xref: /freebsd/share/doc/usd/22.trofftut/tt02 (revision edf8578117e8844e02c0121147f45e4609b30680)
This module is believed to contain source code proprietary to AT&T.
Use and redistribution is subject to the Berkeley Software License
Agreement and your Software Agreement with AT&T (Western Electric).

@(#)tt02 8.1 (Berkeley) 6/8/93
Copyright (C) Caldera International Inc. 2001-2002. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code and documentation must retain the above
copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed or owned by Caldera
International, Inc. Neither the name of Caldera International, Inc.
nor the names of other contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE
FOR ANY DIRECT, INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) RISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


Point Sizes; Line Spacing

As mentioned above, the command .ps sets the point size. One point is 1/72 inch, so 6-point characters are at most 1/12 inch high, and 36-point characters are \(12 inch. There are 15 point sizes, listed below.

1 1 6 point: Pack my box with five dozen liquor jugs. .vs 8p 7 point: Pack my box with five dozen liquor jugs. .vs 9p 8 point: Pack my box with five dozen liquor jugs. .vs 10p 9 point: Pack my box with five dozen liquor jugs. .vs 11p 10 point: Pack my box with five dozen liquor .vs 12p 11 point: Pack my box with five dozen .vs 14p 12 point: Pack my box with five dozen .vs 16p 14 point: Pack my box with five .vs 24p \s1616 point\s18 18 point\s20 20 point .vs 40p \s2222\s24 24\s28 28\s36 36 .vs 12p

2

If the number after .ps is not one of these legal sizes, it is rounded up to the next valid value, with a maximum of 36. If no number follows .ps , troff reverts to the previous size, whatever it was. troff begins with point size 10, which is usually fine. The original of this document (on 8.5 by 11 inch paper) is in 9 point.

The point size can also be changed in the middle of a line or even a word with the in-line command \es . To produce

1 \s8UNIX\s10 runs on a \s8PDP-\s1011/45

2 type

1 \es8UNIX\es10 runs on a \es8PDP-\es1011/45

2 As above, \es should be followed by a legal point size, except that \es0 causes the size to revert to its previous value. Notice that \es1011 can be understood correctly as `size 10, followed by an 11', if the size is legal, but not otherwise. Be cautious with similar constructions.

Relative size changes are also legal and useful:

1 \es-2UNIX\es+2

2 temporarily decreases the size, whatever it is, by two points, then restores it. Relative size changes have the advantage that the size difference is independent of the starting size of the document. The amount of the relative change is restricted to a single digit. .WS

The other parameter that determines what the type looks like is the spacing between lines, which is set independently of the point size. Vertical spacing is measured from the bottom of one line to the bottom of the next. The command to control vertical spacing is .vs . For running text, it is usually best to set the vertical spacing about 20% bigger than the character size. For example, so far in this document, we have used ``9 on 11'', that is,

1 ^ps 9 ^vs 11p

2 If we changed to

1 ^ps 9 ^vs 9p

2 .vs 9p the running text would look like this. After a few lines, you will agree it looks a little cramped. The right vertical spacing is partly a matter of taste, depending on how much text you want to squeeze into a given space, and partly a matter of traditional printing style. By default, troff uses 10 on 12.

.vs 14p Point size and vertical spacing make a substantial difference in the amount of text per square inch. This is 12 on 14.

.vs 7p Point size and vertical spacing make a substantial difference in the amount of text per square inch. For example, 10 on 12 uses about twice as much space as 7 on 8. This is 6 on 7, which is even smaller. It packs a lot more words per line, but you can go blind trying to read it.

When used without arguments, .ps and .vs revert to the previous size and vertical spacing respectively. .WS

The command .sp is used to get extra vertical space. Unadorned, it gives you one extra blank line (one .vs , whatever that has been set to). Typically, that's more or less than you want, so .sp can be followed by information about how much space you want _

1 ^sp 2i

2 means `two inches of vertical space'.

1 ^sp 2p

2 means `two points of vertical space'; and

1 ^sp 2

2 means `two vertical spaces' _ two of whatever .vs is set to (this can also be made explicit with .sp 2v ); troff also understands decimal fractions in most places, so

1 ^sp 1.5i

2 is a space of 1.5 inches. These same scale factors can be used after .vs to define line spacing, and in fact after most commands that deal with physical dimensions.

It should be noted that all size numbers are converted internally to `machine units', which are 1/432 inch (1/6 point). For most purposes, this is enough resolution that you don't have to worry about the accuracy of the representation. The situation is not quite so good vertically, where resolution is 1/144 inch (1/2 point).