xref: /freebsd/share/man/man3/tree.3 (revision 20bd59416dcacbd2b776fe49dfa193900f303287)
1.\"	$OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
2.\"
3.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. All advertising materials mentioning features or use of this software
15.\"    must display the following acknowledgement:
16.\"      This product includes software developed by Niels Provos.
17.\" 4. The name of the author may not be used to endorse or promote products
18.\"    derived from this software without specific prior written permission.
19.\"
20.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30.\"
31.\" $FreeBSD$
32.\"
33.Dd May 8, 2019
34.Dt TREE 3
35.Os
36.Sh NAME
37.Nm SPLAY_PROTOTYPE ,
38.Nm SPLAY_GENERATE ,
39.Nm SPLAY_ENTRY ,
40.Nm SPLAY_HEAD ,
41.Nm SPLAY_INITIALIZER ,
42.Nm SPLAY_ROOT ,
43.Nm SPLAY_EMPTY ,
44.Nm SPLAY_NEXT ,
45.Nm SPLAY_MIN ,
46.Nm SPLAY_MAX ,
47.Nm SPLAY_FIND ,
48.Nm SPLAY_LEFT ,
49.Nm SPLAY_RIGHT ,
50.Nm SPLAY_FOREACH ,
51.Nm SPLAY_INIT ,
52.Nm SPLAY_INSERT ,
53.Nm SPLAY_REMOVE ,
54.Nm RB_PROTOTYPE ,
55.Nm RB_PROTOTYPE_STATIC ,
56.Nm RB_PROTOTYPE_INSERT ,
57.Nm RB_PROTOTYPE_INSERT_COLOR ,
58.Nm RB_PROTOTYPE_REMOVE ,
59.Nm RB_PROTOTYPE_REMOVE_COLOR ,
60.Nm RB_PROTOTYPE_FIND ,
61.Nm RB_PROTOTYPE_NFIND ,
62.Nm RB_PROTOTYPE_NEXT ,
63.Nm RB_PROTOTYPE_PREV ,
64.Nm RB_PROTOTYPE_MINMAX ,
65.Nm RB_GENERATE ,
66.Nm RB_GENERATE_STATIC ,
67.Nm RB_GENERATE_INSERT ,
68.Nm RB_GENERATE_INSERT_COLOR ,
69.Nm RB_GENERATE_REMOVE ,
70.Nm RB_GENERATE_REMOVE_COLOR ,
71.Nm RB_GENERATE_FIND ,
72.Nm RB_GENERATE_NFIND ,
73.Nm RB_GENERATE_NEXT ,
74.Nm RB_GENERATE_PREV ,
75.Nm RB_GENERATE_MINMAX ,
76.Nm RB_ENTRY ,
77.Nm RB_HEAD ,
78.Nm RB_INITIALIZER ,
79.Nm RB_ROOT ,
80.Nm RB_EMPTY ,
81.Nm RB_NEXT ,
82.Nm RB_PREV ,
83.Nm RB_MIN ,
84.Nm RB_MAX ,
85.Nm RB_FIND ,
86.Nm RB_NFIND ,
87.Nm RB_LEFT ,
88.Nm RB_RIGHT ,
89.Nm RB_PARENT ,
90.Nm RB_FOREACH ,
91.Nm RB_FOREACH_FROM ,
92.Nm RB_FOREACH_SAFE ,
93.Nm RB_FOREACH_REVERSE ,
94.Nm RB_FOREACH_REVERSE_FROM ,
95.Nm RB_FOREACH_REVERSE_SAFE ,
96.Nm RB_INIT ,
97.Nm RB_INSERT ,
98.Nm RB_REMOVE
99.Nd "implementations of splay and red-black trees"
100.Sh SYNOPSIS
101.In sys/tree.h
102.Fn SPLAY_PROTOTYPE NAME TYPE FIELD CMP
103.Fn SPLAY_GENERATE NAME TYPE FIELD CMP
104.Fn SPLAY_ENTRY TYPE
105.Fn SPLAY_HEAD HEADNAME TYPE
106.Ft "struct TYPE *"
107.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
108.Fn SPLAY_ROOT "SPLAY_HEAD *head"
109.Ft bool
110.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
111.Ft "struct TYPE *"
112.Fn SPLAY_NEXT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
113.Ft "struct TYPE *"
114.Fn SPLAY_MIN NAME "SPLAY_HEAD *head"
115.Ft "struct TYPE *"
