void 1168 gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p) 1169 { 1170 teken_gfx_t *state = arg; 1171 unsigned doffset, soffset; 1172 teken_pos_t d, s; 1173 int nrow, ncol, y; /* Has to be signed - >= 0 comparison */ 1174 1175 /* 1176 * Copying is a little tricky. We must make sure we do it in 1177 * correct order, to make sure we don't overwrite our own data. 1178 */ 1179 1180 nrow = r->tr_end.tp_row - r->tr_begin.tp_row; 1181 ncol = r->tr_end.tp_col - r->tr_begin.tp_col; 1182 1183 if (p->tp_row + nrow > state->tg_tp.tp_row || 1184 p->tp_col + ncol > state->tg_tp.tp_col) 1185 return; 1186 1187 soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col; 1188 doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col; 1189 1190 /* remove the cursor */ 1191 if (state->tg_cursor_visible) 1192 gfx_fb_cursor_draw(state, &state->tg_cursor, false); 1193 1194 /* 1195 * Copy line by line. 1196 */ 1197 if (doffset <= soffset) { 1198 s = r->tr_begin; 1199 d = *p; 1200 for (y = 0; y < nrow; y++) { 1201 s.tp_row = r->tr_begin.tp_row + y; 1202 d.tp_row = p->tp_row + y; 1203 1204 gfx_fb_copy_line(state, ncol, &s, &d); 1205 } 1206 } else { 1207 for (y = nrow - 1; y >= 0; y--) { 1208 s.tp_row = r->tr_begin.tp_row + y; 1209 d.tp_row = p->tp_row + y; 1210 1211 gfx_fb_copy_line(state, ncol, &s, &d); 1212 } 1213 } 1214 1215 /* display the cursor */ 1216 if (state->tg_cursor_visible) { 1217 const teken_pos_t *c; 1218 1219 c = teken_get_cursor(&state->tg_teken); 1220 gfx_fb_cursor_draw(state, c, true); 1221 } 1222 } 1223 1224 /* 1225 * Implements alpha blending for RGBA data, could use pixels for arguments, 1226 * but byte stream seems more generic. 1227 * The generic alpha blending is: 1228 * blend = alpha * fg + (1.0 - alpha) * bg. 1229 * Since our alpha is not from range [0..1], we scale appropriately. 1230 */ 1231 static uint8_t 1232 alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha) 1233 { 1234 uint16_t blend, h, l; 1235 1236 /* trivial corner cases */ 1237 if (alpha == 0) 1238 return (bg); 1239 if (alpha == 0xFF) 1240 return (fg); 1241 blend = (alpha * fg + (0xFF - alpha) * bg); 1242 /* Division by 0xFF */ 1243 h = blend >> 8; 1244 l = blend & 0xFF; 1245 if (h + l >= 0xFF) 1246 h++; 1247 return (h); 1248 } 1249 1250 /* 1251 * Implements alpha blending for RGBA data, could use pixels for arguments, 1252 * but byte stream seems more generic. 1253 * The generic alpha blending is: 1254 * blend = alpha * fg + (1.0 - alpha) * bg. 1255 * Since our alpha is not from range [0..1], we scale appropriately. 1256 */ 1257 static void 1258 bitmap_cpy(void *dst, void *src, uint32_t size) 1259 { 1260 #if defined(EFI) 1261 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd; 1262 #else 1263 struct paletteentry *ps, *pd; 1264 #endif 1265 uint32_t i; 1266 uint8_t a; 1267 1268 ps = src; 1269 pd = dst; 1270 1271 /* 1272 * we only implement alpha blending for depth 32. 1273 */ 1274 for (i = 0; i < size; i ++) { 1275 a = ps[i].Reserved; 1276 pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a); 1277 pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a); 1278 pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a); 1279 pd[i].Reserved = a; 1280 } 1281 } 1282 1283 static void * 1284 allocate_glyphbuffer(uint32_t width, uint32_t height) 1285 { 1286 size_t size; 1287 1288 size = sizeof (*GlyphBuffer) * width * height; 1289 if (size != GlyphBufferSize) { 1290 free(GlyphBuffer); 1291 GlyphBuffer = malloc(size); 1292 if (GlyphBuffer == NULL) 1293 return (NULL); 1294 GlyphBufferSize = size; 1295 } 1296 return (GlyphBuffer); 1297 } 1298 1299 void 1300 gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height, 1301 void *data) 1302 { 1303 #if defined(EFI) 1304 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf; 1305 #else 1306 struct paletteentry *buf; 1307 #endif 1308 size_t size; 1309 1310 size = width * height * sizeof(*buf); 1311 1312 /* 1313 * Common data to display is glyph, use preallocated 1314 * glyph buffer. 1315 */ 1316 if (gfx_state.tg_glyph_size != GlyphBufferSize) 1317 (void) allocate_glyphbuffer(width, height); 1318 1319 if (size == GlyphBufferSize) 1320 buf = GlyphBuffer; 1321 else 1322 buf = malloc(size); 1323 if (buf == NULL) 1324 return; 1325 1326 if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0, 1327 width, height, 0) == 0) { 1328 bitmap_cpy(buf, data, width * height); 1329 (void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y, 1330 width, height, 0); 1331 } 1332 if (buf != GlyphBuffer) 1333 free(buf); 1334 } 1335 1336 /* 1337 * Public graphics primitives. 1338 */ 1339 1340 static int 1341 isqrt(int num) 1342 { 1343 int res = 0; 1344 int bit = 1 << 30; 1345 1346 /* "bit" starts at the highest power of four <= the argument. */ 1347 while (bit > num) 1348 bit >>= 2; 1349 1350 while (bit != 0) { 1351 if (num >= res + bit) { 1352 num -= res + bit; 1353 res = (res >> 1) + bit; 1354 } else { 1355 res >>= 1; 1356 } 1357 bit >>= 2; 1358 } 1359 return (res); 1360 } 1361 1362 static uint32_t 1363 gfx_fb_getcolor(void) 1364 { 1365 uint32_t c; 1366 const teken_attr_t *ap; 1367 1368 ap = teken_get_curattr(&gfx_state.tg_teken); 1369 if (ap->ta_format & TF_REVERSE) { 1370 c = ap->ta_bgcolor; 1371 if (ap->ta_format & TF_BLINK) 1372 c |= TC_LIGHT; 1373 } else { 1374 c = ap->ta_fgcolor; 1375 if (ap->ta_format & TF_BOLD) 1376 c |= TC_LIGHT; 1377 } 1378 1379 return (gfx_fb_color_map(c)); 1380 } 1381 1382 /* set pixel in framebuffer using gfx coordinates */ 1383 void 1384 gfx_fb_setpixel(uint32_t x, uint32_t y) 1385 { 1386 uint32_t c; 1387 1388 if (gfx_state.tg_fb_type == FB_TEXT) 1389 return; 1390 1391 c = gfx_fb_getcolor(); 1392 1393 if (x >= gfx_state.tg_fb.fb_width || 1394 y >= gfx_state.tg_fb.fb_height) 1395 return; 1396 1397 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0); 1398 } 1399 1400 /* 1401 * draw rectangle in framebuffer using gfx coordinates. 