1eaca6183SJohn Baldwin.\" Copyright (c) 2000 John H. Baldwin 2eaca6183SJohn Baldwin.\" All rights reserved. 3eaca6183SJohn Baldwin.\" 4eaca6183SJohn Baldwin.\" Redistribution and use in source and binary forms, with or without 5eaca6183SJohn Baldwin.\" modification, are permitted provided that the following conditions 6eaca6183SJohn Baldwin.\" are met: 7eaca6183SJohn Baldwin.\" 1. Redistributions of source code must retain the above copyright 8eaca6183SJohn Baldwin.\" notice, this list of conditions and the following disclaimer. 9eaca6183SJohn Baldwin.\" 2. Redistributions in binary form must reproduce the above copyright 10eaca6183SJohn Baldwin.\" notice, this list of conditions and the following disclaimer in the 11eaca6183SJohn Baldwin.\" documentation and/or other materials provided with the distribution. 12eaca6183SJohn Baldwin.\" 13eaca6183SJohn Baldwin.\" THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY EXPRESS OR 14eaca6183SJohn Baldwin.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15eaca6183SJohn Baldwin.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16eaca6183SJohn Baldwin.\" IN NO EVENT SHALL THE DEVELOPERS BE LIABLE FOR ANY DIRECT, INDIRECT, 17eaca6183SJohn Baldwin.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18eaca6183SJohn Baldwin.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19eaca6183SJohn Baldwin.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20eaca6183SJohn Baldwin.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21eaca6183SJohn Baldwin.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22eaca6183SJohn Baldwin.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23eaca6183SJohn Baldwin.\" 24eaca6183SJohn Baldwin.\" $FreeBSD$ 25eaca6183SJohn Baldwin.\" 26eaca6183SJohn Baldwin.Dd October 27, 2000 27eaca6183SJohn Baldwin.Os 28eaca6183SJohn Baldwin.Dt ATOMIC 9 29eaca6183SJohn Baldwin.Sh NAME 30eaca6183SJohn Baldwin.Nm atomic_add , 31eaca6183SJohn Baldwin.Nm atomic_clear , 32eaca6183SJohn Baldwin.Nm atomic_cmpset , 33eaca6183SJohn Baldwin.Nm atomic_load , 34eaca6183SJohn Baldwin.Nm atomic_readandclear , 35eaca6183SJohn Baldwin.Nm atomic_set , 36eaca6183SJohn Baldwin.Nm atomic_subtract , 37eaca6183SJohn Baldwin.Nm atomic_store 38eaca6183SJohn Baldwin.Nd atomic operations 39eaca6183SJohn Baldwin.Sh SYNOPSIS 40eaca6183SJohn Baldwin.Fd #include <machine/atomic.h> 41eaca6183SJohn Baldwin.Ft void 42eaca6183SJohn Baldwin.Fn atomic_add{acq_,rel_,}_<type> "volatile <type> *p" "<type> v" 43eaca6183SJohn Baldwin.Ft void 44eaca6183SJohn Baldwin.Fn atomic_clear{acq_,rel_,}_<type> "volatile <type> *p" "<type> v" 45eaca6183SJohn Baldwin.Ft int 46eaca6183SJohn Baldwin.Fo atomic_cmpset{acq_,rel_,}_<type> 47eaca6183SJohn Baldwin.Fa "volatile <type> *dst" 48eaca6183SJohn Baldwin.Fa "<type> old" 49eaca6183SJohn Baldwin.Fa "<type> new" 50eaca6183SJohn Baldwin.Fc 51eaca6183SJohn Baldwin.Ft <type> 52eaca6183SJohn Baldwin.Fn atomic_load_acq_<type> "volatile <type> *p" 53eaca6183SJohn Baldwin.Ft <type> 54eaca6183SJohn Baldwin.Fn atomic_readandclear_<type> "volatile <type> *p" 55eaca6183SJohn Baldwin.Ft void 56eaca6183SJohn Baldwin.Fn atomic_set{acq_,rel_,}_<type> "volatile <type> *p" "<type> v" 57eaca6183SJohn Baldwin.Ft void 58eaca6183SJohn Baldwin.Fn atomic_subtract{acq_,rel_},_<type> "volatile <type> *p" "<type> v" 59eaca6183SJohn Baldwin.Ft void 60eaca6183SJohn Baldwin.Fn atomic_store_rel_<type> "volatile <type> *p" "<type> v" 61eaca6183SJohn Baldwin.Sh DESCRIPTION 62eaca6183SJohn BaldwinEach of the atomic operations is guaranteed to be atomic in the presence of 63eaca6183SJohn Baldwininterrupts. 64eaca6183SJohn BaldwinThey can be used to implement reference counts or as building blocks for more 65eaca6183SJohn Baldwinadvanced synchronization primitives such as mutexes. 66eaca6183SJohn Baldwin.Ss Types 67eaca6183SJohn BaldwinEach atomic operation operates on a specific type. 68eaca6183SJohn BaldwinThe type to use is indicated in the function name. 69eaca6183SJohn BaldwinThe available types that can be used are: 70eaca6183SJohn Baldwin.Bl -tag -offset indent -width short 71eaca6183SJohn Baldwin.It char 72eaca6183SJohn Baldwinunsigned character 73eaca6183SJohn Baldwin.It short 74eaca6183SJohn Baldwinunsigned short integer 75eaca6183SJohn Baldwin.It int 76eaca6183SJohn Baldwinunsigned integer 77eaca6183SJohn Baldwin.It long 78eaca6183SJohn Baldwinunsigned long integer 79eaca6183SJohn Baldwin.It ptr 80eaca6183SJohn Baldwinunsigned integer the size of a pointer 81eaca6183SJohn Baldwin.It 8 82eaca6183SJohn Baldwinunsigned 8-bit integer 83eaca6183SJohn Baldwin.It 16 84eaca6183SJohn Baldwinunsigned 16-bit integer 85eaca6183SJohn Baldwin.It 32 86eaca6183SJohn Baldwinunsigned 32-bit integer 87eaca6183SJohn Baldwin.It 64 88eaca6183SJohn Baldwinunsigned 64-bit integer 89eaca6183SJohn Baldwin.El 90eaca6183SJohn Baldwin.Pp 91eaca6183SJohn BaldwinFor example, the function to atomically add two integers is called 92eaca6183SJohn Baldwin.Fn atomic_add_int . 93eaca6183SJohn Baldwin.Ss Memory Barriers 94eaca6183SJohn BaldwinMemory barriers are used to guarantee the order the order of data accesses in 95eaca6183SJohn Baldwintwo ways. 96eaca6183SJohn BaldwinFirst, they specify hints to the compiler to not re-order or optimize the 97eaca6183SJohn Baldwinoperations. 98eaca6183SJohn BaldwinSecondly, on architectures that do not guarantee ordered data accesses, 99eaca6183SJohn Baldwinspecial instructions or special variants of instructions are used to indicate 100eaca6183SJohn Baldwinto the processor that data accesses need to occur in a certain order. 101eaca6183SJohn BaldwinAs a result, most of the atomic operations have three variants in order to 102eaca6183SJohn Baldwininclude optional memory barriers. 103eaca6183SJohn BaldwinThe first form just performs the operation without any explicit barriers. 104eaca6183SJohn BaldwinThe second form uses a read memory barrier, and the final variant uses a write 105eaca6183SJohn Baldwinmemory barrier. 106eaca6183SJohn Baldwin.Pp 107eaca6183SJohn BaldwinThe second variant of each operation includes a read memory barrier. 