116.Fn SPLAY_MAX NAME "SPLAY_HEAD *head"
117.Ft "struct TYPE *"
118.Fn SPLAY_FIND NAME "SPLAY_HEAD *head" "struct TYPE *elm"
119.Ft "struct TYPE *"
120.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
121.Ft "struct TYPE *"
122.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
123.Fn SPLAY_FOREACH VARNAME NAME "SPLAY_HEAD *head"
124.Ft void
125.Fn SPLAY_INIT "SPLAY_HEAD *head"
126.Ft "struct TYPE *"
127.Fn SPLAY_INSERT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
128.Ft "struct TYPE *"
129.Fn SPLAY_REMOVE NAME "SPLAY_HEAD *head" "struct TYPE *elm"
130.Fn RB_PROTOTYPE NAME TYPE FIELD CMP
131.Fn RB_PROTOTYPE_STATIC NAME TYPE FIELD CMP
132.Fn RB_PROTOTYPE_INSERT NAME TYPE ATTR
133.Fn RB_PROTOTYPE_INSERT_COLOR NAME TYPE ATTR
134.Fn RB_PROTOTYPE_REMOVE NAME TYPE ATTR
135.Fn RB_PROTOTYPE_REMOVE_COLOR NAME TYPE ATTR
136.Fn RB_PROTOTYPE_FIND NAME TYPE ATTR
137.Fn RB_PROTOTYPE_NFIND NAME TYPE ATTR
138.Fn RB_PROTOTYPE_NEXT NAME TYPE ATTR
139.Fn RB_PROTOTYPE_PREV NAME TYPE ATTR
140.Fn RB_PROTOTYPE_MINMAX NAME TYPE ATTR
141.Fn RB_GENERATE NAME TYPE FIELD CMP
142.Fn RB_GENERATE_STATIC NAME TYPE FIELD CMP
143.Fn RB_GENERATE_INSERT NAME TYPE FIELD CMP ATTR
144.Fn RB_GENERATE_INSERT_COLOR NAME TYPE FIELD ATTR
145.Fn RB_GENERATE_REMOVE NAME TYPE FIELD ATTR
146.Fn RB_GENERATE_REMOVE_COLOR NAME TYPE FIELD ATTR
147.Fn RB_GENERATE_FIND NAME TYPE FIELD CMP ATTR
148.Fn RB_GENERATE_NFIND NAME TYPE FIELD CMP ATTR
149.Fn RB_GENERATE_NEXT NAME TYPE FIELD ATTR
150.Fn RB_GENERATE_PREV NAME TYPE FIELD ATTR
151.Fn RB_GENERATE_MINMAX NAME TYPE FIELD ATTR
152.Fn RB_ENTRY TYPE
153.Fn RB_HEAD HEADNAME TYPE
154.Fn RB_INITIALIZER "RB_HEAD *head"
155.Ft "struct TYPE *"
156.Fn RB_ROOT "RB_HEAD *head"
157.Ft "bool"
158.Fn RB_EMPTY "RB_HEAD *head"
159.Ft "struct TYPE *"
160.Fn RB_NEXT NAME "RB_HEAD *head" "struct TYPE *elm"
161.Ft "struct TYPE *"
162.Fn RB_PREV NAME "RB_HEAD *head" "struct TYPE *elm"
163.Ft "struct TYPE *"
164.Fn RB_MIN NAME "RB_HEAD *head"
165.Ft "struct TYPE *"
166.Fn RB_MAX NAME "RB_HEAD *head"
167.Ft "struct TYPE *"
168.Fn RB_FIND NAME "RB_HEAD *head" "struct TYPE *elm"
169.Ft "struct TYPE *"
170.Fn RB_NFIND NAME "RB_HEAD *head" "struct TYPE *elm"
171.Ft "struct TYPE *"
172.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
173.Ft "struct TYPE *"
174.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
175.Ft "struct TYPE *"
176.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
177.Fn RB_FOREACH VARNAME NAME "RB_HEAD *head"
178.Fn RB_FOREACH_FROM "VARNAME" "NAME" "POS_VARNAME"
179.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
180.Fn RB_FOREACH_REVERSE VARNAME NAME "RB_HEAD *head"
181.Fn RB_FOREACH_REVERSE_FROM "VARNAME" "NAME" "POS_VARNAME"
