Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "PEM_READ_CMS 3ossl"
way too many mistakes in technical documents.
The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely by defining \s-1OPENSSL_API_COMPAT\s0 with a suitable version value, see openssl_user_macros\|(7):
.Vb 1 #include <openssl/pem.h> \& int PEM_write_DHxparams(FILE *out, const DH *dh); int PEM_write_bio_DHxparams(BIO *out, const DH *dh); EC_GROUP *PEM_read_ECPKParameters(FILE *fp, EC_GROUP **x, pem_password_cb *cb, void *u); EC_GROUP *PEM_read_bio_ECPKParameters(BIO *bp, EC_GROUP **x, pem_password_cb *cb, void *u); int PEM_write_ECPKParameters(FILE *out, const EC_GROUP *x); int PEM_write_bio_ECPKParameters(BIO *out, const EC_GROUP *x), \& EC_KEY *PEM_read_EC_PUBKEY(FILE *fp, EC_KEY **x, pem_password_cb *cb, void *u); EC_KEY *PEM_read_bio_EC_PUBKEY(BIO *bp, EC_KEY **x, pem_password_cb *cb, void *u); int PEM_write_EC_PUBKEY(FILE *out, const EC_KEY *x); int PEM_write_bio_EC_PUBKEY(BIO *out, const EC_KEY *x); \& EC_KEY *PEM_read_ECPrivateKey(FILE *out, EC_KEY **x, pem_password_cb *cb, void *u); EC_KEY *PEM_read_bio_ECPrivateKey(BIO *out, EC_KEY **x, pem_password_cb *cb, void *u); int PEM_write_ECPrivateKey(FILE *out, const EC_KEY *x, const EVP_CIPHER *enc, const unsigned char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_bio_ECPrivateKey(BIO *out, const EC_KEY *x, const EVP_CIPHER *enc, const unsigned char *kstr, int klen, pem_password_cb *cb, void *u); .Ve
In the description below, \f(BI\s-1TYPE\s0 is used as a placeholder for any of the OpenSSL datatypes, such as X509. The macro DECLARE_PEM_rw expands to the set of declarations shown in the next four lines of the synopsis.
These routines convert between local instances of \s-1ASN1\s0 datatypes and the \s-1PEM\s0 encoding. For more information on the templates, see \s-1ASN1_ITEM\s0\|(3). For more information on the lower-level routines used by the functions here, see PEM_read\|(3).
\fBPEM_read_\f(BI\s-1TYPE\s0() reads a PEM-encoded object of \f(BI\s-1TYPE\s0 from the file \fIfp and returns it. The cb and u parameters are as described in \fBpem_password_cb\|(3).
\fBPEM_read_bio_\f(BI\s-1TYPE\s0() is similar to PEM_read_\f(BI\s-1TYPE\s0() but reads from the \s-1BIO\s0 bp.
\fBPEM_write_\f(BI\s-1TYPE\s0() writes the \s-1PEM\s0 encoding of the object a to the file \fIfp.
\fBPEM_write_bio_\f(BI\s-1TYPE\s0() similarly writes to the \s-1BIO\s0 bp.
\fBPEM_write_\f(BI\s-1TYPE\s0() and PEM_write_bio_\f(BI\s-1TYPE\s0() return 1 for success or 0 for failure.
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.