1402 */ 1403 void 1404 gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2, 1405 uint32_t fill) 1406 { 1407 uint32_t c; 1408 1409 if (gfx_state.tg_fb_type == FB_TEXT) 1410 return; 1411 1412 c = gfx_fb_getcolor(); 1413 1414 if (fill != 0) { 1415 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1416 y2 - y1, 0); 1417 } else { 1418 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1, 0); 1419 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y2, x2 - x1, 1, 0); 1420 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, 1, y2 - y1, 0); 1421 gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x2, y1, 1, y2 - y1, 0); 1422 } 1423 } 1424 1425 void 1426 gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd) 1427 { 1428 int dx, sx, dy, sy; 1429 int err, e2, x2, y2, ed, width; 1430 1431 if (gfx_state.tg_fb_type == FB_TEXT) 1432 return; 1433 1434 width = wd; 1435 sx = x0 < x1? 1 : -1; 1436 sy = y0 < y1? 1 : -1; 1437 dx = x1 > x0? x1 - x0 : x0 - x1; 1438 dy = y1 > y0? y1 - y0 : y0 - y1; 1439 err = dx + dy; 1440 ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy); 1441 1442 for (;;) { 1443 gfx_fb_setpixel(x0, y0); 1444 e2 = err; 1445 x2 = x0; 1446 if ((e2 << 1) >= -dx) { /* x step */ 1447 e2 += dy; 1448 y2 = y0; 1449 while (e2 < ed * width && 1450 (y1 != (uint32_t)y2 || dx > dy)) { 1451 y2 += sy; 1452 gfx_fb_setpixel(x0, y2); 1453 e2 += dx; 1454 } 1455 if (x0 == x1) 1456 break; 1457 e2 = err; 1458 err -= dy; 1459 x0 += sx; 1460 } 1461 if ((e2 << 1) <= dy) { /* y step */ 1462 e2 = dx-e2; 1463 while (e2 < ed * width && 1464 (x1 != (uint32_t)x2 || dx < dy)) { 1465 x2 += sx; 1466 gfx_fb_setpixel(x2, y0); 1467 e2 += dy; 1468 } 1469 if (y0 == y1) 1470 break; 1471 err += dx; 1472 y0 += sy; 1473 } 1474 } 1475 } 1476 1477 /* 1478 * quadratic Bézier curve limited to gradients without sign change. 1479 */ 1480 void 1481 gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2, 1482 uint32_t y2, uint32_t wd) 1483 { 1484 int sx, sy, xx, yy, xy, width; 1485 int dx, dy, err, curvature; 1486 int i; 1487 1488 if (gfx_state.tg_fb_type == FB_TEXT) 1489 return; 1490 1491 width = wd; 1492 sx = x2 - x1; 1493 sy = y2 - y1; 1494 xx = x0 - x1; 1495 yy = y0 - y1; 1496 curvature = xx*sy - yy*sx; 1497 1498 if (sx*sx + sy*sy > xx*xx+yy*yy) { 1499 x2 = x0; 1500 x0 = sx + x1; 1501 y2 = y0; 1502 y0 = sy + y1; 1503 curvature = -curvature; 1504 } 1505 if (curvature != 0) { 1506 xx += sx; 1507 sx = x0 < x2? 1 : -1; 1508 xx *= sx; 1509 yy += sy; 1510 sy = y0 < y2? 1 : -1; 1511 yy *= sy; 1512 xy = (xx*yy) << 1; 1513 xx *= xx; 1514 yy *= yy; 1515 if (curvature * sx * sy < 0) { 1516 xx = -xx; 1517 yy = -yy; 1518 xy = -xy; 1519 curvature = -curvature; 1520 } 1521 dx = 4 * sy * curvature * (x1 - x0) + xx - xy; 1522 dy = 4 * sx * curvature * (y0 - y1) + yy - xy; 1523 xx += xx; 1524 yy += yy; 1525 err = dx + dy + xy; 1526 do { 1527 for (i = 0; i <= width; i++) 1528 gfx_fb_setpixel(x0 + i, y0); 1529 if (x0 == x2 && y0 == y2) 1530 return; /* last pixel -> curve finished */ 1531 y1 = 2 * err < dx; 1532 if (2 * err > dy) { 1533 x0 += sx; 1534 dx -= xy; 1535 dy += yy; 1536 err += dy; 1537 } 1538 if (y1 != 0) { 1539 y0 += sy; 1540 dy -= xy; 1541 dx += xx; 1542 err += dx; 1543 } 1544 } while (dy < dx); /* gradient negates -> algorithm fails */ 1545 } 1546 gfx_fb_line(x0, y0, x2, y2, width); 1547 } 1548 1549 /* 1550 * draw rectangle using terminal coordinates and current foreground color. 1551 */ 1552 void 1553 gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2) 1554 { 1555 int x1, y1, x2, y2; 1556 int xshift, yshift; 1557 int width, i; 1558 uint32_t vf_width, vf_height; 1559 teken_rect_t r; 1560 1561 if (gfx_state.tg_fb_type == FB_TEXT) 1562 return; 1563 1564 vf_width = gfx_state.tg_font.vf_width; 1565 vf_height = gfx_state.tg_font.vf_height; 1566 width = vf_width / 4; /* line width */ 1567 xshift = (vf_width - width) / 2; 1568 yshift = (vf_height - width) / 2; 1569 1570 /* Shift coordinates */ 1571 if (ux1 != 0) 1572 ux1--; 1573 if (uy1 != 0) 1574 uy1--; 1575 ux2--; 1576 uy2--; 1577 1578 /* mark area used in terminal */ 1579 r.tr_begin.tp_col = ux1; 1580 r.tr_begin.tp_row = uy1; 1581 r.tr_end.tp_col = ux2 + 1; 1582 r.tr_end.tp_row = uy2 + 1; 1583 1584 term_image_display(&gfx_state, &r); 1585 1586 /* 1587 * Draw horizontal lines width points thick, shifted from outer edge. 1588 */ 1589 x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col; 1590 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1591 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1592 gfx_fb_drawrect(x1, y1, x2, y1 + width, 1); 1593 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1594 y2 += vf_height - yshift - width; 1595 gfx_fb_drawrect(x1, y2, x2, y2 + width, 1); 1596 1597 /* 1598 * Draw vertical lines width points thick, shifted from outer edge. 1599 */ 1600 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1601 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1602 y1 += vf_height; 1603 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1604 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1605 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1606 x1 += vf_width - xshift - width; 1607 gfx_fb_drawrect(x1, y1, x1 + width, y2, 1); 1608 1609 /* Draw upper left corner. */ 1610 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1611 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1612 