182.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
183.Ft void
184.Fn RB_INIT "RB_HEAD *head"
185.Ft "struct TYPE *"
186.Fn RB_INSERT NAME "RB_HEAD *head" "struct TYPE *elm"
187.Ft "struct TYPE *"
188.Fn RB_REMOVE NAME "RB_HEAD *head" "struct TYPE *elm"
189.Sh DESCRIPTION
190These macros define data structures for different types of trees:
191splay trees and red-black trees.
192.Pp
193In the macro definitions,
194.Fa TYPE
195is the name tag of a user defined structure that must contain a field of type
196.Vt SPLAY_ENTRY ,
197or
198.Vt RB_ENTRY ,
199named
200.Fa ENTRYNAME .
201The argument
202.Fa HEADNAME
203is the name tag of a user defined structure that must be declared
204using the macros
205.Fn SPLAY_HEAD ,
206or
207.Fn RB_HEAD .
208The argument
209.Fa NAME
210has to be a unique name prefix for every tree that is defined.
211.Pp
212The function prototypes are declared with
213.Fn SPLAY_PROTOTYPE ,
214.Fn RB_PROTOTYPE ,
215or
216.Fn RB_PROTOTYPE_STATIC .
217The function bodies are generated with
218.Fn SPLAY_GENERATE ,
219.Fn RB_GENERATE ,
220or
221.Fn RB_GENERATE_STATIC .
222See the examples below for further explanation of how these macros are used.
223.Sh SPLAY TREES
224A splay tree is a self-organizing data structure.
225Every operation on the tree causes a splay to happen.
226The splay moves the requested
227node to the root of the tree and partly rebalances it.
228.Pp
229This has the benefit that request locality causes faster lookups as
230the requested nodes move to the top of the tree.
231On the other hand, every lookup causes memory writes.
232.Pp
233The Balance Theorem bounds the total access time for
234.Ar m
235operations and
236.Ar n
237inserts on an initially empty tree as
238.Fn O "\*[lp]m + n\*[rp]lg n" .
239The
240amortized cost for a sequence of
241.Ar m
242accesses to a splay tree is
243.Fn O "lg n" .
244.Pp
245A splay tree is headed by a structure defined by the
246.Fn SPLAY_HEAD
247macro.
248A
249structure is declared as follows:
250.Bd -ragged -offset indent
251.Fn SPLAY_HEAD HEADNAME TYPE
252.Va head ;
253.Ed
254.Pp
255where
256.Fa HEADNAME
257is the name of the structure to be defined, and struct
258.Fa TYPE
259is the type of the elements to be inserted into the tree.
260.Pp
261The
262.Fn SPLAY_ENTRY
263macro declares a structure that allows elements to be connected in the tree.
264.Pp
265In order to use the functions that manipulate the tree structure,
266their prototypes need to be declared with the
267.Fn SPLAY_PROTOTYPE
268macro,
269where
270.Fa NAME
271is a unique identifier for this particular tree.
272The
273.Fa TYPE
274argument is the type of the structure that is being managed
275by the tree.
