xref: /freebsd/share/man/man3/tree.3 (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1.\"	$OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
2.\"
3.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. All advertising materials mentioning features or use of this software
15.\"    must display the following acknowledgement:
16.\"      This product includes software developed by Niels Provos.
17.\" 4. The name of the author may not be used to endorse or promote products
18.\"    derived from this software without specific prior written permission.
19.\"
20.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30.\"
31.\" $FreeBSD$
32.\"
33.Dd January 24, 2015
34.Dt TREE 3
35.Os
36.Sh NAME
37.Nm SPLAY_PROTOTYPE ,
38.Nm SPLAY_GENERATE ,
39.Nm SPLAY_ENTRY ,
40.Nm SPLAY_HEAD ,
41.Nm SPLAY_INITIALIZER ,
42.Nm SPLAY_ROOT ,
43.Nm SPLAY_EMPTY ,
44.Nm SPLAY_NEXT ,
45.Nm SPLAY_MIN ,
46.Nm SPLAY_MAX ,
47.Nm SPLAY_FIND ,
48.Nm SPLAY_LEFT ,
49.Nm SPLAY_RIGHT ,
50.Nm SPLAY_FOREACH ,
51.Nm SPLAY_INIT ,
52.Nm SPLAY_INSERT ,
53.Nm SPLAY_REMOVE ,
54.Nm RB_PROTOTYPE ,
55.Nm RB_PROTOTYPE_STATIC ,
56.Nm RB_PROTOTYPE_INSERT ,
57.Nm RB_PROTOTYPE_INSERT_COLOR ,
58.Nm RB_PROTOTYPE_REMOVE ,
59.Nm RB_PROTOTYPE_REMOVE_COLOR ,
60.Nm RB_PROTOTYPE_FIND ,
61.Nm RB_PROTOTYPE_NFIND ,
62.Nm RB_PROTOTYPE_NEXT ,
63.Nm RB_PROTOTYPE_PREV ,
64.Nm RB_PROTOTYPE_MINMAX ,
65.Nm RB_GENERATE ,
66.Nm RB_GENERATE_STATIC ,
67.Nm RB_GENERATE_INSERT ,
68.Nm RB_GENERATE_INSERT_COLOR ,
69.Nm RB_GENERATE_REMOVE ,
70.Nm RB_GENERATE_REMOVE_COLOR ,
71.Nm RB_GENERATE_FIND ,
72.Nm RB_GENERATE_NFIND ,
73.Nm RB_GENERATE_NEXT ,
74.Nm RB_GENERATE_PREV ,
75.Nm RB_GENERATE_MINMAX ,
76.Nm RB_ENTRY ,
77.Nm RB_HEAD ,
78.Nm RB_INITIALIZER ,
79.Nm RB_ROOT ,
80.Nm RB_EMPTY ,
81.Nm RB_NEXT ,
82.Nm RB_PREV ,
83.Nm RB_MIN ,
84.Nm RB_MAX ,
85.Nm RB_FIND ,
86.Nm RB_NFIND ,
87.Nm RB_LEFT ,
88.Nm RB_RIGHT ,
89.Nm RB_PARENT ,
90.Nm RB_FOREACH ,
91.Nm RB_FOREACH_FROM ,
92.Nm RB_FOREACH_SAFE ,
93.Nm RB_FOREACH_REVERSE ,
94.Nm RB_FOREACH_REVERSE_FROM ,
95.Nm RB_FOREACH_REVERSE_SAFE ,
96.Nm RB_INIT ,
97.Nm RB_INSERT ,
98.Nm RB_REMOVE
99.Nd "implementations of splay and red-black trees"
100.Sh SYNOPSIS
101.In sys/tree.h
102.Fn SPLAY_PROTOTYPE NAME TYPE FIELD CMP
103.Fn SPLAY_GENERATE NAME TYPE FIELD CMP
104.Fn SPLAY_ENTRY TYPE
105.Fn SPLAY_HEAD HEADNAME TYPE
106.Ft "struct TYPE *"
107.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
108.Fn SPLAY_ROOT "SPLAY_HEAD *head"
109.Ft bool
110.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
111.Ft "struct TYPE *"
112.Fn SPLAY_NEXT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
113.Ft "struct TYPE *"
114.Fn SPLAY_MIN NAME "SPLAY_HEAD *head"
115.Ft "struct TYPE *"
116.Fn SPLAY_MAX NAME "SPLAY_HEAD *head"
117.Ft "struct TYPE *"
118.Fn SPLAY_FIND NAME "SPLAY_HEAD *head" "struct TYPE *elm"
119.Ft "struct TYPE *"
120.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