y1 += vf_height; 1613 1614 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1615 x2 += vf_width; 1616 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1617 for (i = 0; i <= width; i++) 1618 gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i); 1619 1620 /* Draw lower left corner. */ 1621 x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col; 1622 x1 += vf_width; 1623 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1624 y1 += vf_height - yshift; 1625 x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift; 1626 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1627 for (i = 0; i <= width; i++) 1628 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1629 1630 /* Draw upper right corner. */ 1631 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1632 y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift; 1633 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1634 x2 += vf_width - xshift - width; 1635 y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row; 1636 y2 += vf_height; 1637 for (i = 0; i <= width; i++) 1638 gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i); 1639 1640 /* Draw lower right corner. */ 1641 x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1642 y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1643 y1 += vf_height - yshift; 1644 x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col; 1645 x2 += vf_width - xshift - width; 1646 y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row; 1647 for (i = 0; i <= width; i++) 1648 gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i); 1649 } 1650 1651 int 1652 gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2, 1653 uint32_t uy2, uint32_t flags) 1654 { 1655 #if defined(EFI) 1656 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p; 1657 #else 1658 struct paletteentry *p; 1659 #endif 1660 uint8_t *data; 1661 uint32_t i, j, x, y, fheight, fwidth; 1662 int rs, gs, bs; 1663 uint8_t r, g, b, a; 1664 bool scale = false; 1665 bool trace = false; 1666 teken_rect_t rect; 1667 1668 trace = (flags & FL_PUTIMAGE_DEBUG) != 0; 1669 1670 if (gfx_state.tg_fb_type == FB_TEXT) { 1671 if (trace) 1672 printf("Framebuffer not active.\n"); 1673 return (1); 1674 } 1675 1676 if (png->color_type != PNG_TRUECOLOR_ALPHA) { 1677 if (trace) 1678 printf("Not truecolor image.\n"); 1679 return (1); 1680 } 1681 1682 if (ux1 > gfx_state.tg_fb.fb_width || 1683 uy1 > gfx_state.tg_fb.fb_height) { 1684 if (trace) 1685 printf("Top left coordinate off screen.\n"); 1686 return (1); 1687 } 1688 1689 if (png->width > UINT16_MAX || png->height > UINT16_MAX) { 1690 if (trace) 1691 printf("Image too large.\n"); 1692 return (1); 1693 } 1694 1695 if (png->width < 1 || png->height < 1) { 1696 if (trace) 1697 printf("Image too small.\n"); 1698 return (1); 1699 } 1700 1701 /* 1702 * If 0 was passed for either ux2 or uy2, then calculate the missing 1703 * part of the bottom right coordinate. 1704 */ 1705 scale = true; 1706 if (ux2 == 0 && uy2 == 0) { 1707 /* Both 0, use the native resolution of the image */ 1708 ux2 = ux1 + png->width; 1709 uy2 = uy1 + png->height; 1710 scale = false; 1711 } else if (ux2 == 0) { 1712 /* Set ux2 from uy2/uy1 to maintain aspect ratio */ 1713 ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height; 1714 } else if (uy2 == 0) { 1715 /* Set uy2 from ux2/ux1 to maintain aspect ratio */ 1716 uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width; 1717 } 1718 1719 if (ux2 > gfx_state.tg_fb.fb_width || 1720 uy2 > gfx_state.tg_fb.fb_height) { 1721 if (trace) 1722 printf("Bottom right coordinate off screen.\n"); 1723 return (1); 1724 } 1725 1726 fwidth = ux2 - ux1; 1727 fheight = uy2 - uy1; 1728 1729 /* 1730 * If the original image dimensions have been passed explicitly, 1731 * disable scaling. 1732 */ 1733 if (fwidth == png->width && fheight == png->height) 1734 scale = false; 1735 1736 if (ux1 == 0) { 1737 /* 1738 * No top left X co-ordinate (real coordinates start at 1), 1739 * place as far right as it will fit. 1740 */ 1741 ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col; 1742 ux1 = ux2 - fwidth; 1743 } 1744 1745 if (uy1 == 0) { 1746 /* 1747 * No top left Y co-ordinate (real coordinates start at 1), 1748 * place as far down as it will fit. 1749 */ 1750 uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row; 1751 uy1 = uy2 - fheight; 1752 } 1753 1754 if (ux1 >= ux2 || uy1 >= uy2) { 1755 if (trace) 1756 printf("Image dimensions reversed.\n"); 1757 return (1); 1758 } 1759 1760 if (fwidth < 2 || fheight < 2) { 1761 if (trace) 1762 printf("Target area too small\n"); 1763 return (1); 1764 } 1765 1766 if (trace) 1767 printf("Image %ux%u -> %ux%u @%ux%u\n", 1768 png->width, png->height, fwidth, fheight, ux1, uy1); 1769 1770 rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width; 1771 rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height; 1772 rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width; 1773 rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height; 1774 1775 /* 1776 * mark area used in terminal 1777 */ 1778 if (!(flags & FL_PUTIMAGE_NOSCROLL)) 1779 term_image_display(&gfx_state, &rect); 1780 1781 if ((flags & FL_PUTIMAGE_BORDER)) 1782 gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0); 1783 1784 data = malloc(fwidth * fheight * sizeof(*p)); 1785 p = (void *)data; 1786 if (data == NULL) { 1787 if (trace) 1788 printf("Out of memory.\n"); 1789 return (1); 1790 } 1791 1792 /* 1793 * Build image for our framebuffer. 