Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "OPENSSL_SECURE_MALLOC 3ossl"
way too many mistakes in technical documents.
If a secure heap is used, then private key \s-1BIGNUM\s0 values are stored there. This protects long-term storage of private keys, but will not necessarily put all intermediate values and computations there.
\fBCRYPTO_secure_malloc_init() creates the secure heap, with the specified \f(CW\*(C`size\*(C' in bytes. The \*(C`minsize\*(C' parameter is the minimum size to allocate from the heap or zero to use a reasonable default value. Both \*(C`size\*(C' and, if specified, \*(C`minsize\*(C' must be a power of two and \f(CW\*(C`minsize\*(C' should generally be small, for example 16 or 32. \f(CW\*(C`minsize\*(C' must be less than a quarter of \*(C`size\*(C' in any case.
\fBCRYPTO_secure_malloc_initialized() indicates whether or not the secure heap as been initialized and is available.
\fBCRYPTO_secure_malloc_done() releases the heap and makes the memory unavailable to the process if all secure memory has been freed. It can take noticeably long to complete.
\fBOPENSSL_secure_malloc() allocates \*(C`num\*(C' bytes from the heap. If CRYPTO_secure_malloc_init() is not called, this is equivalent to calling OPENSSL_malloc(). It is a macro that expands to \fBCRYPTO_secure_malloc() and adds the \*(C`_\|_FILE_\|_\*(C' and \*(C`_\|_LINE_\|_\*(C' parameters.
\fBOPENSSL_secure_zalloc() and CRYPTO_secure_zalloc() are like \fBOPENSSL_secure_malloc() and CRYPTO_secure_malloc(), respectively, except that they call memset() to zero the memory before returning.
\fBOPENSSL_secure_free() releases the memory at \*(C`ptr\*(C' back to the heap. It must be called with a value previously obtained from \fBOPENSSL_secure_malloc(). If CRYPTO_secure_malloc_init() is not called, this is equivalent to calling OPENSSL_free(). It exists for consistency with OPENSSL_secure_malloc() , and is a macro that expands to CRYPTO_secure_free() and adds the \*(C`_\|_FILE_\|_\*(C' and \*(C`_\|_LINE_\|_\*(C' parameters..
\fBOPENSSL_secure_clear_free() is similar to OPENSSL_secure_free() except that it has an additional \*(C`num\*(C' parameter which is used to clear the memory if it was not allocated from the secure heap. If CRYPTO_secure_malloc_init() is not called, this is equivalent to calling OPENSSL_clear_free().
\fBOPENSSL_secure_actual_size() tells the actual size allocated to the pointer; implementations may allocate more space than initially requested, in order to \*(L"round up\*(R" and reduce secure heap fragmentation.
\fBOPENSSL_secure_allocated() tells if a pointer is allocated in the secure heap.
\fBCRYPTO_secure_used() returns the number of bytes allocated in the secure heap.
\fBCRYPTO_secure_malloc_initialized() returns 1 if the secure heap is available (that is, if CRYPTO_secure_malloc_init() has been called, but CRYPTO_secure_malloc_done() has not been called or failed) or 0 if not.
\fBOPENSSL_secure_malloc() and OPENSSL_secure_zalloc() return a pointer into the secure heap of the requested size, or \*(C`NULL\*(C' if memory could not be allocated.
\fBCRYPTO_secure_allocated() returns 1 if the pointer is in the secure heap, or 0 if not.
\fBCRYPTO_secure_malloc_done() returns 1 if the secure memory area is released, or 0 if not.
\fBOPENSSL_secure_free() and OPENSSL_secure_clear_free() return no values.
The second argument to CRYPTO_secure_malloc_init() was changed from an int to a size_t in OpenSSL 3.0.
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.