xref: /freebsd/share/man/man3/arb.3 (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1.\"	$OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
2.\"
3.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
4.\" All rights reserved.
5.\"
6.\" Redistribution and use in source and binary forms, with or without
7.\" modification, are permitted provided that the following conditions
8.\" are met:
9.\" 1. Redistributions of source code must retain the above copyright
10.\"    notice, this list of conditions and the following disclaimer.
11.\" 2. Redistributions in binary form must reproduce the above copyright
12.\"    notice, this list of conditions and the following disclaimer in the
13.\"    documentation and/or other materials provided with the distribution.
14.\" 3. All advertising materials mentioning features or use of this software
15.\"    must display the following acknowledgement:
16.\"      This product includes software developed by Niels Provos.
17.\" 4. The name of the author may not be used to endorse or promote products
18.\"    derived from this software without specific prior written permission.
19.\"
20.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30.\"
31.\" $FreeBSD$
32.\"
33.Dd October 2, 2019
34.Dt ARB 3
35.Os
36.Sh NAME
37.Nm ARB_PROTOTYPE ,
38.Nm ARB_PROTOTYPE_STATIC ,
39.Nm ARB_PROTOTYPE_INSERT ,
40.Nm ARB_PROTOTYPE_INSERT_COLOR ,
41.Nm ARB_PROTOTYPE_REMOVE ,
42.Nm ARB_PROTOTYPE_REMOVE_COLOR ,
43.Nm ARB_PROTOTYPE_FIND ,
44.Nm ARB_PROTOTYPE_NFIND ,
45.Nm ARB_PROTOTYPE_NEXT ,
46.Nm ARB_PROTOTYPE_PREV ,
47.Nm ARB_PROTOTYPE_MINMAX ,
48.Nm ARB_PROTOTYPE_REINSERT ,
49.Nm ARB_GENERATE ,
50.Nm ARB_GENERATE_STATIC ,
51.Nm ARB_GENERATE_INSERT ,
52.Nm ARB_GENERATE_INSERT_COLOR ,
53.Nm ARB_GENERATE_REMOVE ,
54.Nm ARB_GENERATE_REMOVE_COLOR ,
55.Nm ARB_GENERATE_FIND ,
56.Nm ARB_GENERATE_NFIND ,
57.Nm ARB_GENERATE_NEXT ,
58.Nm ARB_GENERATE_PREV ,
59.Nm ARB_GENERATE_MINMAX ,
60.Nm ARB_GENERATE_REINSERT ,
61.Nm ARB8_ENTRY ,
62.Nm ARB16_ENTRY ,
63.Nm ARB32_ENTRY ,
64.Nm ARB8_HEAD ,
65.Nm ARB16_HEAD ,
66.Nm ARB32_HEAD ,
67.Nm ARB_ALLOCSIZE ,
68.Nm ARB_INITIALIZER ,
69.Nm ARB_ROOT ,
70.Nm ARB_EMPTY ,
71.Nm ARB_FULL ,
72.Nm ARB_CURNODES ,
73.Nm ARB_MAXNODES ,
74.Nm ARB_NEXT ,
75.Nm ARB_PREV ,
76.Nm ARB_MIN ,
77.Nm ARB_MAX ,
78.Nm ARB_FIND ,
79.Nm ARB_NFIND ,
80.Nm ARB_LEFT ,
81.Nm ARB_LEFTIDX ,
82.Nm ARB_RIGHT ,
83.Nm ARB_RIGHTIDX ,
84.Nm ARB_PARENT ,
85.Nm ARB_PARENTIDX ,
86.Nm ARB_GETFREE ,
87.Nm ARB_FREEIDX ,
88.Nm ARB_FOREACH ,
89.Nm ARB_FOREACH_FROM ,
90.Nm ARB_FOREACH_SAFE ,
91.Nm ARB_FOREACH_REVERSE ,
92.Nm ARB_FOREACH_REVERSE_FROM ,
93.Nm ARB_FOREACH_REVERSE_SAFE ,
94.Nm ARB_INIT ,
95.Nm ARB_INSERT ,
96.Nm ARB_REMOVE ,
97.Nm ARB_REINSERT ,
