xref: /freebsd/share/man/man3/tree.3 (revision 94cba8034ba53725c225c85e35724f0c2b13cea5)
1.\"	$OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
2.\"
3.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. All advertising materials mentioning features or use of this software
15.\"    must display the following acknowledgement:
16.\"      This product includes software developed by Niels Provos.
17.\" 4. The name of the author may not be used to endorse or promote products
18.\"    derived from this software without specific prior written permission.
19.\"
20.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30.\"
31.\" $FreeBSD$
32.\"
33.Dd July 27, 2020
34.Dt TREE 3
35.Os
36.Sh NAME
37.Nm SPLAY_PROTOTYPE ,
38.Nm SPLAY_GENERATE ,
39.Nm SPLAY_ENTRY ,
40.Nm SPLAY_HEAD ,
41.Nm SPLAY_INITIALIZER ,
42.Nm SPLAY_ROOT ,
43.Nm SPLAY_EMPTY ,
44.Nm SPLAY_NEXT ,
45.Nm SPLAY_MIN ,
46.Nm SPLAY_MAX ,
47.Nm SPLAY_FIND ,
48.Nm SPLAY_LEFT ,
49.Nm SPLAY_RIGHT ,
50.Nm SPLAY_FOREACH ,
51.Nm SPLAY_INIT ,
52.Nm SPLAY_INSERT ,
53.Nm SPLAY_REMOVE ,
54.Nm RB_PROTOTYPE ,
55.Nm RB_PROTOTYPE_STATIC ,
56.Nm RB_PROTOTYPE_INSERT ,
57.Nm RB_PROTOTYPE_INSERT_COLOR ,
58.Nm RB_PROTOTYPE_REMOVE ,
59.Nm RB_PROTOTYPE_REMOVE_COLOR ,
60.Nm RB_PROTOTYPE_FIND ,
61.Nm RB_PROTOTYPE_NFIND ,
62.Nm RB_PROTOTYPE_NEXT ,
63.Nm RB_PROTOTYPE_PREV ,
64.Nm RB_PROTOTYPE_MINMAX ,
65.Nm RB_PROTOTYPE_REINSERT ,
66.Nm RB_GENERATE ,
67.Nm RB_GENERATE_STATIC ,
68.Nm RB_GENERATE_INSERT ,
69.Nm RB_GENERATE_INSERT_COLOR ,
70.Nm RB_GENERATE_REMOVE ,
71.Nm RB_GENERATE_REMOVE_COLOR ,
72.Nm RB_GENERATE_FIND ,
73.Nm RB_GENERATE_NFIND ,
74.Nm RB_GENERATE_NEXT ,
75.Nm RB_GENERATE_PREV ,
76.Nm RB_GENERATE_MINMAX ,
77.Nm RB_GENERATE_REINSERT ,
78.Nm RB_ENTRY ,
79.Nm RB_HEAD ,
80.Nm RB_INITIALIZER ,
81.Nm RB_ROOT ,
82.Nm RB_EMPTY ,
83.Nm RB_NEXT ,
84.Nm RB_PREV ,
85.Nm RB_MIN ,
86.Nm RB_MAX ,
87.Nm RB_FIND ,
88.Nm RB_NFIND ,
89.Nm RB_LEFT ,
90.Nm RB_RIGHT ,
91.Nm RB_PARENT ,
92.Nm RB_FOREACH ,
93.Nm RB_FOREACH_FROM ,
94.Nm RB_FOREACH_SAFE ,
95.Nm RB_FOREACH_REVERSE ,
96.Nm RB_FOREACH_REVERSE_FROM ,
97.Nm RB_FOREACH_REVERSE_SAFE ,
98.Nm RB_INIT ,
99.Nm RB_INSERT ,
100.Nm RB_REMOVE ,
101.Nm RB_REINSERT
102.Nd "implementations of splay and rank-balanced (wavl) trees"
103.Sh SYNOPSIS
104.In sys/tree.h
105.Fn SPLAY_PROTOTYPE NAME TYPE FIELD CMP
106.Fn SPLAY_GENERATE NAME TYPE FIELD CMP
107.Fn SPLAY_ENTRY TYPE
108.Fn SPLAY_HEAD HEADNAME TYPE
109.Ft "struct TYPE *"
110.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
111.Fn SPLAY_ROOT "SPLAY_HEAD *head"
112.Ft bool
113.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
114.Ft "struct TYPE *"
115.Fn SPLAY_NEXT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
116.Ft "struct TYPE *"
117.Fn SPLAY_MIN NAME "SPLAY_HEAD *head"
118.Ft "struct TYPE *"
119.Fn SPLAY_MAX NAME "SPLAY_HEAD *head"
120.Ft "struct TYPE *"
121.Fn SPLAY_FIND NAME "SPLAY_HEAD *head" "struct TYPE *elm"
122.Ft "struct TYPE *"
123.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
124.Ft "struct TYPE *"