108eaca6183SJohn BaldwinThis barrier ensures that the effects of this operation are completed before the 109eaca6183SJohn Baldwineffects of any later data accesses. 110eaca6183SJohn BaldwinAs a result, the operation is said to have acquire semantics as it acquires a 111eaca6183SJohn Baldwinpseudo-lock requiring further operations to wait until it has completed. 112eaca6183SJohn BaldwinTo denote this, the suffix 113eaca6183SJohn Baldwin.Dq _acq 114eaca6183SJohn Baldwinis inserted into the function name immediately prior to the 115eaca6183SJohn Baldwin.Em _type 116eaca6183SJohn Baldwinsuffix. 117eaca6183SJohn BaldwinFor example, to subtract two integers ensuring that any later writes will 118eaca6183SJohn Baldwinhappen after the subtraction is performed, use 119eaca6183SJohn Baldwin.Fn atomic_subtract_acq_int . 120eaca6183SJohn Baldwin.Pp 121eaca6183SJohn BaldwinThe third variant of each operation includes a write memory barrier. 122eaca6183SJohn BaldwinThis ensures that all effects of all previous data accesses are completed 123eaca6183SJohn Baldwinbefore this operation takes place. 124eaca6183SJohn BaldwinAs a result, the operation is said to have release semantics as it releases 125eaca6183SJohn Baldwinany pending data accesses to be completed before its operation is performed. 126eaca6183SJohn BaldwinTo denote this, the suffix 127eaca6183SJohn Baldwin.Dq _rel 128eaca6183SJohn Baldwinis inserted into the function name immediately prior to the 129eaca6183SJohn Baldwin.Em _type 130eaca6183SJohn Baldwinsuffix. 131eaca6183SJohn BaldwinFor example, to add two long integers ensuring that all previous 132eaca6183SJohn Baldwinwrites will happen first, use 133eaca6183SJohn Baldwin.Fn atomic_add_rel_long . 134eaca6183SJohn Baldwin.Pp 135eaca6183SJohn BaldwinA practical example of using memory barriers is to ensure that data accesses 136eaca6183SJohn Baldwinthat are protected by a lock are all performed while the lock is held. 137eaca6183SJohn BaldwinTo achieve this, one would use a read barrier when acquiring the lock to 138eaca6183SJohn Baldwinguarantee that the lock is held before any protected operations are performed. 139eaca6183SJohn BaldwinFinally, one would use a write barrier when releasing the lock to ensure that 140eaca6183SJohn Baldwinall of the protected operations are completed before the lock is released. 141eaca6183SJohn Baldwin.Pp 142eaca6183SJohn Baldwin.Ss Multiple Processors 143eaca6183SJohn BaldwinThe current set of atomic operations do not necessarily guarantee atomicity 144eaca6183SJohn Baldwinacross multiple processors. 145eaca6183SJohn BaldwinTo guarantee atomicity across processors, not only does the individual 146eaca6183SJohn Baldwinoperation need to be atomic on the processor performing the operation, but the 147eaca6183SJohn Baldwinthe result of the operation needs to be pushed out to stable storage and the 148eaca6183SJohn Baldwincaches of all other processors on the system need to invalidate any cache 149eaca6183SJohn Baldwinlines that include the affected memory region. 