Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "SSL_CTX_SET1_SIGALGS 3ossl"
way too many mistakes in technical documents.
\fBSSL_CTX_set1_sigalgs_list() and SSL_set1_sigalgs_list() set the supported signature algorithms for ctx or ssl. The str parameter must be a null terminated string consisting of a colon separated list of elements, where each element is either a combination of a public key algorithm and a digest separated by +, or a \s-1TLS 1\s0.3-style named SignatureScheme such as rsa_pss_pss_sha256.
\fBSSL_CTX_set1_client_sigalgs(), SSL_set1_client_sigalgs(), \fBSSL_CTX_set1_client_sigalgs_list() and SSL_set1_client_sigalgs_list() set signature algorithms related to client authentication, otherwise they are identical to SSL_CTX_set1_sigalgs(), SSL_set1_sigalgs(), \fBSSL_CTX_set1_sigalgs_list() and SSL_set1_sigalgs_list().
All these functions are implemented as macros. The signature algorithm parameter (integer array or string) is not freed: the application should free it, if necessary.
The signature algorithms set by a client are used directly in the supported signature algorithm in the client hello message.
The supported signature algorithms set by a server are not sent to the client but are used to determine the set of shared signature algorithms and (if server preferences are set with \s-1SSL_OP_CIPHER_SERVER_PREFERENCE\s0) their order.
The client authentication signature algorithms set by a server are sent in a certificate request message if client authentication is enabled, otherwise they are unused.
Similarly client authentication signature algorithms set by a client are used to determined the set of client authentication shared signature algorithms.
Signature algorithms will neither be advertised nor used if the security level prohibits them (for example \s-1SHA1\s0 if the security level is 4 or more).
Currently the NID_md5, NID_sha1, NID_sha224, NID_sha256, NID_sha384 and NID_sha512 digest NIDs are supported and the public key algorithm NIDs \s-1EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_DSA\s0 and \s-1EVP_PKEY_EC.\s0
The short or long name values for digests can be used in a string (for example \*(L"\s-1MD5\*(R", \*(L"SHA1\*(R", \*(L"SHA224\*(R", \*(L"SHA256\*(R", \*(L"SHA384\*(R", \*(L"SHA512\*(R"\s0) and the public key algorithm strings \*(L"\s-1RSA\*(R",\s0 \*(L"RSA-PSS\*(R", \*(L"\s-1DSA\*(R"\s0 or \*(L"\s-1ECDSA\*(R".\s0
The \s-1TLS 1.3\s0 signature scheme names (such as \*(L"rsa_pss_pss_sha256\*(R") can also be used with the _list forms of the \s-1API.\s0
The use of \s-1MD5\s0 as a digest is strongly discouraged due to security weaknesses.
.Vb 1 const int slist[] = {NID_sha256, EVP_PKEY_EC, NID_sha256, EVP_PKEY_RSA}; \& SSL_CTX_set1_sigalgs(ctx, slist, 4); .Ve
Set supported signature algorithms to \s-1SHA256\s0 with \s-1ECDSA\s0 and \s-1SHA256\s0 with \s-1RSA\s0 using a string:
.Vb 1 SSL_CTX_set1_sigalgs_list(ctx, "ECDSA+SHA256:RSA+SHA256"); .Ve
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.