125.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
126.Fn SPLAY_FOREACH VARNAME NAME "SPLAY_HEAD *head"
127.Ft void
128.Fn SPLAY_INIT "SPLAY_HEAD *head"
129.Ft "struct TYPE *"
130.Fn SPLAY_INSERT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
131.Ft "struct TYPE *"
132.Fn SPLAY_REMOVE NAME "SPLAY_HEAD *head" "struct TYPE *elm"
133.Fn RB_PROTOTYPE NAME TYPE FIELD CMP
134.Fn RB_PROTOTYPE_STATIC NAME TYPE FIELD CMP
135.Fn RB_PROTOTYPE_INSERT NAME TYPE ATTR
136.Fn RB_PROTOTYPE_INSERT_COLOR NAME TYPE ATTR
137.Fn RB_PROTOTYPE_REMOVE NAME TYPE ATTR
138.Fn RB_PROTOTYPE_REMOVE_COLOR NAME TYPE ATTR
139.Fn RB_PROTOTYPE_FIND NAME TYPE ATTR
140.Fn RB_PROTOTYPE_NFIND NAME TYPE ATTR
141.Fn RB_PROTOTYPE_NEXT NAME TYPE ATTR
142.Fn RB_PROTOTYPE_PREV NAME TYPE ATTR
143.Fn RB_PROTOTYPE_MINMAX NAME TYPE ATTR
144.Fn RB_PROTOTYPE_REINSERT NAME TYPE ATTR
145.Fn RB_GENERATE NAME TYPE FIELD CMP
146.Fn RB_GENERATE_STATIC NAME TYPE FIELD CMP
147.Fn RB_GENERATE_INSERT NAME TYPE FIELD CMP ATTR
148.Fn RB_GENERATE_INSERT_COLOR NAME TYPE FIELD ATTR
149.Fn RB_GENERATE_REMOVE NAME TYPE FIELD ATTR
150.Fn RB_GENERATE_REMOVE_COLOR NAME TYPE FIELD ATTR
151.Fn RB_GENERATE_FIND NAME TYPE FIELD CMP ATTR
152.Fn RB_GENERATE_NFIND NAME TYPE FIELD CMP ATTR
153.Fn RB_GENERATE_NEXT NAME TYPE FIELD ATTR
154.Fn RB_GENERATE_PREV NAME TYPE FIELD ATTR
155.Fn RB_GENERATE_MINMAX NAME TYPE FIELD ATTR
156.Fn RB_GENERATE_REINSERT NAME TYPE FIELD CMP ATTR
157.Fn RB_ENTRY TYPE
158.Fn RB_HEAD HEADNAME TYPE
159.Fn RB_INITIALIZER "RB_HEAD *head"
160.Ft "struct TYPE *"
161.Fn RB_ROOT "RB_HEAD *head"
162.Ft "bool"
163.Fn RB_EMPTY "RB_HEAD *head"
164.Ft "struct TYPE *"
165.Fn RB_NEXT NAME "RB_HEAD *head" "struct TYPE *elm"
166.Ft "struct TYPE *"
167.Fn RB_PREV NAME "RB_HEAD *head" "struct TYPE *elm"
168.Ft "struct TYPE *"
169.Fn RB_MIN NAME "RB_HEAD *head"
170.Ft "struct TYPE *"
171.Fn RB_MAX NAME "RB_HEAD *head"
172.Ft "struct TYPE *"
173.Fn RB_FIND NAME "RB_HEAD *head" "struct TYPE *elm"
174.Ft "struct TYPE *"
175.Fn RB_NFIND NAME "RB_HEAD *head" "struct TYPE *elm"
176.Ft "struct TYPE *"
177.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
178.Ft "struct TYPE *"
179.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
180.Ft "struct TYPE *"
181.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
182.Fn RB_FOREACH VARNAME NAME "RB_HEAD *head"
183.Fn RB_FOREACH_FROM "VARNAME" "NAME" "POS_VARNAME"
184.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
185.Fn RB_FOREACH_REVERSE VARNAME NAME "RB_HEAD *head"
186.Fn RB_FOREACH_REVERSE_FROM "VARNAME" "NAME" "POS_VARNAME"
187.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
188.Ft void
189.Fn RB_INIT "RB_HEAD *head"
190.Ft "struct TYPE *"
191.Fn RB_INSERT NAME "RB_HEAD *head" "struct TYPE *elm"
192.Ft "struct TYPE *"
193.Fn RB_REMOVE NAME "RB_HEAD *head" "struct TYPE *elm"
194.Ft "struct TYPE *"
195.Fn RB_REINSERT NAME "RB_HEAD *head" "struct TYPE *elm"
196.Sh DESCRIPTION
197These macros define data structures for different types of trees:
198splay trees and rank-balanced (wavl) trees.