276The
277.Fa FIELD
278argument is the name of the element defined by
279.Fn SPLAY_ENTRY .
280.Pp
281The function bodies are generated with the
282.Fn SPLAY_GENERATE
283macro.
284It takes the same arguments as the
285.Fn SPLAY_PROTOTYPE
286macro, but should be used only once.
287.Pp
288Finally,
289the
290.Fa CMP
291argument is the name of a function used to compare tree nodes
292with each other.
293The function takes two arguments of type
294.Vt "struct TYPE *" .
295If the first argument is smaller than the second, the function returns a
296value smaller than zero.
297If they are equal, the function returns zero.
298Otherwise, it should return a value greater than zero.
299The compare
300function defines the order of the tree elements.
301.Pp
302The
303.Fn SPLAY_INIT
304macro initializes the tree referenced by
305.Fa head .
306.Pp
307The splay tree can also be initialized statically by using the
308.Fn SPLAY_INITIALIZER
309macro like this:
310.Bd -ragged -offset indent
311.Fn SPLAY_HEAD HEADNAME TYPE
312.Va head
313=
314.Fn SPLAY_INITIALIZER &head ;
315.Ed
316.Pp
317The
318.Fn SPLAY_INSERT
319macro inserts the new element
320.Fa elm
321into the tree.
322.Pp
323The
324.Fn SPLAY_REMOVE
325macro removes the element
326.Fa elm
327from the tree pointed by
328.Fa head .
329.Pp
330The
331.Fn SPLAY_FIND
332macro can be used to find a particular element in the tree.
333.Bd -literal -offset indent
334struct TYPE find, *res;
335find.key = 30;
336res = SPLAY_FIND(NAME, head, &find);
337.Ed
338.Pp
339The
340.Fn SPLAY_ROOT ,
341.Fn SPLAY_MIN ,
342.Fn SPLAY_MAX ,
343and
344.Fn SPLAY_NEXT
345macros can be used to traverse the tree:
346.Bd -literal -offset indent
347for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
348.Ed
349.Pp
350Or, for simplicity, one can use the
351.Fn SPLAY_FOREACH
352macro:
353.Bd -ragged -offset indent
354.Fn SPLAY_FOREACH np NAME head
355.Ed
356.Pp
357The
358.Fn SPLAY_EMPTY
359macro should be used to check whether a splay tree is empty.
360.Sh RED-BLACK TREES
361A red-black tree is a binary search tree with the node color as an
362extra attribute.
363It fulfills a set of conditions:
364.Bl -enum -offset indent
365.It
366Every search path from the root to a leaf consists of the same number of
367black nodes.
368.It
369Each red node (except for the root) has a black parent.
370.It
371Each leaf node is black.
372.El
373.Pp
374Every operation on a red-black tree is bounded as
375.Fn O "lg n" .
376The maximum height of a red-black tree is
377.Fn 2lg "n + 1" .
378.Pp
379A red-black tree is headed by a structure defined by the
380.Fn RB_HEAD
381macro.
382A
383structure is declared as follows:
384.Bd -ragged -offset indent
385.Fn RB_HEAD HEADNAME TYPE
386.Va head ;
387.Ed
388.Pp
389where
390.Fa HEADNAME
391is the name of the structure to be defined, and struct
392.Fa TYPE
393is the type of the elements to be inserted into the tree.
394.Pp
395The
396.Fn RB_ENTRY
397macro declares a structure that allows elements to be connected in the tree.
398.Pp
399In order to use the functions that manipulate the tree structure,
400their prototypes need to be declared with the
401.Fn RB_PROTOTYPE
402or
403.Fn RB_PROTOTYPE_STATIC
404macro,
405where
406.Fa NAME
407is a unique identifier for this particular tree.
408The
409.Fa TYPE
410argument is the type of the structure that is being managed
411by the tree.
412The
413.Fa FIELD
414argument is the name of the element defined by
415.Fn RB_ENTRY .