98.Nm ARB_RESET_TREE
99.Nd "array-based red-black trees"
100.Sh SYNOPSIS
101.In sys/arb.h
102.Fn ARB_PROTOTYPE NAME TYPE FIELD CMP
103.Fn ARB_PROTOTYPE_STATIC NAME TYPE FIELD CMP
104.Fn ARB_PROTOTYPE_INSERT NAME TYPE ATTR
105.Fn ARB_PROTOTYPE_INSERT_COLOR NAME TYPE ATTR
106.Fn ARB_PROTOTYPE_REMOVE NAME TYPE ATTR
107.Fn ARB_PROTOTYPE_REMOVE_COLOR NAME TYPE ATTR
108.Fn ARB_PROTOTYPE_FIND NAME TYPE ATTR
109.Fn ARB_PROTOTYPE_NFIND NAME TYPE ATTR
110.Fn ARB_PROTOTYPE_NEXT NAME TYPE ATTR
111.Fn ARB_PROTOTYPE_PREV NAME TYPE ATTR
112.Fn ARB_PROTOTYPE_MINMAX NAME TYPE ATTR
113.Fn ARB_PROTOTYPE_REINSERT NAME TYPE ATTR
114.Fn ARB_GENERATE NAME TYPE FIELD CMP
115.Fn ARB_GENERATE_STATIC NAME TYPE FIELD CMP
116.Fn ARB_GENERATE_INSERT NAME TYPE FIELD CMP ATTR
117.Fn ARB_GENERATE_INSERT_COLOR NAME TYPE FIELD ATTR
118.Fn ARB_GENERATE_REMOVE NAME TYPE FIELD ATTR
119.Fn ARB_GENERATE_REMOVE_COLOR NAME TYPE FIELD ATTR
120.Fn ARB_GENERATE_FIND NAME TYPE FIELD CMP ATTR
121.Fn ARB_GENERATE_NFIND NAME TYPE FIELD CMP ATTR
122.Fn ARB_GENERATE_NEXT NAME TYPE FIELD ATTR
123.Fn ARB_GENERATE_PREV NAME TYPE FIELD ATTR
124.Fn ARB_GENERATE_MINMAX NAME TYPE FIELD ATTR
125.Fn ARB_GENERATE_REINSERT NAME TYPE FIELD CMP ATTR
126.Fn ARB<8|16|32>_ENTRY
127.Fn ARB<8|16|32>_HEAD HEADNAME TYPE
128.Ft "size_t"
129.Fn ARB_ALLOCSIZE "ARB_HEAD *head" "int<8|16|32>_t maxnodes" "struct TYPE *elm"
130.Fn ARB_INITIALIZER "ARB_HEAD *head" "int<8|16|32>_t maxnodes"
131.Ft "struct TYPE *"
132.Fn ARB_ROOT "ARB_HEAD *head"
133.Ft "bool"
134.Fn ARB_EMPTY "ARB_HEAD *head"
135.Ft "bool"
136.Fn ARB_FULL "ARB_HEAD *head"
137.Ft "int<8|16|32>_t"
138.Fn ARB_CURNODES "ARB_HEAD *head"
139.Ft "int<8|16|32>_t"
140.Fn ARB_MAXNODES "ARB_HEAD *head"
141.Ft "struct TYPE *"
142.Fn ARB_NEXT NAME "ARB_HEAD *head" "struct TYPE *elm"
143.Ft "struct TYPE *"
144.Fn ARB_PREV NAME "ARB_HEAD *head" "struct TYPE *elm"
145.Ft "struct TYPE *"
146.Fn ARB_MIN NAME "ARB_HEAD *head"
147.Ft "struct TYPE *"
148.Fn ARB_MAX NAME "ARB_HEAD *head"
149.Ft "struct TYPE *"
150.Fn ARB_FIND NAME "ARB_HEAD *head" "struct TYPE *elm"
151.Ft "struct TYPE *"
152.Fn ARB_NFIND NAME "ARB_HEAD *head" "struct TYPE *elm"
153.Ft "struct TYPE *"
154.Fn ARB_LEFT "struct TYPE *elm" "ARB_ENTRY NAME"
155.Ft "int<8|16|32>_t"
156.Fn ARB_LEFTIDX "struct TYPE *elm" "ARB_ENTRY NAME"
157.Ft "struct TYPE *"
158.Fn ARB_RIGHT "struct TYPE *elm" "ARB_ENTRY NAME"
159.Ft "int<8|16|32>_t"
160.Fn ARB_RIGHTIDX "struct TYPE *elm" "ARB_ENTRY NAME"
161.Ft "struct TYPE *"
162.Fn ARB_PARENT "struct TYPE *elm" "ARB_ENTRY NAME"
163.Ft "int<8|16|32>_t"
164.Fn ARB_PARENTIDX "struct TYPE *elm" "ARB_ENTRY NAME"
165.Ft "struct TYPE *"
166.Fn ARB_GETFREE "ARB_HEAD *head" "FIELD"
