xref: /freebsd/secure/lib/libcrypto/man/man7/EVP_KDF-SS.7 (revision 5ca8c28cd8c725b81781201cfdb5f9969396f934)
Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "EVP_KDF-SS 7ossl"
EVP_KDF-SS 7ossl "2023-09-19" "3.0.11" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
EVP_KDF-SS - The Single Step / One Step EVP_KDF implementation
"DESCRIPTION"
Header "DESCRIPTION" The \s-1EVP_KDF-SS\s0 algorithm implements the Single Step key derivation function (\s-1SSKDF\s0). \s-1SSKDF\s0 derives a key using input such as a shared secret key (that was generated during the execution of a key establishment scheme) and fixedinfo. \s-1SSKDF\s0 is also informally referred to as 'Concat \s-1KDF\s0'.
"Auxiliary function"
Subsection "Auxiliary function" The implementation uses a selectable auxiliary function H, which can be one of:
"H(x) = hash(x, digest=md)" 4
Item "H(x) = hash(x, digest=md)"

0

"H(x) = HMAC_hash(x, key=salt, digest=md)" 4
Item "H(x) = HMAC_hash(x, key=salt, digest=md)" Item "H(x) = KMACxxx(x, key=salt, custom=KDF, outlen=mac_size)"

Both the \s-1HMAC\s0 and \s-1KMAC\s0 implementations set the key using the 'salt' value. The hash and \s-1HMAC\s0 also require the digest to be set.

"Identity"
Subsection "Identity" \*(L"\s-1SSKDF\*(R"\s0 is the name for this implementation; it can be used with the EVP_KDF_fetch() function.
"Supported parameters"
Subsection "Supported parameters" The supported parameters are: Item "properties (OSSL_KDF_PARAM_PROPERTIES) <UTF8 string>"

0 Item "digest (OSSL_KDF_PARAM_DIGEST) <UTF8 string>"

This parameter is ignored for \s-1KMAC.\s0 Item "mac (OSSL_KDF_PARAM_MAC) <UTF8 string>"

0 Item "maclen (OSSL_KDF_PARAM_MAC_SIZE) <unsigned integer>" Item "salt (OSSL_KDF_PARAM_SALT) <octet string>"

These parameters work as described in \*(L"\s-1PARAMETERS\*(R"\s0 in \s-1EVP_KDF\s0\|(3). Item "key (EVP_KDF_CTRL_SET_KEY) <octet string>" This parameter set the shared secret that is used for key derivation. Item "info (OSSL_KDF_PARAM_INFO) <octet string>" This parameter sets an optional value for fixedinfo, also known as otherinfo.

"NOTES"
Header "NOTES" A context for \s-1SSKDF\s0 can be obtained by calling:

.Vb 2 EVP_KDF *kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf); .Ve

The output length of an \s-1SSKDF\s0 is specified via the keylen parameter to the EVP_KDF_derive\|(3) function.

"EXAMPLES"
Header "EXAMPLES" This example derives 10 bytes using H(x) = \s-1SHA-256,\s0 with the secret key \*(L"secret\*(R" and fixedinfo value \*(L"label\*(R":

.Vb 4 EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[4], *p = params; \& kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf); \& *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha256, strlen(SN_sha256)); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) { error("EVP_KDF_derive"); } \& EVP_KDF_CTX_free(kctx); .Ve

This example derives 10 bytes using H(x) = \s-1HMAC\s0(\s-1SHA-256\s0), with the secret key \*(L"secret\*(R", fixedinfo value \*(L"label\*(R" and salt \*(L"salt\*(R":

.Vb 4 EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[6], *p = params; \& kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf); \& *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC, SN_hmac, strlen(SN_hmac)); *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha256, strlen(SN_sha256)); *p++ = OSSL_PARAM_construct_octet_string(EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, "salt", (size_t)4); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) { error("EVP_KDF_derive"); } \& EVP_KDF_CTX_free(kctx); .Ve

This example derives 10 bytes using H(x) = \s-1KMAC128\s0(x,salt,outlen), with the secret key \*(L"secret\*(R" fixedinfo value \*(L"label\*(R", salt of \*(L"salt\*(R" and \s-1KMAC\s0 outlen of 20:

.Vb 4 EVP_KDF *kdf; EVP_KDF_CTX *kctx; unsigned char out[10]; OSSL_PARAM params[6], *p = params; \& kdf = EVP_KDF_fetch(NULL, "SSKDF", NULL); kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf); \& *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_MAC, SN_kmac128, strlen(SN_kmac128)); *p++ = OSSL_PARAM_construct_octet_string(EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO, "label", (size_t)5); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, "salt", (size_t)4); *p++ = OSSL_PARAM_construct_size_t(OSSL_KDF_PARAM_MAC_SIZE, (size_t)20); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) { error("EVP_KDF_derive"); } \& EVP_KDF_CTX_free(kctx); .Ve

"CONFORMING TO"
Header "CONFORMING TO" \s-1NIST\s0 SP800-56Cr1.
"SEE ALSO"
Header "SEE ALSO" \s-1EVP_KDF\s0\|(3), \fBEVP_KDF_CTX_new\|(3), \fBEVP_KDF_CTX_free\|(3), \fBEVP_KDF_CTX_set_params\|(3), \fBEVP_KDF_CTX_get_kdf_size\|(3), \fBEVP_KDF_derive\|(3), \*(L"\s-1PARAMETERS\*(R"\s0 in \s-1EVP_KDF\s0\|(3)
"HISTORY"
Header "HISTORY" This functionality was added in OpenSSL 3.0.
"COPYRIGHT"
Header "COPYRIGHT" Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.

Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.