Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "EVP_PKEY-RSA 7"
way too many mistakes in technical documents.
0 Item "rsa-factor2 (OSSL_PKEY_PARAM_RSA_FACTOR2) <unsigned integer>" Item "rsa-factor3 (OSSL_PKEY_PARAM_RSA_FACTOR3) <unsigned integer>" Item "rsa-factor4 (OSSL_PKEY_PARAM_RSA_FACTOR4) <unsigned integer>" Item "rsa-factor5 (OSSL_PKEY_PARAM_RSA_FACTOR5) <unsigned integer>" Item "rsa-factor6 (OSSL_PKEY_PARAM_RSA_FACTOR6) <unsigned integer>" Item "rsa-factor7 (OSSL_PKEY_PARAM_RSA_FACTOR7) <unsigned integer>" Item "rsa-factor8 (OSSL_PKEY_PARAM_RSA_FACTOR8) <unsigned integer>" Item "rsa-factor9 (OSSL_PKEY_PARAM_RSA_FACTOR9) <unsigned integer>" Item "rsa-factor10 (OSSL_PKEY_PARAM_RSA_FACTOR10) <unsigned integer>"
\s-1RSA\s0 prime factors. The factors are known as \*(L"p\*(R", \*(L"q\*(R" and \*(L"r_i\*(R" in \s-1RFC8017.\s0 Up to eight additional \*(L"r_i\*(R" prime factors are supported. Item "rsa-exponent1 (OSSL_PKEY_PARAM_RSA_EXPONENT1) <unsigned integer>"
0 Item "rsa-exponent2 (OSSL_PKEY_PARAM_RSA_EXPONENT2) <unsigned integer>" Item "rsa-exponent3 (OSSL_PKEY_PARAM_RSA_EXPONENT3) <unsigned integer>" Item "rsa-exponent4 (OSSL_PKEY_PARAM_RSA_EXPONENT4) <unsigned integer>" Item "rsa-exponent5 (OSSL_PKEY_PARAM_RSA_EXPONENT5) <unsigned integer>" Item "rsa-exponent6 (OSSL_PKEY_PARAM_RSA_EXPONENT6) <unsigned integer>" Item "rsa-exponent7 (OSSL_PKEY_PARAM_RSA_EXPONENT7) <unsigned integer>" Item "rsa-exponent8 (OSSL_PKEY_PARAM_RSA_EXPONENT8) <unsigned integer>" Item "rsa-exponent9 (OSSL_PKEY_PARAM_RSA_EXPONENT9) <unsigned integer>" Item "rsa-exponent10 (OSSL_PKEY_PARAM_RSA_EXPONENT10) <unsigned integer>"
\s-1RSA CRT\s0 (Chinese Remainder Theorem) exponents. The exponents are known as \*(L"dP\*(R", \*(L"dQ\*(R" and \*(L"d_i in \s-1RFC8017\*(R".\s0 Up to eight additional \*(L"d_i\*(R" exponents are supported. Item "rsa-coefficient1 (OSSL_PKEY_PARAM_RSA_COEFFICIENT1) <unsigned integer>"
0 Item "rsa-coefficient2 (OSSL_PKEY_PARAM_RSA_COEFFICIENT2) <unsigned integer>" Item "rsa-coefficient3 (OSSL_PKEY_PARAM_RSA_COEFFICIENT3) <unsigned integer>" Item "rsa-coefficient4 (OSSL_PKEY_PARAM_RSA_COEFFICIENT4) <unsigned integer>" Item "rsa-coefficient5 (OSSL_PKEY_PARAM_RSA_COEFFICIENT5) <unsigned integer>" Item "rsa-coefficient6 (OSSL_PKEY_PARAM_RSA_COEFFICIENT6) <unsigned integer>" Item "rsa-coefficient7 (OSSL_PKEY_PARAM_RSA_COEFFICIENT7) <unsigned integer>" Item "rsa-coefficient8 (OSSL_PKEY_PARAM_RSA_COEFFICIENT8) <unsigned integer>" Item "rsa-coefficient9 (OSSL_PKEY_PARAM_RSA_COEFFICIENT9) <unsigned integer>"
\s-1RSA CRT\s0 (Chinese Remainder Theorem) coefficients. The coefficients are known as \*(L"qInv\*(R" and \*(L"t_i\*(R". Up to eight additional \*(L"t_i\*(R" exponents are supported.
0 Item "xq (OSSL_PKEY_PARAM_RSA_TEST_XQ) <unsigned integer>"
These 2 fields are normally randomly generated and are used to generate \*(L"p\*(R" and \*(L"q\*(R". Item "xp1 (OSSL_PKEY_PARAM_RSA_TEST_XP1) <unsigned integer>"
0 Item "xp2 (OSSL_PKEY_PARAM_RSA_TEST_XP2) <unsigned integer>" Item "xq1 (OSSL_PKEY_PARAM_RSA_TEST_XQ1) <unsigned integer>" Item "xq2 (OSSL_PKEY_PARAM_RSA_TEST_XQ2) <unsigned integer>"
These 4 fields are normally randomly generated. The prime factors \*(L"p1\*(R", \*(L"p2\*(R", \*(L"q1\*(R" and \*(L"q2\*(R" are determined from these values.
0 Item "p2 (OSSL_PKEY_PARAM_RSA_TEST_P2) <unsigned integer>" Item "q1 (OSSL_PKEY_PARAM_RSA_TEST_Q1) <unsigned integer>" Item "q2 (OSSL_PKEY_PARAM_RSA_TEST_Q2) <unsigned integer>"
The auxiliary probable primes.
For \s-1RSA\s0 keys, EVP_PKEY_public_check\|(3) conforms to the SP800-56Br1 public key check when the OpenSSL \s-1FIPS\s0 provider is used. The OpenSSL default provider performs similiar tests but relaxes the keysize restrictions for backwards compatibility.
For \s-1RSA\s0 keys, EVP_PKEY_public_check_quick\|(3) is the same as \fBEVP_PKEY_public_check\|(3).
For \s-1RSA\s0 keys, EVP_PKEY_private_check\|(3) conforms to the SP800-56Br1 \fIprivate key test.
For \s-1RSA\s0 keys, EVP_PKEY_pairwise_check\|(3) conforms to the SP800-56Br1 KeyPair Validation check for the OpenSSL \s-1FIPS\s0 provider. The OpenSSL default provider allows testing of the validity of multi-primes.
.Vb 2 EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_from_name(NULL, "RSA", NULL); .Ve
An \s-1RSA\s0 key can be generated simply like this:
.Vb 1 pkey = EVP_RSA_gen(4096); .Ve
or like this:
.Vb 3 EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_from_name(NULL, "RSA", NULL); \& EVP_PKEY_keygen_init(pctx); EVP_PKEY_generate(pctx, &pkey); EVP_PKEY_CTX_free(pctx); .Ve
An \s-1RSA\s0 key can be generated with key generation parameters:
.Vb 5 unsigned int primes = 3; unsigned int bits = 4096; OSSL_PARAM params[3]; EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_from_name(NULL, "RSA", NULL); \& EVP_PKEY_keygen_init(pctx); \& params[0] = OSSL_PARAM_construct_uint("bits", &bits); params[1] = OSSL_PARAM_construct_uint("primes", &primes); params[2] = OSSL_PARAM_construct_end(); EVP_PKEY_CTX_set_params(pctx, params); \& EVP_PKEY_generate(pctx, &pkey); EVP_PKEY_print_private(bio_out, pkey, 0, NULL); EVP_PKEY_CTX_free(pctx); .Ve
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.