167.Ft "int<8|16|32>_t"
168.Fn ARB_FREEIDX "ARB_HEAD *head"
169.Fn ARB_FOREACH VARNAME NAME "ARB_HEAD *head"
170.Fn ARB_FOREACH_FROM "VARNAME" "NAME" "POS_VARNAME"
171.Fn ARB_FOREACH_SAFE "VARNAME" "NAME" "ARB_HEAD *head" "TEMP_VARNAME"
172.Fn ARB_FOREACH_REVERSE VARNAME NAME "ARB_HEAD *head"
173.Fn ARB_FOREACH_REVERSE_FROM "VARNAME" "NAME" "POS_VARNAME"
174.Fn ARB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "ARB_HEAD *head" "TEMP_VARNAME"
175.Ft void
176.Fn ARB_INIT "struct TYPE *elm" "FIELD" "ARB_HEAD *head" "int<8|16|32>_t maxnodes"
177.Ft "struct TYPE *"
178.Fn ARB_INSERT NAME "ARB_HEAD *head" "struct TYPE *elm"
179.Ft "struct TYPE *"
180.Fn ARB_REMOVE NAME "ARB_HEAD *head" "struct TYPE *elm"
181.Ft "struct TYPE *"
182.Fn ARB_REINSERT NAME "ARB_HEAD *head" "struct TYPE *elm"
183.Ft void
184.Fn ARB_RESET_TREE "ARB_HEAD *head" NAME "int<8|16|32>_t maxnodes"
185.Sh DESCRIPTION
186These macros define data structures for and array-based red-black trees.
187They use a single, continuous chunk of memory, and are useful
188e.g., when the tree needs to be transferred between userspace and kernel.
189.Pp
190In the macro definitions,
191.Fa TYPE
192is the name tag of a user defined structure that must contain a field of type
193.Vt ARB_ENTRY ,
194named
195.Fa ENTRYNAME .
196The argument
197.Fa HEADNAME
198is the name tag of a user defined structure that must be declared
199using the
200.Fn ARB_HEAD
201macro.
202The argument
203.Fa NAME
204has to be a unique name prefix for every tree that is defined.
205.Pp
206The function prototypes are declared with
207.Fn ARB_PROTOTYPE ,
208or
209.Fn ARB_PROTOTYPE_STATIC .
210The function bodies are generated with
211.Fn ARB_GENERATE ,
212or
213.Fn ARB_GENERATE_STATIC .
214See the examples below for further explanation of how these macros are used.
215.Pp
216A red-black tree is a binary search tree with the node color as an
217extra attribute.
218It fulfills a set of conditions:
219.Bl -enum -offset indent
220.It
221Every search path from the root to a leaf consists of the same number of
222black nodes.
223.It
224Each red node (except for the root) has a black parent.
225.It
226Each leaf node is black.
227.El
228.Pp
229Every operation on a red-black tree is bounded as
230.Fn O "lg n" .
231The maximum height of a red-black tree is
232.Fn 2lg "n + 1" .
233.Pp
234.Fn ARB_*
235trees require entries to be allocated as an array, and uses array
236indices to link entries together.
237The maximum number of
238.Fn ARB_*
239tree entries is therefore constrained by the minimum of array size and choice of
240signed integer data type used to store array indices.
241Use
242.Fn ARB_ALLOCSIZE
243to compute the size of memory chunk to allocate.