416Individual prototypes can be declared with
417.Fn RB_PROTOTYPE_INSERT ,
418.Fn RB_PROTOTYPE_INSERT_COLOR ,
419.Fn RB_PROTOTYPE_REMOVE ,
420.Fn RB_PROTOTYPE_REMOVE_COLOR ,
421.Fn RB_PROTOTYPE_FIND ,
422.Fn RB_PROTOTYPE_NFIND ,
423.Fn RB_PROTOTYPE_NEXT ,
424.Fn RB_PROTOTYPE_PREV ,
425and
426.Fn RB_PROTOTYPE_MINMAX
427in case not all functions are required.
428The individual prototype macros expect
429.Fa NAME ,
430.Fa TYPE ,
431and
432.Fa ATTR
433arguments.
434The
435.Fa ATTR
436argument must be empty for global functions or
437.Fa static
438for static functions.
439.Pp
440The function bodies are generated with the
441.Fn RB_GENERATE
442or
443.Fn RB_GENERATE_STATIC
444macro.
445These macros take the same arguments as the
446.Fn RB_PROTOTYPE
447and
448.Fn RB_PROTOTYPE_STATIC
449macros, but should be used only once.
450As an alternative individual function bodies are generated with the
451.Fn RB_GENERATE_INSERT ,
452.Fn RB_GENERATE_INSERT_COLOR ,
453.Fn RB_GENERATE_REMOVE ,
454.Fn RB_GENERATE_REMOVE_COLOR ,
455.Fn RB_GENERATE_FIND ,
456.Fn RB_GENERATE_NFIND ,
457.Fn RB_GENERATE_NEXT ,
458.Fn RB_GENERATE_PREV ,
459and
460.Fn RB_GENERATE_MINMAX
461macros.
462.Pp
463Finally,
464the
465.Fa CMP
466argument is the name of a function used to compare tree nodes
467with each other.
468The function takes two arguments of type
469.Vt "struct TYPE *" .
470If the first argument is smaller than the second, the function returns a
471value smaller than zero.
472If they are equal, the function returns zero.
473Otherwise, it should return a value greater than zero.
474The compare
475function defines the order of the tree elements.
476.Pp
477The
478.Fn RB_INIT
479macro initializes the tree referenced by
480.Fa head .
481.Pp
482The red-black tree can also be initialized statically by using the
483.Fn RB_INITIALIZER
484macro like this:
485.Bd -ragged -offset indent
486.Fn RB_HEAD HEADNAME TYPE
487.Va head
488=
489.Fn RB_INITIALIZER &head ;
490.Ed
491.Pp
492The
493.Fn RB_INSERT
494macro inserts the new element
495.Fa elm
496into the tree.
497.Pp
498The
499.Fn RB_REMOVE
500macro removes the element
501.Fa elm
502from the tree pointed by
503.Fa head .
504.Pp
505The
506.Fn RB_FIND
507and
508.Fn RB_NFIND
509macros can be used to find a particular element in the tree.
510.Bd -literal -offset indent
511struct TYPE find, *res;
512find.key = 30;
513res = RB_FIND(NAME, head, &find);
514.Ed
515.Pp
516The
517.Fn RB_ROOT ,
518.Fn RB_MIN ,
519.Fn RB_MAX ,
520.Fn RB_NEXT ,
521and
522.Fn RB_PREV
523macros can be used to traverse the tree:
524.Pp
525.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
526.Pp
527Or, for simplicity, one can use the
528.Fn RB_FOREACH
529or
530.Fn RB_FOREACH_REVERSE
531macro:
532.Bd -ragged -offset indent
533.Fn RB_FOREACH np NAME head
534.Ed
535.Pp
536The macros
537.Fn RB_FOREACH_SAFE
538and
539.Fn RB_FOREACH_REVERSE_SAFE
540traverse the tree referenced by head
541in a forward or reverse direction respectively,
542assigning each element in turn to np.