150eaca6183SJohn BaldwinOn the 151eaca6183SJohn Baldwin.Tn i386 152eaca6183SJohn Baldwinarchitecture, the cache coherency model requires that the hardware perform 153eaca6183SJohn Baldwinthis task, thus the atomic operations are atomic across multiple processors. 154eaca6183SJohn BaldwinOn the 155eaca6183SJohn Baldwin.Tn ia64 156eaca6183SJohn Baldwinarchitecture, coherency is only guaranteed for pages that are configured to 157eaca6183SJohn Baldwinusing a caching policy of either uncached or write back. 158eaca6183SJohn Baldwin.Ss Semantics 159eaca6183SJohn BaldwinThis section describes the semantics of each operation using a C like notation. 160eaca6183SJohn Baldwin.Bl -hang 161eaca6183SJohn Baldwin.It Fn atomic_add "p" "v" 162eaca6183SJohn Baldwin.Bd -literal 163eaca6183SJohn Baldwin*p += v; 164eaca6183SJohn Baldwin.Ed 165eaca6183SJohn Baldwin.It Fn atomic_clear "p" "v" 166eaca6183SJohn Baldwin.Bd -literal 167eaca6183SJohn Baldwin*p &= ~v; 168eaca6183SJohn Baldwin.Ed 169eaca6183SJohn Baldwin.It Fn atomic_cmpset "dst" "old" "new" 170eaca6183SJohn Baldwin.Bd -literal 171eaca6183SJohn Baldwinif (*dst == old) { 172eaca6183SJohn Baldwin *dst = new; 173eaca6183SJohn Baldwin return 1; 174eaca6183SJohn Baldwin} else 175eaca6183SJohn Baldwin return 0; 176eaca6183SJohn Baldwin.Ed 177eaca6183SJohn Baldwin.El 178eaca6183SJohn Baldwin.Pp 179eaca6183SJohn BaldwinThe 180eaca6183SJohn Baldwin.Fn atomic_cmpset 181eaca6183SJohn Baldwinfunctions are not implemented for the types char, short, 8, and 16. 182eaca6183SJohn Baldwin.Bl -hang 183eaca6183SJohn Baldwin.It Fn atomic_load "addr" 184eaca6183SJohn Baldwin.Bd -literal 185eaca6183SJohn Baldwinreturn (*addr) 186eaca6183SJohn Baldwin.Ed 187eaca6183SJohn Baldwin.El 188eaca6183SJohn Baldwin.Pp 189eaca6183SJohn BaldwinThe 190eaca6183SJohn Baldwin.Fn atomic_load 191eaca6183SJohn Baldwinfunctions always have acquire semantics. 192eaca6183SJohn Baldwin.Bl -hang 193eaca6183SJohn Baldwin.It Fn atomic_readandclear "addr" 194eaca6183SJohn Baldwin.Bd -literal 195eaca6183SJohn Baldwintemp = *addr; 196eaca6183SJohn Baldwin*addr = 0; 197eaca6183SJohn Baldwinreturn (temp); 198eaca6183SJohn Baldwin.Ed 199eaca6183SJohn Baldwin.El 200eaca6183SJohn Baldwin.Pp 201eaca6183SJohn BaldwinThe 202eaca6183SJohn Baldwin.Fn atomic_readandclear 203eaca6183SJohn Baldwinfunctions are not implemented for the types char, short, ptr, 8, and 16 and do 204eaca6183SJohn Baldwinnot have any variants with memory barriers at this time. 205eaca6183SJohn Baldwin.Bl -hang 206eaca6183SJohn Baldwin.It Fn atomic_set "p" "v" 207eaca6183SJohn Baldwin.Bd -literal 208eaca6183SJohn Baldwin*p |= v; 209eaca6183SJohn Baldwin.Ed 210eaca6183SJohn Baldwin.It Fn atomic_subtract "p" "v" 211eaca6183SJohn Baldwin.Bd -literal 212eaca6183SJohn Baldwin*p -= v; 213eaca6183SJohn Baldwin.Ed 214eaca6183SJohn Baldwin.It Fn atomic_store "p" "v" 215eaca6183SJohn Baldwin.Bd -literal 216eaca6183SJohn Baldwin*p = v; 217eaca6183SJohn Baldwin.Ed 218eaca6183SJohn Baldwin.El 219eaca6183SJohn Baldwin.Pp 220eaca6183SJohn BaldwinThe 221eaca6183SJohn Baldwin.Fn atomic_store 222eaca6183SJohn Baldwinfunctions always have release semantics. 