199.Pp
200In the macro definitions,
201.Fa TYPE
202is the name tag of a user defined structure that must contain a field of type
203.Vt SPLAY_ENTRY ,
204or
205.Vt RB_ENTRY ,
206named
207.Fa ENTRYNAME .
208The argument
209.Fa HEADNAME
210is the name tag of a user defined structure that must be declared
211using the macros
212.Fn SPLAY_HEAD ,
213or
214.Fn RB_HEAD .
215The argument
216.Fa NAME
217has to be a unique name prefix for every tree that is defined.
218.Pp
219The function prototypes are declared with
220.Fn SPLAY_PROTOTYPE ,
221.Fn RB_PROTOTYPE ,
222or
223.Fn RB_PROTOTYPE_STATIC .
224The function bodies are generated with
225.Fn SPLAY_GENERATE ,
226.Fn RB_GENERATE ,
227or
228.Fn RB_GENERATE_STATIC .
229See the examples below for further explanation of how these macros are used.
230.Sh SPLAY TREES
231A splay tree is a self-organizing data structure.
232Every operation on the tree causes a splay to happen.
233The splay moves the requested
234node to the root of the tree and partly rebalances it.
235.Pp
236This has the benefit that request locality causes faster lookups as
237the requested nodes move to the top of the tree.
238On the other hand, every lookup causes memory writes.
239.Pp
240The Balance Theorem bounds the total access time for
241.Ar m
242operations and
243.Ar n
244inserts on an initially empty tree as
245.Fn O "\*[lp]m + n\*[rp]lg n" .
246The
247amortized cost for a sequence of
248.Ar m
249accesses to a splay tree is
250.Fn O "lg n" .
251.Pp
252A splay tree is headed by a structure defined by the
253.Fn SPLAY_HEAD
254macro.
255A
256structure is declared as follows:
257.Bd -ragged -offset indent
258.Fn SPLAY_HEAD HEADNAME TYPE
259.Va head ;
260.Ed
261.Pp
262where
263.Fa HEADNAME
264is the name of the structure to be defined, and struct
265.Fa TYPE
266is the type of the elements to be inserted into the tree.
267.Pp
268The
269.Fn SPLAY_ENTRY
270macro declares a structure that allows elements to be connected in the tree.
271.Pp
272In order to use the functions that manipulate the tree structure,
273their prototypes need to be declared with the
274.Fn SPLAY_PROTOTYPE
275macro,
276where
277.Fa NAME
278is a unique identifier for this particular tree.
279The
280.Fa TYPE
281argument is the type of the structure that is being managed
282by the tree.
283The
284.Fa FIELD
285argument is the name of the element defined by
286.Fn SPLAY_ENTRY .
287.Pp
288The function bodies are generated with the
289.Fn SPLAY_GENERATE
290macro.
291It takes the same arguments as the
292.Fn SPLAY_PROTOTYPE
293macro, but should be used only once.
294.Pp
295Finally,
296the
297.Fa CMP
298argument is the name of a function used to compare tree nodes
299with each other.