1794 */ 1795 1796 /* Helper to calculate the pixel index from the source png */ 1797 #define GETPIXEL(xx, yy) (((yy) * png->width + (xx)) * png->bpp) 1798 1799 /* 1800 * For each of the x and y directions, calculate the number of pixels 1801 * in the source image that correspond to a single pixel in the target. 1802 * Use fixed-point arithmetic with 16-bits for each of the integer and 1803 * fractional parts. 1804 */ 1805 const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1); 1806 const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1); 1807 1808 rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) - 1809 ffs(gfx_state.tg_fb.fb_mask_red) + 1); 1810 gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) - 1811 ffs(gfx_state.tg_fb.fb_mask_green) + 1); 1812 bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) - 1813 ffs(gfx_state.tg_fb.fb_mask_blue) + 1); 1814 1815 uint32_t hc = 0; 1816 for (y = 0; y < fheight; y++) { 1817 uint32_t hc2 = (hc >> 9) & 0x7f; 1818 uint32_t hc1 = 0x80 - hc2; 1819 1820 uint32_t offset_y = hc >> 16; 1821 uint32_t offset_y1 = offset_y + 1; 1822 1823 uint32_t wc = 0; 1824 for (x = 0; x < fwidth; x++) { 1825 uint32_t wc2 = (wc >> 9) & 0x7f; 1826 uint32_t wc1 = 0x80 - wc2; 1827 1828 uint32_t offset_x = wc >> 16; 1829 uint32_t offset_x1 = offset_x + 1; 1830 1831 /* Target pixel index */ 1832 j = y * fwidth + x; 1833 1834 if (!scale) { 1835 i = GETPIXEL(x, y); 1836 r = png->image[i]; 1837 g = png->image[i + 1]; 1838 b = png->image[i + 2]; 1839 a = png->image[i + 3]; 1840 } else { 1841 uint8_t pixel[4]; 1842 1843 uint32_t p00 = GETPIXEL(offset_x, offset_y); 1844 uint32_t p01 = GETPIXEL(offset_x, offset_y1); 1845 uint32_t p10 = GETPIXEL(offset_x1, offset_y); 1846 uint32_t p11 = GETPIXEL(offset_x1, offset_y1); 1847 1848 /* 1849 * Given a 2x2 array of pixels in the source 1850 * image, combine them to produce a single 1851 * value for the pixel in the target image. 1852 * Each column of pixels is combined using 1853 * a weighted average where the top and bottom 1854 * pixels contribute hc1 and hc2 respectively. 1855 * The calculation for bottom pixel pB and 1856 * top pixel pT is: 1857 * (pT * hc1 + pB * hc2) / (hc1 + hc2) 1858 * Once the values are determined for the two 1859 * columns of pixels, then the columns are 1860 * averaged together in the same way but using 1861 * wc1 and wc2 for the weightings. 1862 * 1863 * Since hc1 and hc2 are chosen so that 1864 * hc1 + hc2 == 128 (and same for wc1 + wc2), 1865 * the >> 14 below is a quick way to divide by 1866 * (hc1 + hc2) * (wc1 + wc2) 1867 */ 1868 for (i = 0; i < 4; i++) 1869 pixel[i] = ( 1870 (png->image[p00 + i] * hc1 + 1871 png->image[p01 + i] * hc2) * wc1 + 1872 (png->image[p10 + i] * hc1 + 1873 png->image[p11 + i] * hc2) * wc2) 1874 >> 14; 1875 1876 r = pixel[0]; 1877 g = pixel[1]; 1878 b = pixel[2]; 1879 a = pixel[3]; 1880 } 1881 1882 if (trace) 1883 printf("r/g/b: %x/%x/%x\n", r, g, b); 1884 /* 1885 * Rough colorspace reduction for 15/16 bit colors. 1886 */ 1887 p[j].Red = r >> rs; 1888 p[j].Green = g >> gs; 1889 p[j].Blue = b >> bs; 1890 p[j].Reserved = a; 1891 1892 wc += wcstep; 1893 } 1894 hc += hcstep; 1895 } 1896 1897 gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data); 1898 free(data); 1899 return (0); 1900 } 1901 1902 /* 1903 * Reset font flags to FONT_AUTO. 1904 */ 1905 void 1906 reset_font_flags(void) 1907 { 1908 struct fontlist *fl; 1909 1910 STAILQ_FOREACH(fl, &fonts, font_next) { 1911 fl->font_flags = FONT_AUTO; 1912 } 1913 } 1914 1915 /* Return w^2 + h^2 or 0, if the dimensions are unknown */ 1916 static unsigned 1917 edid_diagonal_squared(void) 1918 { 1919 unsigned w, h; 1920 1921 if (edid_info == NULL) 1922 return (0); 1923 1924 w = edid_info->display.max_horizontal_image_size; 1925 h = edid_info->display.max_vertical_image_size; 1926 1927 /* If either one is 0, we have aspect ratio, not size */ 1928 if (w == 0 || h == 0) 1929 return (0); 1930 1931 /* 1932 * some monitors encode the aspect ratio instead of the physical size. 1933 */ 1934 if ((w == 16 && h == 9) || (w == 16 && h == 10) || 1935 (w == 4 && h == 3) || (w == 5 && h == 4)) 1936 return (0); 1937 1938 /* 1939 * translate cm to inch, note we scale by 100 here. 1940 */ 1941 w = w * 100 / 254; 1942 h = h * 100 / 254; 1943 1944 /* Return w^2 + h^2 */ 1945 return (w * w + h * h); 1946 } 1947 1948 /* 1949 * calculate pixels per inch. 1950 */ 1951 static unsigned 1952 gfx_get_ppi(void) 1953 { 1954 unsigned dp, di; 1955 1956 di = edid_diagonal_squared(); 1957 if (di == 0) 1958 return (0); 1959 1960 dp = gfx_state.tg_fb.fb_width * 1961 gfx_state.tg_fb.fb_width + 1962 gfx_state.tg_fb.fb_height * 1963 gfx_state.tg_fb.fb_height; 1964 1965 return (isqrt(dp / di)); 1966 } 1967 1968 /* 1969 * Calculate font size from density independent pixels (dp): 1970 * ((16dp * ppi) / 160) * display_factor. 1971 * Here we are using fixed constants: 1dp == 160 ppi and 1972 * display_factor 2. 1973 * 1974 * We are rounding font size up and are searching for font which is 1975 * not smaller than calculated size value. 1976 */ 1977 static vt_font_bitmap_data_t * 1978 gfx_get_font(void) 1979 { 1980 unsigned ppi, size; 1981 vt_font_bitmap_data_t *font = NULL; 1982 struct fontlist *fl, *next; 1983 1984 /* Text mode is not supported here. */ 1985 if (gfx_state.tg_fb_type == FB_TEXT) 1986 return (NULL); 1987 1988 ppi = gfx_get_ppi(); 1989 if (ppi == 0) 1990 return (NULL); 1991 1992 /* 1993 * We will search for 16dp font. 1994 * We are using scale up by 10 for roundup. 1995 */ 1996 size = (16 * ppi * 10) / 160; 1997 /* Apply display factor 2. */ 1998 size = roundup(size * 2, 10) / 10; 1999 2000 STAILQ_FOREACH(fl, &fonts, font_next) { 2001 next = STAILQ_NEXT(fl, font_next); 2002 2003 /* 2004 * If this is last font or, if next font is smaller, 2005 * we have our font. Make sure, it actually is loaded. 