223eaca6183SJohn Baldwin.Pp 224eaca6183SJohn BaldwinThe type 225eaca6183SJohn Baldwin.Dq 64 226eaca6183SJohn Baldwinis currently not implemented for any of the atomic operations on the 227eaca6183SJohn Baldwin.Tn i386 228eaca6183SJohn Baldwinarchitecture. 229eaca6183SJohn Baldwin.Sh RETURN VALUES 230eaca6183SJohn Baldwin.Fn atomic_cmpset 231eaca6183SJohn Baldwinreturns the result of the compare operation. 232eaca6183SJohn Baldwin.Fn atomic_load 233eaca6183SJohn Baldwinand 234eaca6183SJohn Baldwin.Fn atomic_readandclear 235eaca6183SJohn Baldwinreturn the value at the specified address. 236eaca6183SJohn Baldwin.Sh EXAMPLES 237eaca6183SJohn BaldwinThis example uses the 238eaca6183SJohn Baldwin.Fn atomic_cmpset_acq_ptr 239eaca6183SJohn Baldwinand 240eaca6183SJohn Baldwin.Fn atomic_set_ptr 241eaca6183SJohn Baldwinfunctions to obtain a sleep mutex and handle recursion. 242eaca6183SJohn BaldwinSince the 243eaca6183SJohn Baldwin.Va mtx_lock 244eaca6183SJohn Baldwinmember of a 245eaca6183SJohn Baldwin.Li struct mtx 246eaca6183SJohn Baldwinis a pointer, the 247eaca6183SJohn Baldwin.Dq ptr 248eaca6183SJohn Baldwintype is used. 249eaca6183SJohn Baldwin.Bd -literal 250eaca6183SJohn Baldwin#define _obtain_lock(mp, tid) \\ 251eaca6183SJohn Baldwin atomic_cmpset_acq_ptr(&(mp)->mtx_lock, (void *)MTX_UNOWNED, (tid)) 252eaca6183SJohn Baldwin 253eaca6183SJohn Baldwin/* Get a sleep lock, deal with recursion inline. */ 254eaca6183SJohn Baldwin#define _getlock_sleep(mp, tid, type) do { \\ 255eaca6183SJohn Baldwin if (!_obtain_lock(mp, tid)) { \\ 256eaca6183SJohn Baldwin if (((mp)->mtx_lock & MTX_FLAGMASK) != ((uintptr_t)(tid)))\\ 257eaca6183SJohn Baldwin mtx_enter_hard(mp, (type) & MTX_HARDOPTS, 0); \\ 258eaca6183SJohn Baldwin else { \\ 259eaca6183SJohn Baldwin atomic_set_ptr(&(mp)->mtx_lock, MTX_RECURSE); \\ 260eaca6183SJohn Baldwin (mp)->mtx_recurse++; \\ 261eaca6183SJohn Baldwin } \\ 262eaca6183SJohn Baldwin } \\ 263eaca6183SJohn Baldwin} while (0) 264eaca6183SJohn Baldwin.Ed 265eaca6183SJohn Baldwin.Sh HISTORY 266eaca6183SJohn BaldwinThe 267eaca6183SJohn Baldwin.Fn atomic_add , 268eaca6183SJohn Baldwin.Fn atomic_clear , 269eaca6183SJohn Baldwin.Fn atomic_set , 270eaca6183SJohn Baldwinand 271eaca6183SJohn Baldwin.Fn atomic_subtract 272eaca6183SJohn Baldwinoperations were first introduced in 273eaca6183SJohn Baldwin.Fx 3.0 . 274eaca6183SJohn BaldwinThis first set only suppored the types char, short, int, and long. 275eaca6183SJohn BaldwinThe 276eaca6183SJohn Baldwin.Fn atomic_cmpset , 277eaca6183SJohn Baldwin.Fn atomic_load , 278eaca6183SJohn Baldwin.Fn atomic_readandclear , 279eaca6183SJohn Baldwinand 280eaca6183SJohn Baldwin.Fn atomic_store 281eaca6183SJohn Baldwinoperations were added in 282eaca6183SJohn Baldwin.Fx 5.0 . 283eaca6183SJohn BaldwinThe types 8, 16, 32, 64, and ptr and all of the acquire and release variants 284eaca6183SJohn Baldwinwere added in 285eaca6183SJohn Baldwin.Fx 5.0 286eaca6183SJohn Baldwinas well. 287