300The function takes two arguments of type
301.Vt "struct TYPE *" .
302If the first argument is smaller than the second, the function returns a
303value smaller than zero.
304If they are equal, the function returns zero.
305Otherwise, it should return a value greater than zero.
306The compare
307function defines the order of the tree elements.
308.Pp
309The
310.Fn SPLAY_INIT
311macro initializes the tree referenced by
312.Fa head .
313.Pp
314The splay tree can also be initialized statically by using the
315.Fn SPLAY_INITIALIZER
316macro like this:
317.Bd -ragged -offset indent
318.Fn SPLAY_HEAD HEADNAME TYPE
319.Va head
320=
321.Fn SPLAY_INITIALIZER &head ;
322.Ed
323.Pp
324The
325.Fn SPLAY_INSERT
326macro inserts the new element
327.Fa elm
328into the tree.
329.Pp
330The
331.Fn SPLAY_REMOVE
332macro removes the element
333.Fa elm
334from the tree pointed by
335.Fa head .
336.Pp
337The
338.Fn SPLAY_FIND
339macro can be used to find a particular element in the tree.
340.Bd -literal -offset indent
341struct TYPE find, *res;
342find.key = 30;
343res = SPLAY_FIND(NAME, head, &find);
344.Ed
345.Pp
346The
347.Fn SPLAY_ROOT ,
348.Fn SPLAY_MIN ,
349.Fn SPLAY_MAX ,
350and
351.Fn SPLAY_NEXT
352macros can be used to traverse the tree:
353.Bd -literal -offset indent
354for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
355.Ed
356.Pp
357Or, for simplicity, one can use the
358.Fn SPLAY_FOREACH
359macro:
360.Bd -ragged -offset indent
361.Fn SPLAY_FOREACH np NAME head
362.Ed
363.Pp
364The
365.Fn SPLAY_EMPTY
366macro should be used to check whether a splay tree is empty.
367.Sh RANK-BALANCED TREES
368Rank-balanced (RB) trees are a framework for defining height-balanced
369binary search trees, including AVL and red-black trees.
370Each tree node has an associated rank.
371Balance conditions are expressed by conditions on the differences in
372rank between any node and its children.
373Rank differences are stored in each tree node.
374.Pp
375The balance conditions implemented by the RB macros lead to weak AVL
376(wavl) trees, which combine the best aspects of AVL and red-black
377trees.
378Wavl trees rebalance after an insertion in the same way AVL trees do,
379with the same worst-case time as red-black trees offer, and with
380better balance in the resulting tree.
381Wavl trees rebalance after a removal in a way that requires less
382restructuring, in the worst case, than either AVL or red-black trees
383do.
384Removals can lead to a tree almost as unbalanced as a red-black
385tree; insertions lead to a tree becoming as balanced as an AVL tree.
386.Pp
387A rank-balanced tree is headed by a structure defined by the
388.Fn RB_HEAD
389macro.
390A
391structure is declared as follows:
392.Bd -ragged -offset indent
393.Fn RB_HEAD HEADNAME TYPE
394.Va head ;
395.Ed
396.Pp
397where
398.Fa HEADNAME
399is the name of the structure to be defined, and struct
400.Fa TYPE
401is the type of the elements to be inserted into the tree.
402.Pp
403The
404.Fn RB_ENTRY
405macro declares a structure that allows elements to be connected in the tree.
406.Pp
407In order to use the functions that manipulate the tree structure,
408their prototypes need to be declared with the
409.Fn RB_PROTOTYPE
410or
411.Fn RB_PROTOTYPE_STATIC
412macro,
413where
414.Fa NAME
415is a unique identifier for this particular tree.
416The
417.Fa TYPE
418argument is the type of the structure that is being managed
419by the tree.
420The
421.Fa FIELD
422argument is the name of the element defined by
423.Fn RB_ENTRY .
