xref: /freebsd/share/man/man9/SDT.9 (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1.\" Copyright (c) 2013-2015 Mark Johnston <markj@freebsd.org>
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.Dd April 18, 2015
26.Dt SDT 9
27.Os
28.Sh NAME
29.Nm SDT
30.Nd a DTrace framework for adding statically-defined tracing probes
31.Sh SYNOPSIS
32.In sys/param.h
33.In sys/queue.h
34.In sys/sdt.h
35.Fn SDT_PROVIDER_DECLARE prov
36.Fn SDT_PROVIDER_DEFINE prov
37.Fn SDT_PROBE_DECLARE prov mod func name
38.Fn SDT_PROBE_DEFINE prov mod func name
39.Fn SDT_PROBE_DEFINE0 prov mod func name
40.Fn SDT_PROBE_DEFINE1 prov mod func name arg0
41.Fn SDT_PROBE_DEFINE2 prov mod func name arg0 arg1
42.Fn SDT_PROBE_DEFINE3 prov mod func name arg0 arg1 arg2
43.Fn SDT_PROBE_DEFINE4 prov mod func name arg0 arg1 arg2 arg3
44.Fn SDT_PROBE_DEFINE5 prov mod func name arg0 arg1 arg2 arg3 arg4
45.Fn SDT_PROBE_DEFINE6 prov mod func name arg0 arg1 arg2 arg3 arg4 arg5
46.Fn SDT_PROBE_DEFINE7 prov mod func name arg0 arg1 arg2 arg3 arg4 arg5   \
47    arg6
48.Fn SDT_PROBE_DEFINE0_XLATE prov mod func name
49.Fn SDT_PROBE_DEFINE1_XLATE prov mod func name arg0 xarg0
50.Fn SDT_PROBE_DEFINE2_XLATE prov mod func name arg0 xarg0 arg1 xarg1
51.Fn SDT_PROBE_DEFINE3_XLATE prov mod func name arg0 xarg0 arg1 xarg1 \
52    arg2 xarg2
53.Fn SDT_PROBE_DEFINE4_XLATE prov mod func name arg0 xarg0 arg1 xarg1 \
54    arg2 xarg2 arg3 xarg3
55.Fn SDT_PROBE_DEFINE5_XLATE prov mod func name arg0 xarg0 arg1 xarg1 \
56    arg2 xarg2 arg3 xarg3 arg4 xarg4
57.Fn SDT_PROBE_DEFINE6_XLATE prov mod func name arg0 xarg0 arg1 xarg1 \
58    arg2 xarg2 arg3 xarg3 arg4 xarg4 arg5 xarg5
59.Fn SDT_PROBE_DEFINE7_XLATE prov mod func name arg0 xarg0 arg1 xarg1 \
60    arg2 xarg2 arg3 xarg3 arg4 xarg4 arg5 xarg5 arg6 xarg6
61.Fn SDT_PROBE0 prov mod func name
62.Fn SDT_PROBE1 prov mod func name arg0
63.Fn SDT_PROBE2 prov mod func name arg0 arg1
64.Fn SDT_PROBE3 prov mod func name arg0 arg1 arg2
65.Fn SDT_PROBE4 prov mod func name arg0 arg1 arg2 arg3
66.Fn SDT_PROBE5 prov mod func name arg0 arg1 arg2 arg3 arg4
67.Fn SDT_PROBE6 prov mod func name arg0 arg1 arg2 arg3 arg4 arg5
68.Fn SDT_PROBE7 prov mod func name arg0 arg1 arg2 arg3 arg4 arg5 arg6
69.Sh DESCRIPTION
70The
71.Nm
72macros allow programmers to define static trace points in kernel code.
73These trace points are used by the
74.Nm
75framework to create DTrace probes, allowing the code to be instrumented
76using
77.Xr dtrace 1 .
78By default,
79.Nm
80trace points are disabled and have no effect on the surrounding code.
81When a DTrace probe corresponding to a given trace point is enabled, threads
82that execute the trace point will call a handler and cause the probe to fire.
83Moreover, trace points can take arguments, making it possible to pass data
84to the DTrace framework when an enabled probe fires.
85.Pp
86Multiple trace points may correspond to a single DTrace probe, allowing
87programmers to create DTrace probes that correspond to logical system events
88rather than tying probes to specific code execution paths.