244.Pp
245A red-black tree is headed by a structure defined by the
246.Fn ARB_HEAD
247macro.
248A
249structure is declared with either of the following:
250.Bd -ragged -offset indent
251.Fn ARB<8|16|32>_HEAD HEADNAME TYPE
252.Va head ;
253.Ed
254.Pp
255where
256.Fa HEADNAME
257is the name of the structure to be defined, and struct
258.Fa TYPE
259is the type of the elements to be inserted into the tree.
260.Pp
261The
262.Fn ARB_HEAD
263variant includes a suffix denoting the signed integer data type size
264.Pq in bits
265used to store array indices.
266For example,
267.Fn ARB_HEAD8
268creates a red-black tree head strucutre with 8-bit signed array indices capable
269of indexing up to 128 entries.
270.Pp
271The
272.Fn ARB_ENTRY
273macro declares a structure that allows elements to be connected in the tree.
274Similarly to the
275.Fn ARB<8|16|32>_HEAD
276macro, the
277.Fn ARB_ENTRY
278variant includes a suffix denoting the signed integer data type size
279.Pq in bits
280used to store array indices.
281Entries should use the same number of bits as the tree head structure they will
282be linked into.
283.Pp
284In order to use the functions that manipulate the tree structure,
285their prototypes need to be declared with the
286.Fn ARB_PROTOTYPE
287or
288.Fn ARB_PROTOTYPE_STATIC
289macro,
290where
291.Fa NAME
292is a unique identifier for this particular tree.
293The
294.Fa TYPE
295argument is the type of the structure that is being managed
296by the tree.
297The
298.Fa FIELD
299argument is the name of the element defined by
300.Fn ARB_ENTRY .
301Individual prototypes can be declared with
302.Fn ARB_PROTOTYPE_INSERT ,
303.Fn ARB_PROTOTYPE_INSERT_COLOR ,
304.Fn ARB_PROTOTYPE_REMOVE ,
305.Fn ARB_PROTOTYPE_REMOVE_COLOR ,
306.Fn ARB_PROTOTYPE_FIND ,
307.Fn ARB_PROTOTYPE_NFIND ,
308.Fn ARB_PROTOTYPE_NEXT ,
309.Fn ARB_PROTOTYPE_PREV ,
310.Fn ARB_PROTOTYPE_MINMAX ,
311and
312.Fn ARB_PROTOTYPE_REINSERT
313in case not all functions are required.
314The individual prototype macros expect
315.Fa NAME ,
316.Fa TYPE ,
317and
318.Fa ATTR
319arguments.
320The
321.Fa ATTR
322argument must be empty for global functions or
323.Fa static
324for static functions.
325.Pp
326The function bodies are generated with the
327.Fn ARB_GENERATE
328or
329.Fn ARB_GENERATE_STATIC
330macro.
331These macros take the same arguments as the
332.Fn ARB_PROTOTYPE
333and
334.Fn ARB_PROTOTYPE_STATIC
335macros, but should be used only once.
336As an alternative individual function bodies are generated with the
337.Fn ARB_GENERATE_INSERT ,
338.Fn ARB_GENERATE_INSERT_COLOR ,
339.Fn ARB_GENERATE_REMOVE ,
340.Fn ARB_GENERATE_REMOVE_COLOR ,
341.Fn ARB_GENERATE_FIND ,
342.Fn ARB_GENERATE_NFIND ,
343.Fn ARB_GENERATE_NEXT ,
344.Fn ARB_GENERATE_PREV ,
345.Fn ARB_GENERATE_MINMAX ,
346and
347.Fn ARB_GENERATE_REINSERT
348macros.
349.Pp
350Finally,
351the
352.Fa CMP
353argument is the name of a function used to compare tree nodes
354with each other.
355The function takes two arguments of type
356.Vt "struct TYPE *" .
357If the first argument is smaller than the second, the function returns a
358value smaller than zero.
359If they are equal, the function returns zero.
360Otherwise, it should return a value greater than zero.
361The compare
362function defines the order of the tree elements.
363.Pp
364The
365.Fn ARB_INIT
366macro initializes the tree referenced by
367.Fa head ,
368with the array length of
369.Fa maxnodes .
