Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "PROVIDER-DECODER 7ossl"
way too many mistakes in technical documents.
The \s-1DECODER\s0 operation is a generic method to create a provider-native object reference or intermediate decoded data from an encoded form read from the given \s-1OSSL_CORE_BIO\s0. If the caller wants to decode data from memory, it should provide a BIO_s_mem\|(3) \s-1BIO\s0. The decoded data or object reference is passed along with eventual metadata to the metadata_cb as \s-1OSSL_PARAM\s0\|(3) parameters.
The decoder doesn't need to know more about the \s-1OSSL_CORE_BIO\s0 pointer than being able to pass it to the appropriate \s-1BIO\s0 upcalls (see \*(L"Core functions\*(R" in provider-base\|(7)).
The \s-1DECODER\s0 implementation may be part of a chain, where data is passed from one to the next. For example, there may be an implementation to decode an object from \s-1PEM\s0 to \s-1DER,\s0 and another one that decodes \s-1DER\s0 to a provider-native object.
The last decoding step in the decoding chain is usually supposed to create a provider-native object referenced by an object reference. To import that object into a different provider the OSSL_FUNC_decoder_export_object() can be called as the final step of the decoding process.
All \*(L"functions\*(R" mentioned here are passed as function pointers between \fIlibcrypto and the provider in \s-1OSSL_DISPATCH\s0\|(3) arrays via \s-1OSSL_ALGORITHM\s0\|(3) arrays that are returned by the provider's \fBprovider_query_operation() function (see \*(L"Provider Functions\*(R" in provider-base\|(7)).
All these \*(L"functions\*(R" have a corresponding function type definition named OSSL_FUNC_{name}_fn, and a helper function to retrieve the function pointer from an \s-1OSSL_DISPATCH\s0\|(3) element named \fBOSSL_FUNC_{name}. For example, the \*(L"function\*(R" OSSL_FUNC_decoder_decode() has these:
.Vb 7 typedef int (OSSL_FUNC_decoder_decode_fn)(void *ctx, OSSL_CORE_BIO *in, int selection, OSSL_CALLBACK *data_cb, void *data_cbarg, OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg); static ossl_inline OSSL_FUNC_decoder_decode_fn* OSSL_FUNC_decoder_decode(const OSSL_DISPATCH *opf); .Ve
\s-1OSSL_DISPATCH\s0\|(3) arrays are indexed by numbers that are provided as macros in openssl-core_dispatch.h\|(7), as follows:
.Vb 2 OSSL_FUNC_decoder_get_params OSSL_FUNC_DECODER_GET_PARAMS OSSL_FUNC_decoder_gettable_params OSSL_FUNC_DECODER_GETTABLE_PARAMS \& OSSL_FUNC_decoder_newctx OSSL_FUNC_DECODER_NEWCTX OSSL_FUNC_decoder_freectx OSSL_FUNC_DECODER_FREECTX OSSL_FUNC_decoder_set_ctx_params OSSL_FUNC_DECODER_SET_CTX_PARAMS OSSL_FUNC_decoder_settable_ctx_params OSSL_FUNC_DECODER_SETTABLE_CTX_PARAMS \& OSSL_FUNC_decoder_does_selection OSSL_FUNC_DECODER_DOES_SELECTION \& OSSL_FUNC_decoder_decode OSSL_FUNC_DECODER_DECODE \& OSSL_FUNC_decoder_export_object OSSL_FUNC_DECODER_EXPORT_OBJECT .Ve
Properties can be used to further specify details about an implementation:
Item "type-specific" Type specific structure. Item "pkcs8" Structure according to the PKCS#8 specification. Item "SubjectPublicKeyInfo" Encoding of public keys according to the Subject Public Key Info of \s-1RFC 5280.\s0
The possible values of both these properties is open ended. A provider may very well specify input types and structures that libcrypto doesn't know anything about.
This set of bits depend entirely on what kind of provider-side object is to be decoded. For example, those bits are assumed to be the same as those used with provider-keymgmt\|(7) (see \*(L"Key Objects\*(R" in provider-keymgmt\|(7)) when the object is an asymmetric keypair - e.g., \s-1OSSL_KEYMGMT_SELECT_PRIVATE_KEY\s0 if the object to be decoded is supposed to contain private key components.
\fBOSSL_FUNC_decoder_does_selection() should tell if a particular implementation supports any of the combinations given by selection.
\fBOSSL_FUNC_decoder_freectx() frees the given ctx as created by \fBOSSL_FUNC_decoder_newctx().
\fBOSSL_FUNC_decoder_set_ctx_params() sets context data according to parameters from params that it recognises. Unrecognised parameters should be ignored. Passing \s-1NULL\s0 for params should return true.
\fBOSSL_FUNC_decoder_settable_ctx_params() returns a constant \s-1OSSL_PARAM\s0\|(3) array describing the parameters that OSSL_FUNC_decoder_set_ctx_params() can handle.
See \s-1OSSL_PARAM\s0\|(3) for further details on the parameters structure used by \fBOSSL_FUNC_decoder_set_ctx_params() and OSSL_FUNC_decoder_settable_ctx_params().
\fBOSSL_FUNC_decoder_export_object() should export the object of size objref_sz referenced by objref as an \s-1OSSL_PARAM\s0\|(3) array and pass that into the \fIexport_cb as well as the given export_cbarg.
It's important to understand that the return value from this function is interpreted as follows:
The conditions to stop the decoding process are at the discretion of the implementation.
Parameters currently recognised by the built-in pass phrase callback: Item "info (OSSL_PASSPHRASE_PARAM_INFO) <UTF8 string>" A string of information that will become part of the pass phrase prompt. This could be used to give the user information on what kind of object it's being prompted for.
\fBOSSL_FUNC_decoder_set_ctx_params() returns 1, unless a recognised parameter was invalid or caused an error, for which 0 is returned.
\fBOSSL_FUNC_decoder_settable_ctx_params() returns a pointer to an array of constant \s-1OSSL_PARAM\s0\|(3) elements.
\fBOSSL_FUNC_decoder_does_selection() returns 1 if the decoder implementation supports any of the selection bits, otherwise 0.
\fBOSSL_FUNC_decoder_decode() returns 1 to signal that the decoding process should continue, or 0 to signal that it should stop.
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.