121.Ft "struct TYPE *"
122.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
123.Fn SPLAY_FOREACH VARNAME NAME "SPLAY_HEAD *head"
124.Ft void
125.Fn SPLAY_INIT "SPLAY_HEAD *head"
126.Ft "struct TYPE *"
127.Fn SPLAY_INSERT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
128.Ft "struct TYPE *"
129.Fn SPLAY_REMOVE NAME "SPLAY_HEAD *head" "struct TYPE *elm"
130.Fn RB_PROTOTYPE NAME TYPE FIELD CMP
131.Fn RB_PROTOTYPE_STATIC NAME TYPE FIELD CMP
132.Fn RB_PROTOTYPE_INSERT NAME TYPE ATTR
133.Fn RB_PROTOTYPE_INSERT_COLOR NAME TYPE ATTR
134.Fn RB_PROTOTYPE_REMOVE NAME TYPE ATTR
135.Fn RB_PROTOTYPE_REMOVE_COLOR NAME TYPE ATTR
136.Fn RB_PROTOTYPE_FIND NAME TYPE ATTR
137.Fn RB_PROTOTYPE_NFIND NAME TYPE ATTR
138.Fn RB_PROTOTYPE_NEXT NAME TYPE ATTR
139.Fn RB_PROTOTYPE_PREV NAME TYPE ATTR
140.Fn RB_PROTOTYPE_MINMAX NAME TYPE ATTR
141.Fn RB_GENERATE NAME TYPE FIELD CMP
142.Fn RB_GENERATE_STATIC NAME TYPE FIELD CMP
143.Fn RB_GENERATE_INSERT NAME TYPE FIELD CMP ATTR
144.Fn RB_GENERATE_INSERT_COLOR NAME TYPE FIELD ATTR
145.Fn RB_GENERATE_REMOVE NAME TYPE FIELD ATTR
146.Fn RB_GENERATE_REMOVE_COLOR NAME TYPE FIELD ATTR
147.Fn RB_GENERATE_FIND NAME TYPE FIELD CMP ATTR
148.Fn RB_GENERATE_NFIND NAME TYPE FIELD CMP ATTR
149.Fn RB_GENERATE_NEXT NAME TYPE FIELD ATTR
150.Fn RB_GENERATE_PREV NAME TYPE FIELD ATTR
151.Fn RB_GENERATE_MINMAX NAME TYPE FIELD ATTR
152.Fn RB_ENTRY TYPE
153.Fn RB_HEAD HEADNAME TYPE
154.Fn RB_INITIALIZER "RB_HEAD *head"
155.Ft "struct TYPE *"
156.Fn RB_ROOT "RB_HEAD *head"
157.Ft "bool"
158.Fn RB_EMPTY "RB_HEAD *head"
159.Ft "struct TYPE *"
160.Fn RB_NEXT NAME "RB_HEAD *head" "struct TYPE *elm"
161.Ft "struct TYPE *"
162.Fn RB_PREV NAME "RB_HEAD *head" "struct TYPE *elm"
163.Ft "struct TYPE *"
164.Fn RB_MIN NAME "RB_HEAD *head"
165.Ft "struct TYPE *"
166.Fn RB_MAX NAME "RB_HEAD *head"
167.Ft "struct TYPE *"
168.Fn RB_FIND NAME "RB_HEAD *head" "struct TYPE *elm"
169.Ft "struct TYPE *"
170.Fn RB_NFIND NAME "RB_HEAD *head" "struct TYPE *elm"
171.Ft "struct TYPE *"
172.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
173.Ft "struct TYPE *"
174.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
175.Ft "struct TYPE *"
176.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
177.Fn RB_FOREACH VARNAME NAME "RB_HEAD *head"
178.Fn RB_FOREACH_FROM "VARNAME" "NAME" "POS_VARNAME"
179.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
180.Fn RB_FOREACH_REVERSE VARNAME NAME "RB_HEAD *head"
181.Fn RB_FOREACH_REVERSE_FROM "VARNAME" "NAME" "POS_VARNAME"
182.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
183.Ft void
184.Fn RB_INIT "RB_HEAD *head"
185.Ft "struct TYPE *"
186.Fn RB_INSERT NAME "RB_HEAD *head" "struct TYPE *elm"
187.Ft "struct TYPE *"
188.Fn RB_REMOVE NAME "RB_HEAD *head" "struct TYPE *elm"
189.Sh DESCRIPTION
190These macros define data structures for different types of trees:
191splay trees and red-black trees.