89For instance, a DTrace probe corresponding to the arrival of an IP packet into
90the network stack may be defined using two
91.Nm
92trace points: one for IPv4 packets and one for IPv6 packets.
93.Pp
94In addition to defining DTrace probes, the
95.Nm
96macros allow programmers to define new DTrace providers, making it possible to
97namespace logically-related probes.
98An example is FreeBSD's sctp provider, which contains
99.Nm
100probes for FreeBSD's
101.Xr sctp 4
102implementation.
103.Pp
104The
105.Fn SDT_PROVIDER_DECLARE
106and
107.Fn SDT_PROVIDER_DEFINE
108macros are used respectively to declare and define a DTrace provider named
109.Ar prov
110with the
111.Nm
112framework.
113A provider need only be defined once; however, the provider must be declared
114before defining any
115.Nm
116probes belonging to that provider.
117.Pp
118Similarly, the
119.Fn SDT_PROBE_DECLARE
120and
121.Fn SDT_PROBE_DEFINE*
122macros are used to declare and define DTrace probes using the
123.Nm
124framework.
125Once a probe has been defined, trace points for that probe may be added to
126kernel code.
127DTrace probe identifiers consist of a provider, module, function and name, all
128of which may be specified in the
129.Nm
130probe definition.
131Note that probes should not specify a module name: the module name of a probe is
132used to determine whether or not it should be destroyed when a kernel module is
133unloaded.
134See the
135.Sx BUGS
136section.
137Note in particular that probes must not be defined across multiple kernel
138modules.
139.Pp
140If
141.Ql -
142character (dash) is wanted in a probe name,
143then it should be represented as
144.Ql __
145(double underscore) in the probe
146.Ar name
147parameter passed to various
148.Fn SDT_*
149macros,
150because of technical reasons
151(a dash is not valid in C identifiers).
152.Pp
153The
154.Fn SDT_PROBE_DEFINE*
155macros also allow programmers to declare the types of the arguments that are
156passed to probes.
157This is optional; if the argument types are omitted (through use of the
158.Fn SDT_PROBE_DEFINE
159macro), users wishing to make use of the arguments will have to manually cast
160them to the correct types in their D scripts.
161It is strongly recommended that probe definitions include a declaration of their
162argument types.
163.Pp
164The
165.Fn SDT_PROBE_DEFINE*_XLATE
166macros are used for probes whose argument types are to be dynamically translated
167to the types specified by the corresponding
168.Ar xarg
169arguments.
170This is mainly useful when porting probe definitions from other operating
171systems.
172As seen by
173.Xr dtrace 1 ,
174the arguments of a probe defined using these macros will have types which match
175the
176.Ar xarg
177types in the probe definition.
178However, the arguments passed in at the trace point will have types matching the
179native argument types in the probe definition, and thus the native type is
180dynamically translated to the translated type.
181So long as an appropriate translator is defined in
182.Pa /usr/lib/dtrace ,
183scripts making use of the probe need not concern themselves with the underlying
184type of a given
185.Nm
186probe argument.
187.Pp
188The
189.Fn SDT_PROBE*
190macros are used to create
191.Nm
192trace points.
193They are meant to be added to executable code and can be used to instrument the
194code in which they are called.
195.Sh PROVIDERS
196A number of kernel DTrace providers are available.
197In general, these providers define stable interfaces and should be treated as
198such: existing D scripts may be broken if a probe is renamed or its arguments
199are modified.
200However, it is often useful to define ad-hoc
201.Nm
202probes for debugging a subsystem or driver.
203Similarly, a developer may wish to provide a group of
204.Nm
205probes without committing to their future stability.
206Such probes should be added to the
207.Ql sdt
208provider instead of defining a new provider.
209.Sh EXAMPLES
210The DTrace providers available on the current system can be listed with
211.Bd -literal -offset indent
212dtrace -l | sed 1d | awk '{print $2}' | sort -u
213.Ed
214.Pp
215A detailed list of the probes offered by a given provider can be obtained by
216specifying the provider using the
217.Fl P
218flag.