2006 */ 2007 if (next == NULL || next->font_data->vfbd_height < size) { 2008 font = fl->font_data; 2009 if (font->vfbd_font == NULL || 2010 fl->font_flags == FONT_RELOAD) { 2011 if (fl->font_load != NULL && 2012 fl->font_name != NULL) 2013 font = fl->font_load(fl->font_name); 2014 } 2015 break; 2016 } 2017 } 2018 2019 return (font); 2020 } 2021 2022 static vt_font_bitmap_data_t * 2023 set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w) 2024 { 2025 vt_font_bitmap_data_t *font = NULL; 2026 struct fontlist *fl; 2027 unsigned height = h; 2028 unsigned width = w; 2029 2030 /* 2031 * First check for manually loaded font. 2032 */ 2033 STAILQ_FOREACH(fl, &fonts, font_next) { 2034 if (fl->font_flags == FONT_MANUAL) { 2035 font = fl->font_data; 2036 if (font->vfbd_font == NULL && fl->font_load != NULL && 2037 fl->font_name != NULL) { 2038 font = fl->font_load(fl->font_name); 2039 } 2040 if (font == NULL || font->vfbd_font == NULL) 2041 font = NULL; 2042 break; 2043 } 2044 } 2045 2046 if (font == NULL) 2047 font = gfx_get_font(); 2048 2049 if (font != NULL) { 2050 *rows = height / font->vfbd_height; 2051 *cols = width / font->vfbd_width; 2052 return (font); 2053 } 2054 2055 /* 2056 * Find best font for these dimensions, or use default. 2057 * If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH, 2058 * do not use smaller font than our DEFAULT_FONT_DATA. 2059 */ 2060 STAILQ_FOREACH(fl, &fonts, font_next) { 2061 font = fl->font_data; 2062 if ((*rows * font->vfbd_height <= height && 2063 *cols * font->vfbd_width <= width) || 2064 (height >= VT_FB_MAX_HEIGHT && 2065 width >= VT_FB_MAX_WIDTH && 2066 font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height && 2067 font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) { 2068 if (font->vfbd_font == NULL || 2069 fl->font_flags == FONT_RELOAD) { 2070 if (fl->font_load != NULL && 2071 fl->font_name != NULL) { 2072 font = fl->font_load(fl->font_name); 2073 } 2074 if (font == NULL) 2075 continue; 2076 } 2077 *rows = height / font->vfbd_height; 2078 *cols = width / font->vfbd_width; 2079 break; 2080 } 2081 font = NULL; 2082 } 2083 2084 if (font == NULL) { 2085 /* 2086 * We have fonts sorted smallest last, try it before 2087 * falling back to builtin. 2088 */ 2089 fl = STAILQ_LAST(&fonts, fontlist, font_next); 2090 if (fl != NULL && fl->font_load != NULL && 2091 fl->font_name != NULL) { 2092 font = fl->font_load(fl->font_name); 2093 } 2094 if (font == NULL) 2095 font = &DEFAULT_FONT_DATA; 2096 2097 *rows = height / font->vfbd_height; 2098 *cols = width / font->vfbd_width; 2099 } 2100 2101 return (font); 2102 } 2103 2104 static void 2105 cons_clear(void) 2106 { 2107 char clear[] = { '\033', 'c' }; 2108 2109 /* Reset terminal */ 2110 teken_input(&gfx_state.tg_teken, clear, sizeof(clear)); 2111 gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0); 2112 } 2113 2114 void 2115 setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width) 2116 { 2117 vt_font_bitmap_data_t *font_data; 2118 teken_pos_t *tp = &state->tg_tp; 2119 char env[8]; 2120 int i; 2121 2122 /* 2123 * set_font() will select a appropriate sized font for 2124 * the number of rows and columns selected. If we don't 2125 * have a font that will fit, then it will use the 2126 * default builtin font and adjust the rows and columns 2127 * to fit on the screen. 2128 */ 2129 font_data = set_font(&tp->tp_row, &tp->tp_col, height, width); 2130 2131 if (font_data == NULL) 2132 panic("out of memory"); 2133 2134 for (i = 0; i < VFNT_MAPS; i++) { 2135 state->tg_font.vf_map[i] = 2136 font_data->vfbd_font->vf_map[i]; 2137 state->tg_font.vf_map_count[i] = 2138 font_data->vfbd_font->vf_map_count[i]; 2139 } 2140 2141 state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes; 2142 state->tg_font.vf_height = font_data->vfbd_font->vf_height; 2143 state->tg_font.vf_width = font_data->vfbd_font->vf_width; 2144 2145 snprintf(env, sizeof (env), "%ux%u", 2146 state->tg_font.vf_width, state->tg_font.vf_height); 2147 env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK, 2148 env, font_set, env_nounset); 2149 } 2150 2151 /* Binary search for the glyph. Return 0 if not found. */ 2152 static uint16_t 2153 font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src) 2154 { 2155 unsigned min, mid, max; 2156 2157 min = 0; 2158 max = len - 1; 2159 2160 /* Empty font map. */ 2161 if (len == 0) 2162 return (0); 2163 /* Character below minimal entry. */ 2164 if (src < map[0].vfm_src) 2165 return (0); 2166 /* Optimization: ASCII characters occur very often. */ 2167 if (src <= map[0].vfm_src + map[0].vfm_len) 2168 return (src - map[0].vfm_src + map[0].vfm_dst); 2169 /* Character above maximum entry. */ 2170 if (src > map[max].vfm_src + map[max].vfm_len) 2171 return (0); 2172 2173 /* Binary search. */ 2174 while (max >= min) { 2175 mid = (min + max) / 2; 2176 if (src < map[mid].vfm_src) 2177 max = mid - 1; 2178 else if (src > map[mid].vfm_src + map[mid].vfm_len) 2179 min = mid + 1; 2180 else 2181 return (src - map[mid].vfm_src + map[mid].vfm_dst); 2182 } 2183 2184 return (0); 2185 } 2186 2187 /* 2188 * Return glyph bitmap. If glyph is not found, we will return bitmap 2189 * for the first (offset 0) glyph. 