192.Pp
193In the macro definitions,
194.Fa TYPE
195is the name tag of a user defined structure that must contain a field of type
196.Vt SPLAY_ENTRY ,
197or
198.Vt RB_ENTRY ,
199named
200.Fa ENTRYNAME .
201The argument
202.Fa HEADNAME
203is the name tag of a user defined structure that must be declared
204using the macros
205.Fn SPLAY_HEAD ,
206or
207.Fn RB_HEAD .
208The argument
209.Fa NAME
210has to be a unique name prefix for every tree that is defined.
211.Pp
212The function prototypes are declared with
213.Fn SPLAY_PROTOTYPE ,
214.Fn RB_PROTOTYPE ,
215or
216.Fn RB_PROTOTYPE_STATIC .
217The function bodies are generated with
218.Fn SPLAY_GENERATE ,
219.Fn RB_GENERATE ,
220or
221.Fn RB_GENERATE_STATIC .
222See the examples below for further explanation of how these macros are used.
223.Sh SPLAY TREES
224A splay tree is a self-organizing data structure.
225Every operation on the tree causes a splay to happen.
226The splay moves the requested
227node to the root of the tree and partly rebalances it.
228.Pp
229This has the benefit that request locality causes faster lookups as
230the requested nodes move to the top of the tree.
231On the other hand, every lookup causes memory writes.
232.Pp
233The Balance Theorem bounds the total access time for
234.Ar m
235operations and
236.Ar n
237inserts on an initially empty tree as
238.Fn O "\*[lp]m + n\*[rp]lg n" .
239The
240amortized cost for a sequence of
241.Ar m
242accesses to a splay tree is
243.Fn O "lg n" .
244.Pp
245A splay tree is headed by a structure defined by the
246.Fn SPLAY_HEAD
247macro.
248A
249structure is declared as follows:
250.Bd -ragged -offset indent
251.Fn SPLAY_HEAD HEADNAME TYPE
252.Va head ;
253.Ed
254.Pp
255where
256.Fa HEADNAME
257is the name of the structure to be defined, and struct
258.Fa TYPE
259is the type of the elements to be inserted into the tree.
260.Pp
261The
262.Fn SPLAY_ENTRY
263macro declares a structure that allows elements to be connected in the tree.
264.Pp
265In order to use the functions that manipulate the tree structure,
266their prototypes need to be declared with the
267.Fn SPLAY_PROTOTYPE
268macro,
269where
270.Fa NAME
271is a unique identifier for this particular tree.
272The
273.Fa TYPE
274argument is the type of the structure that is being managed
275by the tree.
276The
277.Fa FIELD
278argument is the name of the element defined by
279.Fn SPLAY_ENTRY .
280.Pp
281The function bodies are generated with the
282.Fn SPLAY_GENERATE
283macro.
284It takes the same arguments as the
285.Fn SPLAY_PROTOTYPE
286macro, but should be used only once.
287.Pp
288Finally,
289the
290.Fa CMP
291argument is the name of a function used to compare tree nodes
292with each other.
293The function takes two arguments of type
294.Vt "struct TYPE *" .
295If the first argument is smaller than the second, the function returns a
296value smaller than zero.
297If they are equal, the function returns zero.
298Otherwise, it should return a value greater than zero.
299The compare
300function defines the order of the tree elements.
301.Pp
302The
303.Fn SPLAY_INIT
304macro initializes the tree referenced by
305.Fa head .
306.Pp
307The splay tree can also be initialized statically by using the
308.Fn SPLAY_INITIALIZER
309macro like this:
310.Bd -ragged -offset indent
311.Fn SPLAY_HEAD HEADNAME TYPE
312.Va head
313=
314.Fn SPLAY_INITIALIZER &head ;
315.Ed
316.Pp
317The
318.Fn SPLAY_INSERT
319macro inserts the new element
320.Fa elm
321into the tree.