370.Pp
371The red-black tree can also be initialized statically by using the
372.Fn ARB_INITIALIZER
373macro:
374.Bd -ragged -offset indent
375.Fn ARB<8|16|32>_HEAD HEADNAME TYPE
376.Va head
377=
378.Fn ARB_INITIALIZER &head maxnodes ;
379.Ed
380.Pp
381The
382.Fn ARB_INSERT
383macro inserts the new element
384.Fa elm
385into the tree.
386.Pp
387The
388.Fn ARB_REMOVE
389macro removes the element
390.Fa elm
391from the tree pointed by
392.Fa head .
393.Pp
394The
395.Fn ARB_FIND
396and
397.Fn ARB_NFIND
398macros can be used to find a particular element in the tree.
399.Bd -literal -offset indent
400struct TYPE find, *res;
401find.key = 30;
402res = RB_FIND(NAME, head, &find);
403.Ed
404.Pp
405The
406.Fn ARB_ROOT ,
407.Fn ARB_MIN ,
408.Fn ARB_MAX ,
409.Fn ARB_NEXT ,
410and
411.Fn ARB_PREV
412macros can be used to traverse the tree:
413.Pp
414.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
415.Pp
416Or, for simplicity, one can use the
417.Fn ARB_FOREACH
418or
419.Fn ARB_FOREACH_REVERSE
420macro:
421.Bd -ragged -offset indent
422.Fn RB_FOREACH np NAME head
423.Ed
424.Pp
425The macros
426.Fn ARB_FOREACH_SAFE
427and
428.Fn ARB_FOREACH_REVERSE_SAFE
429traverse the tree referenced by head
430in a forward or reverse direction respectively,
431assigning each element in turn to np.
432However, unlike their unsafe counterparts,
433they permit both the removal of np
434as well as freeing it from within the loop safely
435without interfering with the traversal.
436.Pp
437Both
438.Fn ARB_FOREACH_FROM
439and
440.Fn ARB_FOREACH_REVERSE_FROM
441may be used to continue an interrupted traversal
442in a forward or reverse direction respectively.
443The head pointer is not required.
444The pointer to the node from where to resume the traversal
445should be passed as their last argument,
446and will be overwritten to provide safe traversal.
447.Pp
448The
449.Fn ARB_EMPTY
450macro should be used to check whether a red-black tree is empty.
451.Pp
452Given that ARB trees have an intrinsic upper bound on the number of entries,
453some ARB-specific additional macros are defined.
454The
455.Fn ARB_FULL
456macro returns a boolean indicating whether the current number of tree entries
457equals the tree's maximum.
458The
459.Fn ARB_CURNODES
460and
461.Fn ARB_MAXNODES
462macros return the current and maximum number of entries respectively.
463The
464.Fn ARB_GETFREE
465macro returns a pointer to the next free entry in the array of entries, ready to
466be linked into the tree.
467The
468.Fn ARB_INSERT
469returns
470.Dv NULL
471if the element was inserted in the tree successfully, otherwise they
472return a pointer to the element with the colliding key.
473.Pp
474Accordingly,
475.Fn ARB_REMOVE
476returns the pointer to the removed element otherwise they return
477.Dv NULL
478to indicate an error.
479.Pp
480The
481.Fn ARB_REINSERT
482macro updates the position of the element
483.Fa elm
484in the tree.
485This must be called if a member of a
486.Nm tree
487is modified in a way that affects comparison, such as by modifying
488a node's key.
489This is a lower overhead alternative to removing the element
490and reinserting it again.
491.Pp
492The
493.Fn ARB_RESET_TREE
494macro discards the tree topology.
495It does not modify embedded object values or the free list.
496.Sh SEE ALSO
497.Xr queue 3 ,
498.Xr tree 3
499.Sh HISTORY
500The
501.Nm ARB
502macros first appeared in
503.Fx 13.0 .
504.Sh AUTHORS
505The
506.Nm ARB
507macros were implemented by
508.An Lawrence Stewart Aq Mt lstewart@FreeBSD.org ,
509based on
510.Xr tree 3
511macros written by
512.An Niels Provos .
513