2190 */ 2191 uint8_t * 2192 font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a) 2193 { 2194 uint16_t dst; 2195 size_t stride; 2196 2197 /* Substitute bold with normal if not found. */ 2198 if (a->ta_format & TF_BOLD) { 2199 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 2200 vf->vf_map_count[VFNT_MAP_BOLD], c); 2201 if (dst != 0) 2202 goto found; 2203 } 2204 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 2205 vf->vf_map_count[VFNT_MAP_NORMAL], c); 2206 2207 found: 2208 stride = howmany(vf->vf_width, 8) * vf->vf_height; 2209 return (&vf->vf_bytes[dst * stride]); 2210 } 2211 2212 static int 2213 load_mapping(int fd, struct vt_font *fp, int n) 2214 { 2215 size_t i, size; 2216 ssize_t rv; 2217 vfnt_map_t *mp; 2218 2219 if (fp->vf_map_count[n] == 0) 2220 return (0); 2221 2222 size = fp->vf_map_count[n] * sizeof(*mp); 2223 mp = malloc(size); 2224 if (mp == NULL) 2225 return (ENOMEM); 2226 fp->vf_map[n] = mp; 2227 2228 rv = read(fd, mp, size); 2229 if (rv < 0 || (size_t)rv != size) { 2230 free(fp->vf_map[n]); 2231 fp->vf_map[n] = NULL; 2232 return (EIO); 2233 } 2234 2235 for (i = 0; i < fp->vf_map_count[n]; i++) { 2236 mp[i].vfm_src = be32toh(mp[i].vfm_src); 2237 mp[i].vfm_dst = be16toh(mp[i].vfm_dst); 2238 mp[i].vfm_len = be16toh(mp[i].vfm_len); 2239 } 2240 return (0); 2241 } 2242 2243 static int 2244 builtin_mapping(struct vt_font *fp, int n) 2245 { 2246 size_t size; 2247 struct vfnt_map *mp; 2248 2249 if (n >= VFNT_MAPS) 2250 return (EINVAL); 2251 2252 if (fp->vf_map_count[n] == 0) 2253 return (0); 2254 2255 size = fp->vf_map_count[n] * sizeof(*mp); 2256 mp = malloc(size); 2257 if (mp == NULL) 2258 return (ENOMEM); 2259 fp->vf_map[n] = mp; 2260 2261 memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size); 2262 return (0); 2263 } 2264 2265 /* 2266 * Load font from builtin or from file. 2267 * We do need special case for builtin because the builtin font glyphs 2268 * are compressed and we do need to uncompress them. 2269 * Having single load_font() for both cases will help us to simplify 2270 * font switch handling. 2271 */ 2272 static vt_font_bitmap_data_t * 2273 load_font(char *path) 2274 { 2275 int fd, i; 2276 uint32_t glyphs; 2277 struct font_header fh; 2278 struct fontlist *fl; 2279 vt_font_bitmap_data_t *bp; 2280 struct vt_font *fp; 2281 size_t size; 2282 ssize_t rv; 2283 2284 /* Get our entry from the font list. */ 2285 STAILQ_FOREACH(fl, &fonts, font_next) { 2286 if (strcmp(fl->font_name, path) == 0) 2287 break; 2288 } 2289 if (fl == NULL) 2290 return (NULL); /* Should not happen. */ 2291 2292 bp = fl->font_data; 2293 if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD) 2294 return (bp); 2295 2296 fd = -1; 2297 /* 2298 * Special case for builtin font. 2299 * Builtin font is the very first font we load, we do not have 2300 * previous loads to be released. 2301 */ 2302 if (fl->font_flags == FONT_BUILTIN) { 2303 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) 2304 return (NULL); 2305 2306 fp->vf_width = DEFAULT_FONT_DATA.vfbd_width; 2307 fp->vf_height = DEFAULT_FONT_DATA.vfbd_height; 2308 2309 fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size); 2310 if (fp->vf_bytes == NULL) { 2311 free(fp); 2312 return (NULL); 2313 } 2314 2315 bp->vfbd_uncompressed_size = 2316 DEFAULT_FONT_DATA.vfbd_uncompressed_size; 2317 bp->vfbd_compressed_size = 2318 DEFAULT_FONT_DATA.vfbd_compressed_size; 2319 2320 if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data, 2321 fp->vf_bytes, 2322 DEFAULT_FONT_DATA.vfbd_compressed_size, 2323 DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) { 2324 free(fp->vf_bytes); 2325 free(fp); 2326 return (NULL); 2327 } 2328 2329 for (i = 0; i < VFNT_MAPS; i++) { 2330 fp->vf_map_count[i] = 2331 DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i]; 2332 if (builtin_mapping(fp, i) != 0) 2333 goto free_done; 2334 } 2335 2336 bp->vfbd_font = fp; 2337 return (bp); 2338 } 2339 2340 fd = open(path, O_RDONLY); 2341 if (fd < 0) 2342 return (NULL); 2343 2344 size = sizeof(fh); 2345 rv = read(fd, &fh, size); 2346 if (rv < 0 || (size_t)rv != size) { 2347 bp = NULL; 2348 goto done; 2349 } 2350 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) { 2351 bp = NULL; 2352 goto done; 2353 } 2354 if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) { 2355 bp = NULL; 2356 goto done; 2357 } 2358 for (i = 0; i < VFNT_MAPS; i++) 2359 fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]); 2360 2361 glyphs = be32toh(fh.fh_glyph_count); 2362 fp->vf_width = fh.fh_width; 2363 fp->vf_height = fh.fh_height; 2364 2365 size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs; 2366 bp->vfbd_uncompressed_size = size; 2367 if ((fp->vf_bytes = malloc(size)) == NULL) 2368 goto free_done; 2369 2370 rv = read(fd, fp->vf_bytes, size); 2371 if (rv < 0 || (size_t)rv != size) 2372 goto free_done; 2373 for (i = 0; i < VFNT_MAPS; i++) { 2374 if (load_mapping(fd, fp, i) != 0) 2375 goto free_done; 2376 } 2377 2378 /* 2379 * Reset builtin flag now as we have full font loaded. 2380 */ 2381 if (fl->font_flags == FONT_BUILTIN) 2382 fl->font_flags = FONT_AUTO; 2383 2384 /* 2385 * Release previously loaded entries. We can do this now, as 2386 * the new font is loaded. Note, there can be no console 2387 * output till the new font is in place and teken is notified. 2388 * We do need to keep fl->font_data for glyph dimensions. 