424Individual prototypes can be declared with
425.Fn RB_PROTOTYPE_INSERT ,
426.Fn RB_PROTOTYPE_INSERT_COLOR ,
427.Fn RB_PROTOTYPE_REMOVE ,
428.Fn RB_PROTOTYPE_REMOVE_COLOR ,
429.Fn RB_PROTOTYPE_FIND ,
430.Fn RB_PROTOTYPE_NFIND ,
431.Fn RB_PROTOTYPE_NEXT ,
432.Fn RB_PROTOTYPE_PREV ,
433.Fn RB_PROTOTYPE_MINMAX ,
434and
435.Fn RB_PROTOTYPE_REINSERT
436in case not all functions are required.
437The individual prototype macros expect
438.Fa NAME ,
439.Fa TYPE ,
440and
441.Fa ATTR
442arguments.
443The
444.Fa ATTR
445argument must be empty for global functions or
446.Fa static
447for static functions.
448.Pp
449The function bodies are generated with the
450.Fn RB_GENERATE
451or
452.Fn RB_GENERATE_STATIC
453macro.
454These macros take the same arguments as the
455.Fn RB_PROTOTYPE
456and
457.Fn RB_PROTOTYPE_STATIC
458macros, but should be used only once.
459As an alternative individual function bodies are generated with the
460.Fn RB_GENERATE_INSERT ,
461.Fn RB_GENERATE_INSERT_COLOR ,
462.Fn RB_GENERATE_REMOVE ,
463.Fn RB_GENERATE_REMOVE_COLOR ,
464.Fn RB_GENERATE_FIND ,
465.Fn RB_GENERATE_NFIND ,
466.Fn RB_GENERATE_NEXT ,
467.Fn RB_GENERATE_PREV ,
468.Fn RB_GENERATE_MINMAX ,
469and
470.Fn RB_GENERATE_REINSERT
471macros.
472.Pp
473Finally,
474the
475.Fa CMP
476argument is the name of a function used to compare tree nodes
477with each other.
478The function takes two arguments of type
479.Vt "struct TYPE *" .
480If the first argument is smaller than the second, the function returns a
481value smaller than zero.
482If they are equal, the function returns zero.
483Otherwise, it should return a value greater than zero.
484The compare
485function defines the order of the tree elements.
486.Pp
487The
488.Fn RB_INIT
489macro initializes the tree referenced by
490.Fa head .
491.Pp
492The rank-balanced tree can also be initialized statically by using the
493.Fn RB_INITIALIZER
494macro like this:
495.Bd -ragged -offset indent
496.Fn RB_HEAD HEADNAME TYPE
497.Va head
498=
499.Fn RB_INITIALIZER &head ;
500.Ed
501.Pp
502The
503.Fn RB_INSERT
504macro inserts the new element
505.Fa elm
506into the tree.
507.Pp
508The
509.Fn RB_REMOVE
510macro removes the element
511.Fa elm
512from the tree pointed by
513.Fa head .
514.Pp
515The
516.Fn RB_FIND
517and
518.Fn RB_NFIND
519macros can be used to find a particular element in the tree.
520.Bd -literal -offset indent
521struct TYPE find, *res;
522find.key = 30;
523res = RB_FIND(NAME, head, &find);
524.Ed
525.Pp
526The
527.Fn RB_ROOT ,
528.Fn RB_MIN ,
529.Fn RB_MAX ,
530.Fn RB_NEXT ,
531and
532.Fn RB_PREV
533macros can be used to traverse the tree:
534.Pp
535.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
536.Pp
537Or, for simplicity, one can use the
538.Fn RB_FOREACH
539or
540.Fn RB_FOREACH_REVERSE
541macro:
542.Bd -ragged -offset indent
543.Fn RB_FOREACH np NAME head
544.Ed
545.Pp
546The macros
547.Fn RB_FOREACH_SAFE
548and
549.Fn RB_FOREACH_REVERSE_SAFE
550traverse the tree referenced by head
551in a forward or reverse direction respectively,
552assigning each element in turn to np.
553However, unlike their unsafe counterparts,
554they permit both the removal of np
555as well as freeing it from within the loop safely
556without interfering with the traversal.
557.Pp
558Both
559.Fn RB_FOREACH_FROM
560and
561.Fn RB_FOREACH_REVERSE_FROM
562may be used to continue an interrupted traversal
563in a forward or reverse direction respectively.
564The head pointer is not required.
565The pointer to the node from where to resume the traversal
566should be passed as their last argument,
567and will be overwritten to provide safe traversal.