543However, unlike their unsafe counterparts,
544they permit both the removal of np
545as well as freeing it from within the loop safely
546without interfering with the traversal.
547.Pp
548Both
549.Fn RB_FOREACH_FROM
550and
551.Fn RB_FOREACH_REVERSE_FROM
552may be used to continue an interrupted traversal
553in a forward or reverse direction respectively.
554The head pointer is not required.
555The pointer to the node from where to resume the traversal
556should be passed as their last argument,
557and will be overwritten to provide safe traversal.
558.Pp
559The
560.Fn RB_EMPTY
561macro should be used to check whether a red-black tree is empty.
562.Sh EXAMPLES
563The following example demonstrates how to declare a red-black tree
564holding integers.
565Values are inserted into it and the contents of the tree are printed
566in order.
567Lastly, the internal structure of the tree is printed.
568.Bd -literal -offset 3n
569#include <sys/tree.h>
570#include <err.h>
571#include <stdio.h>
572#include <stdlib.h>
573
574struct node {
575	RB_ENTRY(node) entry;
576	int i;
577};
578
579int
580intcmp(struct node *e1, struct node *e2)
581{
582	return (e1->i < e2->i ? -1 : e1->i > e2->i);
583}
584
585RB_HEAD(inttree, node) head = RB_INITIALIZER(&head);
586RB_GENERATE(inttree, node, entry, intcmp)
587
588int testdata[] = {
589	20, 16, 17, 13, 3, 6, 1, 8, 2, 4, 10, 19, 5, 9, 12, 15, 18,
590	7, 11, 14
591};
592
593void
594print_tree(struct node *n)
595{
596	struct node *left, *right;
597
598	if (n == NULL) {
599		printf("nil");
600		return;
601	}
602	left = RB_LEFT(n, entry);
603	right = RB_RIGHT(n, entry);
604	if (left == NULL && right == NULL)
605		printf("%d", n->i);
606	else {
607		printf("%d(", n->i);
608		print_tree(left);
609		printf(",");
610		print_tree(right);
611		printf(")");
612	}
613}
614
615int
616main(void)
617{
618	int i;
619	struct node *n;
620
621	for (i = 0; i < sizeof(testdata) / sizeof(testdata[0]); i++) {
622		if ((n = malloc(sizeof(struct node))) == NULL)
623			err(1, NULL);
624		n->i = testdata[i];
625		RB_INSERT(inttree, &head, n);
626	}
627
628	RB_FOREACH(n, inttree, &head) {
629		printf("%d\en", n->i);
630	}
631	print_tree(RB_ROOT(&head));
632	printf("\en");
633	return (0);
634}
635.Ed
636.Sh NOTES
637Trying to free a tree in the following way is a common error:
638.Bd -literal -offset indent
639SPLAY_FOREACH(var, NAME, head) {
640	SPLAY_REMOVE(NAME, head, var);
641	free(var);
642}
643free(head);
644.Ed
645.Pp
646Since
647.Va var
648is freed, the
649.Fn FOREACH
650macro refers to a pointer that may have been reallocated already.
651Proper code needs a second variable.
652.Bd -literal -offset indent
653for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
654	nxt = SPLAY_NEXT(NAME, head, var);
655	SPLAY_REMOVE(NAME, head, var);
656	free(var);
657}
658.Ed
659.Pp
660Both
661.Fn RB_INSERT
662and
663.Fn SPLAY_INSERT
664return
665.Dv NULL
666if the element was inserted in the tree successfully, otherwise they
667return a pointer to the element with the colliding key.
668.Pp
669Accordingly,
670.Fn RB_REMOVE
671and
672.Fn SPLAY_REMOVE
673return the pointer to the removed element otherwise they return
674.Dv NULL
675to indicate an error.
676.Sh SEE ALSO
677.Xr arb 3 ,
678.Xr queue 3
679.Sh AUTHORS
680The author of the tree macros is
681.An Niels Provos .
682