Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "RSA_GENERATE_KEY 3ossl"
way too many mistakes in technical documents.
The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely by defining \s-1OPENSSL_API_COMPAT\s0 with a suitable version value, see openssl_user_macros\|(7):
.Vb 2 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb); int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb); .Ve
The following function has been deprecated since OpenSSL 0.9.8, and can be hidden entirely by defining \s-1OPENSSL_API_COMPAT\s0 with a suitable version value, see openssl_user_macros\|(7):
.Vb 2 RSA *RSA_generate_key(int bits, unsigned long e, void (*callback)(int, int, void *), void *cb_arg); .Ve
All of the functions described below are deprecated. Applications should instead use EVP_RSA_gen(), EVP_PKEY_Q_keygen\|(3), or \fBEVP_PKEY_keygen_init\|(3) and EVP_PKEY_keygen\|(3).
\fBRSA_generate_key_ex() generates a 2-prime \s-1RSA\s0 key pair and stores it in the \fB\s-1RSA\s0 structure provided in rsa.
\fBRSA_generate_multi_prime_key() generates a multi-prime \s-1RSA\s0 key pair and stores it in the \s-1RSA\s0 structure provided in rsa. The number of primes is given by the primes parameter. If the automatic seeding or reseeding of the OpenSSL \s-1CSPRNG\s0 fails due to external circumstances (see \s-1RAND\s0\|(7)), the operation will fail.
The modulus size will be of length bits, the number of primes to form the modulus will be primes, and the public exponent will be e. Key sizes with num < 1024 should be considered insecure. The exponent is an odd number, typically 3, 17 or 65537.
In order to maintain adequate security level, the maximum number of permitted \fIprimes depends on modulus bit length:
.Vb 3 <1024 | >=1024 | >=4096 | >=8192 ------+--------+--------+------- 2 | 3 | 4 | 5 .Ve
A callback function may be used to provide feedback about the progress of the key generation. If cb is not \s-1NULL,\s0 it will be called as follows using the BN_GENCB_call() function described on the BN_generate_prime\|(3) page.
\fBRSA_generate_key() is similar to RSA_generate_key_ex() but expects an old-style callback function; see \fBBN_generate_prime\|(3) for information on the old-style callback.
The process is then repeated for prime q and other primes (if any) with BN_GENCB_call(cb, 3, i) where i indicates the i-th prime.
\fBRSA_generate_multi_prime_key() returns 1 on success or 0 on error. \fBRSA_generate_key_ex() returns 1 on success or 0 on error. The error codes can be obtained by ERR_get_error\|(3).
\fBRSA_generate_key() returns a pointer to the \s-1RSA\s0 structure or \s-1NULL\s0 if the key generation fails.
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.