322.Pp
323The
324.Fn SPLAY_REMOVE
325macro removes the element
326.Fa elm
327from the tree pointed by
328.Fa head .
329.Pp
330The
331.Fn SPLAY_FIND
332macro can be used to find a particular element in the tree.
333.Bd -literal -offset indent
334struct TYPE find, *res;
335find.key = 30;
336res = SPLAY_FIND(NAME, head, &find);
337.Ed
338.Pp
339The
340.Fn SPLAY_ROOT ,
341.Fn SPLAY_MIN ,
342.Fn SPLAY_MAX ,
343and
344.Fn SPLAY_NEXT
345macros can be used to traverse the tree:
346.Bd -literal -offset indent
347for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
348.Ed
349.Pp
350Or, for simplicity, one can use the
351.Fn SPLAY_FOREACH
352macro:
353.Bd -ragged -offset indent
354.Fn SPLAY_FOREACH np NAME head
355.Ed
356.Pp
357The
358.Fn SPLAY_EMPTY
359macro should be used to check whether a splay tree is empty.
360.Sh RED-BLACK TREES
361A red-black tree is a binary search tree with the node color as an
362extra attribute.
363It fulfills a set of conditions:
364.Bl -enum -offset indent
365.It
366Every search path from the root to a leaf consists of the same number of
367black nodes.
368.It
369Each red node (except for the root) has a black parent.
370.It
371Each leaf node is black.
372.El
373.Pp
374Every operation on a red-black tree is bounded as
375.Fn O "lg n" .
376The maximum height of a red-black tree is
377.Fn 2lg "n + 1" .
378.Pp
379A red-black tree is headed by a structure defined by the
380.Fn RB_HEAD
381macro.
382A
383structure is declared as follows:
384.Bd -ragged -offset indent
385.Fn RB_HEAD HEADNAME TYPE
386.Va head ;
387.Ed
388.Pp
389where
390.Fa HEADNAME
391is the name of the structure to be defined, and struct
392.Fa TYPE
393is the type of the elements to be inserted into the tree.
394.Pp
395The
396.Fn RB_ENTRY
397macro declares a structure that allows elements to be connected in the tree.
398.Pp
399In order to use the functions that manipulate the tree structure,
400their prototypes need to be declared with the
401.Fn RB_PROTOTYPE
402or
403.Fn RB_PROTOTYPE_STATIC
404macro,
405where
406.Fa NAME
407is a unique identifier for this particular tree.
408The
409.Fa TYPE
410argument is the type of the structure that is being managed
411by the tree.
412The
413.Fa FIELD
414argument is the name of the element defined by
415.Fn RB_ENTRY .
416Individual prototypes can be declared with
417.Fn RB_PROTOTYPE_INSERT ,
418.Fn RB_PROTOTYPE_INSERT_COLOR ,
419.Fn RB_PROTOTYPE_REMOVE ,
420.Fn RB_PROTOTYPE_REMOVE_COLOR ,
421.Fn RB_PROTOTYPE_FIND ,
422.Fn RB_PROTOTYPE_NFIND ,
423.Fn RB_PROTOTYPE_NEXT ,
424.Fn RB_PROTOTYPE_PREV ,
425and
426.Fn RB_PROTOTYPE_MINMAX
427in case not all functions are required.  The individual prototype macros expect
428.Fa NAME ,
429.Fa TYPE ,
430and
431.Fa ATTR
432arguments.  The
433.Fa ATTR
434argument must be empty for global functions or
435.Fa static
436for static functions.
437.Pp
438The function bodies are generated with the
439.Fn RB_GENERATE
440or
441.Fn RB_GENERATE_STATIC
442macro.
443These macros take the same arguments as the
444.Fn RB_PROTOTYPE
445and
446.Fn RB_PROTOTYPE_STATIC
447macros, but should be used only once.
448As an alternative individual function bodies are generated with the
449.Fn RB_GENERATE_INSERT ,
450.Fn RB_GENERATE_INSERT_COLOR ,
451.Fn RB_GENERATE_REMOVE ,
452.Fn RB_GENERATE_REMOVE_COLOR ,
453.Fn RB_GENERATE_FIND ,
454.Fn RB_GENERATE_NFIND ,
455.Fn RB_GENERATE_NEXT ,
456.Fn RB_GENERATE_PREV ,
457and
458.Fn RB_GENERATE_MINMAX
459macros.