2389 */ 2390 STAILQ_FOREACH(fl, &fonts, font_next) { 2391 if (fl->font_data->vfbd_font == NULL) 2392 continue; 2393 2394 for (i = 0; i < VFNT_MAPS; i++) 2395 free(fl->font_data->vfbd_font->vf_map[i]); 2396 free(fl->font_data->vfbd_font->vf_bytes); 2397 free(fl->font_data->vfbd_font); 2398 fl->font_data->vfbd_font = NULL; 2399 } 2400 2401 bp->vfbd_font = fp; 2402 bp->vfbd_compressed_size = 0; 2403 2404 done: 2405 if (fd != -1) 2406 close(fd); 2407 return (bp); 2408 2409 free_done: 2410 for (i = 0; i < VFNT_MAPS; i++) 2411 free(fp->vf_map[i]); 2412 free(fp->vf_bytes); 2413 free(fp); 2414 bp = NULL; 2415 goto done; 2416 } 2417 2418 struct name_entry { 2419 char *n_name; 2420 SLIST_ENTRY(name_entry) n_entry; 2421 }; 2422 2423 SLIST_HEAD(name_list, name_entry); 2424 2425 /* Read font names from index file. */ 2426 static struct name_list * 2427 read_list(char *fonts) 2428 { 2429 struct name_list *nl; 2430 struct name_entry *np; 2431 char *dir, *ptr; 2432 char buf[PATH_MAX]; 2433 int fd, len; 2434 2435 TSENTER(); 2436 2437 dir = strdup(fonts); 2438 if (dir == NULL) 2439 return (NULL); 2440 2441 ptr = strrchr(dir, '/'); 2442 *ptr = '\0'; 2443 2444 fd = open(fonts, O_RDONLY); 2445 if (fd < 0) 2446 return (NULL); 2447 2448 nl = malloc(sizeof(*nl)); 2449 if (nl == NULL) { 2450 close(fd); 2451 return (nl); 2452 } 2453 2454 SLIST_INIT(nl); 2455 while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) { 2456 if (*buf == '#' || *buf == '\0') 2457 continue; 2458 2459 if (bcmp(buf, "MENU", 4) == 0) 2460 continue; 2461 2462 if (bcmp(buf, "FONT", 4) == 0) 2463 continue; 2464 2465 ptr = strchr(buf, ':'); 2466 if (ptr == NULL) 2467 continue; 2468 else 2469 *ptr = '\0'; 2470 2471 np = malloc(sizeof(*np)); 2472 if (np == NULL) { 2473 close(fd); 2474 return (nl); /* return what we have */ 2475 } 2476 if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) { 2477 free(np); 2478 close(fd); 2479 return (nl); /* return what we have */ 2480 } 2481 SLIST_INSERT_HEAD(nl, np, n_entry); 2482 } 2483 close(fd); 2484 TSEXIT(); 2485 return (nl); 2486 } 2487 2488 /* 2489 * Read the font properties and insert new entry into the list. 2490 * The font list is built in descending order. 2491 */ 2492 static bool 2493 insert_font(char *name, FONT_FLAGS flags) 2494 { 2495 struct font_header fh; 2496 struct fontlist *fp, *previous, *entry, *next; 2497 size_t size; 2498 ssize_t rv; 2499 int fd; 2500 char *font_name; 2501 2502 TSENTER(); 2503 2504 font_name = NULL; 2505 if (flags == FONT_BUILTIN) { 2506 /* 2507 * We only install builtin font once, while setting up 2508 * initial console. Since this will happen very early, 2509 * we assume asprintf will not fail. Once we have access to 2510 * files, the builtin font will be replaced by font loaded 2511 * from file. 2512 */ 2513 if (!STAILQ_EMPTY(&fonts)) 2514 return (false); 2515 2516 fh.fh_width = DEFAULT_FONT_DATA.vfbd_width; 2517 fh.fh_height = DEFAULT_FONT_DATA.vfbd_height; 2518 2519 (void) asprintf(&font_name, "%dx%d", 2520 DEFAULT_FONT_DATA.vfbd_width, 2521 DEFAULT_FONT_DATA.vfbd_height); 2522 } else { 2523 fd = open(name, O_RDONLY); 2524 if (fd < 0) 2525 return (false); 2526 rv = read(fd, &fh, sizeof(fh)); 2527 close(fd); 2528 if (rv < 0 || (size_t)rv != sizeof(fh)) 2529 return (false); 2530 2531 if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, 2532 sizeof(fh.fh_magic)) != 0) 2533 return (false); 2534 font_name = strdup(name); 2535 } 2536 2537 if (font_name == NULL) 2538 return (false); 2539 2540 /* 2541 * If we have an entry with the same glyph dimensions, replace 2542 * the file name and mark us. We only support unique dimensions. 2543 */ 2544 STAILQ_FOREACH(entry, &fonts, font_next) { 2545 if (fh.fh_width == entry->font_data->vfbd_width && 2546 fh.fh_height == entry->font_data->vfbd_height) { 2547 free(entry->font_name); 2548 entry->font_name = font_name; 2549 entry->font_flags = FONT_RELOAD; 2550 TSEXIT(); 2551 return (true); 2552 } 2553 } 2554 2555 fp = calloc(sizeof(*fp), 1); 2556 if (fp == NULL) { 2557 free(font_name); 2558 return (false); 2559 } 2560 fp->font_data = calloc(sizeof(*fp->font_data), 1); 2561 if (fp->font_data == NULL) { 2562 free(font_name); 2563 free(fp); 2564 return (false); 2565 } 2566 fp->font_name = font_name; 2567 fp->font_flags = flags; 2568 fp->font_load = load_font; 2569 fp->font_data->vfbd_width = fh.fh_width; 2570 fp->font_data->vfbd_height = fh.fh_height; 2571 2572 if (STAILQ_EMPTY(&fonts)) { 2573 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2574 TSEXIT(); 2575 return (true); 2576 } 2577 2578 previous = NULL; 2579 size = fp->font_data->vfbd_width * fp->font_data->vfbd_height; 2580 2581 STAILQ_FOREACH(entry, &fonts, font_next) { 2582 vt_font_bitmap_data_t *bd; 2583 2584 bd = entry->font_data; 2585 /* Should fp be inserted before the entry? */ 2586 if (size > bd->vfbd_width * bd->vfbd_height) { 2587 if (previous == NULL) { 2588 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2589 } else { 2590 STAILQ_INSERT_AFTER(&fonts, previous, fp, 2591 font_next); 2592 } 2593 TSEXIT(); 2594 return (true); 2595 } 2596 next = STAILQ_NEXT(entry, font_next); 2597 if (next == NULL || 2598 size > next->font_data->vfbd_width * 2599 next->font_data->vfbd_height) { 2600 STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next); 2601 TSEXIT(); 2602 return (true); 2603 } 2604 previous = entry; 2605 } 2606 TSEXIT(); 2607 return (true); 2608 } 2609 2610 static int 2611 font_set(struct env_var *ev __unused, int flags __unused, const void *value) 2612 { 2613 struct fontlist *fl; 2614 char *eptr; 2615 unsigned long x = 0, y = 0; 2616 2617 /* 2618 * Attempt to extract values from "XxY" string. In case of error, 2619 * we have unmaching glyph dimensions and will just output the 2620 * available values. 