568.Pp
569The
570.Fn RB_EMPTY
571macro should be used to check whether a rank-balanced tree is empty.
572.Pp
573The
574.Fn RB_REINSERT
575macro updates the position of the element
576.Fa elm
577in the tree.
578This must be called if a member of a
579.Nm tree
580is modified in a way that affects comparison, such as by modifying
581a node's key.
582This is a lower overhead alternative to removing the element
583and reinserting it again.
584.Sh EXAMPLES
585The following example demonstrates how to declare a rank-balanced tree
586holding integers.
587Values are inserted into it and the contents of the tree are printed
588in order.
589Lastly, the internal structure of the tree is printed.
590.Bd -literal -offset 3n
591#include <sys/tree.h>
592#include <err.h>
593#include <stdio.h>
594#include <stdlib.h>
595
596struct node {
597	RB_ENTRY(node) entry;
598	int i;
599};
600
601int
602intcmp(struct node *e1, struct node *e2)
603{
604	return (e1->i < e2->i ? -1 : e1->i > e2->i);
605}
606
607RB_HEAD(inttree, node) head = RB_INITIALIZER(&head);
608RB_GENERATE(inttree, node, entry, intcmp)
609
610int testdata[] = {
611	20, 16, 17, 13, 3, 6, 1, 8, 2, 4, 10, 19, 5, 9, 12, 15, 18,
612	7, 11, 14
613};
614
615void
616print_tree(struct node *n)
617{
618	struct node *left, *right;
619
620	if (n == NULL) {
621		printf("nil");
622		return;
623	}
624	left = RB_LEFT(n, entry);
625	right = RB_RIGHT(n, entry);
626	if (left == NULL && right == NULL)
627		printf("%d", n->i);
628	else {
629		printf("%d(", n->i);
630		print_tree(left);
631		printf(",");
632		print_tree(right);
633		printf(")");
634	}
635}
636
637int
638main(void)
639{
640	int i;
641	struct node *n;
642
643	for (i = 0; i < sizeof(testdata) / sizeof(testdata[0]); i++) {
644		if ((n = malloc(sizeof(struct node))) == NULL)
645			err(1, NULL);
646		n->i = testdata[i];
647		RB_INSERT(inttree, &head, n);
648	}
649
650	RB_FOREACH(n, inttree, &head) {
651		printf("%d\en", n->i);
652	}
653	print_tree(RB_ROOT(&head));
654	printf("\en");
655	return (0);
656}
657.Ed
658.Sh NOTES
659Trying to free a tree in the following way is a common error:
660.Bd -literal -offset indent
661SPLAY_FOREACH(var, NAME, head) {
662	SPLAY_REMOVE(NAME, head, var);
663	free(var);
664}
665free(head);
666.Ed
667.Pp
668Since
669.Va var
670is freed, the
671.Fn FOREACH
672macro refers to a pointer that may have been reallocated already.
673Proper code needs a second variable.
674.Bd -literal -offset indent
675for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
676	nxt = SPLAY_NEXT(NAME, head, var);
677	SPLAY_REMOVE(NAME, head, var);
678	free(var);
679}
680.Ed
681.Pp
682Both
683.Fn RB_INSERT
684and
685.Fn SPLAY_INSERT
686return
687.Dv NULL
688if the element was inserted in the tree successfully, otherwise they
689return a pointer to the element with the colliding key.
690.Pp
691Accordingly,
692.Fn RB_REMOVE
693and
694.Fn SPLAY_REMOVE
695return the pointer to the removed element otherwise they return
696.Dv NULL
697to indicate an error.
698.Sh SEE ALSO
699.Xr arb 3 ,
700.Xr queue 3
701.Rs
702.%A "Bernhard Haeupler"
703.%A "Siddhartha Sen"
704.%A "Robert E. Tarjan"
705.%T "Rank-Balanced Trees"
706.%U "http://sidsen.azurewebsites.net/papers/rb-trees-talg.pdf"
707.%J "ACM Transactions on Algorithms"
708.%V "11"
709.%N "4"
710.%D "June 2015"
711.Re
712.Sh HISTORY
713The tree macros first appeared in
714.Fx 4.6 .
715.Sh AUTHORS
716The author of the tree macros is
717.An Niels Provos .
718