460.Pp
461Finally,
462the
463.Fa CMP
464argument is the name of a function used to compare tree nodes
465with each other.
466The function takes two arguments of type
467.Vt "struct TYPE *" .
468If the first argument is smaller than the second, the function returns a
469value smaller than zero.
470If they are equal, the function returns zero.
471Otherwise, it should return a value greater than zero.
472The compare
473function defines the order of the tree elements.
474.Pp
475The
476.Fn RB_INIT
477macro initializes the tree referenced by
478.Fa head .
479.Pp
480The red-black tree can also be initialized statically by using the
481.Fn RB_INITIALIZER
482macro like this:
483.Bd -ragged -offset indent
484.Fn RB_HEAD HEADNAME TYPE
485.Va head
486=
487.Fn RB_INITIALIZER &head ;
488.Ed
489.Pp
490The
491.Fn RB_INSERT
492macro inserts the new element
493.Fa elm
494into the tree.
495.Pp
496The
497.Fn RB_REMOVE
498macro removes the element
499.Fa elm
500from the tree pointed by
501.Fa head .
502.Pp
503The
504.Fn RB_FIND
505and
506.Fn RB_NFIND
507macros can be used to find a particular element in the tree.
508.Bd -literal -offset indent
509struct TYPE find, *res;
510find.key = 30;
511res = RB_FIND(NAME, head, &find);
512.Ed
513.Pp
514The
515.Fn RB_ROOT ,
516.Fn RB_MIN ,
517.Fn RB_MAX ,
518.Fn RB_NEXT ,
519and
520.Fn RB_PREV
521macros can be used to traverse the tree:
522.Pp
523.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
524.Pp
525Or, for simplicity, one can use the
526.Fn RB_FOREACH
527or
528.Fn RB_FOREACH_REVERSE
529macro:
530.Bd -ragged -offset indent
531.Fn RB_FOREACH np NAME head
532.Ed
533.Pp
534The macros
535.Fn RB_FOREACH_SAFE
536and
537.Fn RB_FOREACH_REVERSE_SAFE
538traverse the tree referenced by head
539in a forward or reverse direction respectively,
540assigning each element in turn to np.
541However, unlike their unsafe counterparts,
542they permit both the removal of np
543as well as freeing it from within the loop safely
544without interfering with the traversal.
545.Pp
546Both
547.Fn RB_FOREACH_FROM
548and
549.Fn RB_FOREACH_REVERSE_FROM
550may be used to continue an interrupted traversal
551in a forward or reverse direction respectively.
552The head pointer is not required.
553The pointer to the node from where to resume the traversal
554should be passed as their last argument,
555and will be overwritten to provide safe traversal.
556.Pp
557The
558.Fn RB_EMPTY
559macro should be used to check whether a red-black tree is empty.
560.Sh NOTES
561Trying to free a tree in the following way is a common error:
562.Bd -literal -offset indent
563SPLAY_FOREACH(var, NAME, head) {
564	SPLAY_REMOVE(NAME, head, var);
565	free(var);
566}
567free(head);
568.Ed
569.Pp
570Since
571.Va var
572is freed, the
573.Fn FOREACH
574macro refers to a pointer that may have been reallocated already.
575Proper code needs a second variable.
576.Bd -literal -offset indent
577for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
578	nxt = SPLAY_NEXT(NAME, head, var);
579	SPLAY_REMOVE(NAME, head, var);
580	free(var);
581}
582.Ed
583.Pp
584Both
585.Fn RB_INSERT
586and
587.Fn SPLAY_INSERT
588return
589.Dv NULL
590if the element was inserted in the tree successfully, otherwise they
591return a pointer to the element with the colliding key.
592.Pp
593Accordingly,
594.Fn RB_REMOVE
595and
596.Fn SPLAY_REMOVE
597return the pointer to the removed element otherwise they return
598.Dv NULL
599to indicate an error.
600.Sh SEE ALSO
601.Xr queue 3
602.Sh AUTHORS
603The author of the tree macros is
604.An Niels Provos .
605