2621 */ 2622 if (value != NULL) { 2623 x = strtoul(value, &eptr, 10); 2624 if (*eptr == 'x') 2625 y = strtoul(eptr + 1, &eptr, 10); 2626 } 2627 STAILQ_FOREACH(fl, &fonts, font_next) { 2628 if (fl->font_data->vfbd_width == x && 2629 fl->font_data->vfbd_height == y) 2630 break; 2631 } 2632 if (fl != NULL) { 2633 /* Reset any FONT_MANUAL flag. */ 2634 reset_font_flags(); 2635 2636 /* Mark this font manually loaded */ 2637 fl->font_flags = FONT_MANUAL; 2638 cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2639 return (CMD_OK); 2640 } 2641 2642 printf("Available fonts:\n"); 2643 STAILQ_FOREACH(fl, &fonts, font_next) { 2644 printf(" %dx%d\n", fl->font_data->vfbd_width, 2645 fl->font_data->vfbd_height); 2646 } 2647 return (CMD_OK); 2648 } 2649 2650 void 2651 bios_text_font(bool use_vga_font) 2652 { 2653 if (use_vga_font) 2654 (void) insert_font(VGA_8X16_FONT, FONT_MANUAL); 2655 else 2656 (void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL); 2657 } 2658 2659 void 2660 autoload_font(bool bios) 2661 { 2662 struct name_list *nl; 2663 struct name_entry *np; 2664 2665 TSENTER(); 2666 2667 nl = read_list("/boot/fonts/INDEX.fonts"); 2668 if (nl == NULL) 2669 return; 2670 2671 while (!SLIST_EMPTY(nl)) { 2672 np = SLIST_FIRST(nl); 2673 SLIST_REMOVE_HEAD(nl, n_entry); 2674 if (insert_font(np->n_name, FONT_AUTO) == false) 2675 printf("failed to add font: %s\n", np->n_name); 2676 free(np->n_name); 2677 free(np); 2678 } 2679 2680 /* 2681 * If vga text mode was requested, load vga.font (8x16 bold) font. 2682 */ 2683 if (bios) { 2684 bios_text_font(true); 2685 } 2686 2687 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2688 2689 TSEXIT(); 2690 } 2691 2692 COMMAND_SET(load_font, "loadfont", "load console font from file", command_font); 2693 2694 static int 2695 command_font(int argc, char *argv[]) 2696 { 2697 int i, c, rc; 2698 struct fontlist *fl; 2699 vt_font_bitmap_data_t *bd; 2700 bool list; 2701 2702 list = false; 2703 optind = 1; 2704 optreset = 1; 2705 rc = CMD_OK; 2706 2707 while ((c = getopt(argc, argv, "l")) != -1) { 2708 switch (c) { 2709 case 'l': 2710 list = true; 2711 break; 2712 case '?': 2713 default: 2714 return (CMD_ERROR); 2715 } 2716 } 2717 2718 argc -= optind; 2719 argv += optind; 2720 2721 if (argc > 1 || (list && argc != 0)) { 2722 printf("Usage: loadfont [-l] | [file.fnt]\n"); 2723 return (CMD_ERROR); 2724 } 2725 2726 if (list) { 2727 STAILQ_FOREACH(fl, &fonts, font_next) { 2728 printf("font %s: %dx%d%s\n", fl->font_name, 2729 fl->font_data->vfbd_width, 2730 fl->font_data->vfbd_height, 2731 fl->font_data->vfbd_font == NULL? "" : " loaded"); 2732 } 2733 return (CMD_OK); 2734 } 2735 2736 /* Clear scren */ 2737 cons_clear(); 2738 2739 if (argc == 1) { 2740 char *name = argv[0]; 2741 2742 if (insert_font(name, FONT_MANUAL) == false) { 2743 printf("loadfont error: failed to load: %s\n", name); 2744 return (CMD_ERROR); 2745 } 2746 2747 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2748 return (CMD_OK); 2749 } 2750 2751 if (argc == 0) { 2752 /* 2753 * Walk entire font list, release any loaded font, and set 2754 * autoload flag. The font list does have at least the builtin 2755 * default font. 2756 */ 2757 STAILQ_FOREACH(fl, &fonts, font_next) { 2758 if (fl->font_data->vfbd_font != NULL) { 2759 2760 bd = fl->font_data; 2761 /* 2762 * Note the setup_font() is releasing 2763 * font bytes. 2764 */ 2765 for (i = 0; i < VFNT_MAPS; i++) 2766 free(bd->vfbd_font->vf_map[i]); 2767 free(fl->font_data->vfbd_font); 2768 fl->font_data->vfbd_font = NULL; 2769 fl->font_data->vfbd_uncompressed_size = 0; 2770 fl->font_flags = FONT_AUTO; 2771 } 2772 } 2773 (void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT); 2774 } 2775 return (rc); 2776 } 2777 2778 bool 2779 gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res) 2780 { 2781 struct resolution *rp, *p; 2782 2783 /* 2784 * Walk detailed timings tables (4). 2785 */ 2786 if ((edid->display.supported_features 2787 & EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) { 2788 /* Walk detailed timing descriptors (4) */ 2789 for (int i = 0; i < DET_TIMINGS; i++) { 2790 /* 2791 * Reserved value 0 is not used for display decriptor. 2792 */ 2793 if (edid->detailed_timings[i].pixel_clock == 0) 2794 continue; 2795 if ((rp = malloc(sizeof(*rp))) == NULL) 2796 continue; 2797 rp->width = GET_EDID_INFO_WIDTH(edid, i); 2798 rp->height = GET_EDID_INFO_HEIGHT(edid, i); 2799 if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS && 2800 rp->height > 0 && rp->height <= EDID_MAX_LINES) 2801 TAILQ_INSERT_TAIL(res, rp, next); 2802 else 2803 free(rp); 2804 } 2805 } 2806 2807 /* 2808 * Walk standard timings list (8). 2809 */ 2810 for (int i = 0; i < STD_TIMINGS; i++) { 2811 /* Is this field unused? */ 2812 if (edid->standard_timings[i] == 0x0101) 2813 continue; 2814 2815 if ((rp = malloc(sizeof(*rp))) == NULL) 2816 continue; 2817 2818 rp->width = HSIZE(edid->standard_timings[i]); 2819 switch (RATIO(edid->standard_timings[i])) { 2820 case RATIO1_1: 2821 rp->height = HSIZE(edid->standard_timings[i]); 2822 if (edid->header.version > 1 || 2823 edid->header.revision > 2) { 2824 rp->height = rp->height * 10 / 16; 2825 } 2826 break; 2827 case RATIO4_3: 2828 rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4; 2829 break; 2830 case RATIO5_4: 2831 rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5; 2832 break; 2833 case RATIO16_9: 2834 rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16; 2835 break; 2836 } 2837 2838 /* 2839 * Create resolution list in decreasing order, except keep 2840 * first entry (preferred timing mode). 2841 */ 2842 TAILQ_FOREACH(p, res, next) { 2843 if (p->width * p->height < rp->width * rp->height) { 2844 /* Keep preferred mode first */ 2845 if (TAILQ_FIRST(res) == p) 2846 TAILQ_INSERT_AFTER(res, p, rp, next); 2847 else 2848 TAILQ_INSERT_BEFORE(p, rp, next); 2849 break; 2850 } 2851 if (TAILQ_NEXT(p, next) == NULL) { 2852 TAILQ_INSERT_TAIL(res, rp, next); 2853 break; 2854 } 2855 } 2856 } 2857 return (!TAILQ_EMPTY(res)); 2858 } 2859