219For example, to view the probes and argument types for the
220.Ql sched
221provider, run
222.Bd -literal -offset indent
223dtrace -lv -P sched
224.Ed
225.Pp
226The following probe definition will create a DTrace probe called
227.Ql icmp:::receive-unreachable ,
228which would hypothetically be triggered when the kernel receives an ICMP packet
229of type Destination Unreachable:
230.Bd -literal -offset indent
231SDT_PROVIDER_DECLARE(icmp);
232
233SDT_PROBE_DEFINE1(icmp, , , receive__unreachable,
234    "struct icmp *");
235
236.Ed
237This particular probe would take a single argument: a pointer to the struct
238containing the ICMP header for the packet.
239Note that the module name of this probe is not specified.
240.Pp
241Consider a DTrace probe which fires when the network stack receives an IP
242packet.
243Such a probe would be defined by multiple tracepoints:
244.Bd -literal -offset indent
245SDT_PROBE_DEFINE3(ip, , , receive, "struct ifnet *",
246    "struct ip *", "struct ip6_hdr *");
247
248int
249ip_input(struct mbuf *m)
250{
251	struct ip *ip;
252	...
253	ip = mtod(m, struct ip *);
254	SDT_PROBE3(ip, , , receive, m->m_pkthdr.rcvif, ip, NULL);
255	...
256}
257
258int
259ip6_input(struct mbuf *m)
260{
261	struct ip6_hdr *ip6;
262	...
263	ip6 = mtod(m, struct ip6_hdr *);
264	SDT_PROBE3(ip, , , receive, m->m_pkthdr.rcvif, NULL, ip6);
265	...
266}
267
268.Ed
269In particular, the probe should fire when the kernel receives either an IPv4
270packet or an IPv6 packet.
271.Pp
272Consider the ICMP probe discussed above.
273We note that its second argument is of type
274.Ar struct icmp ,
275which is a type defined in the FreeBSD kernel to represent the ICMP header of
276an ICMP packet, defined in RFC 792.
277Linux has a corresponding type,
278.Ar struct icmphdr ,
279for the same purpose, but its field names differ from FreeBSD's
280.Ar struct icmp .
281Similarly, illumos defines the
282.Ar icmph_t
283type, again with different field names.
284Even with the
285.Ql icmp:::pkt-receive
286probes defined in all three operating systems,
287one would still have to write OS-specific scripts to extract a given field out
288of the ICMP header argument.
289Dynamically-translated types solve this problem: one can define an
290OS-independent
291.Xr c 7
292struct to represent an ICMP header, say
293.Ar struct icmp_hdr_dt ,
294and define translators from each of the three OS-specific types to
295.Ar struct icmp_hdr_dt ,
296all in the
297.Xr dtrace 1
298library path.
299Then the FreeBSD probe above can be defined with:
300.Bd -literal -offset indent
301SDT_PROBE_DEFINE1_XLATE(ip, , , receive, "struct icmp *",
302    "struct icmp_hdr_dt *");
303.Ed
304.Sh SEE ALSO
305.Xr dtrace 1 ,
306.Xr dtrace_io 4 ,
307.Xr dtrace_ip 4 ,
308.Xr dtrace_proc 4 ,
309.Xr dtrace_sched 4 ,
310.Xr dtrace_tcp 4 ,
311.Xr dtrace_udp 4
312.Sh AUTHORS
313.An -nosplit
314DTrace and the
315.Nm
316framework were originally ported to FreeBSD from Solaris by
317.An John Birrell Aq Mt jb@FreeBSD.org .
318This manual page was written by
319.An Mark Johnston Aq Mt markj@FreeBSD.org .
320.Sh BUGS
321The
322.Nm
323macros allow the module and function names of a probe to be specified as part of
324a probe definition.
325The DTrace framework uses the module name of probes to determine which probes
326should be destroyed when a kernel module is unloaded, so the module
327name of a probe should match the name of the module in which its defined.
328.Nm
329will set the module name properly if it is left unspecified in the probe
330definition; see the
331.Sx EXAMPLES
332section.
333.Pp
334One of the goals of the original
335.Nm
336implementation (and by extension, of FreeBSD's port) is that inactive
337.Nm
338probes should have no performance impact.
339This is unfortunately not the case;
340.Nm
341trace points will add a small but non-zero amount of latency to the code
342in which they are defined.
343A more sophisticated implementation of the probes will help alleviate this
344problem.
345