Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "EVP_PKEY_KEYGEN 3ossl"
way too many mistakes in technical documents.
To flexibly allow all that's just been described, key parameter and key generation is divided into an initialization of a key algorithm context, functions to set user provided parameters, and finally the key parameter or key generation function itself.
The key algorithm context must be created using EVP_PKEY_CTX_new\|(3) or variants thereof, see that manual for details.
\fBEVP_PKEY_keygen_init() initializes a public key algorithm context ctx for a key generation operation.
\fBEVP_PKEY_paramgen_init() is similar to EVP_PKEY_keygen_init() except key parameters are generated.
After initialization, generation parameters may be provided with \fBEVP_PKEY_CTX_ctrl\|(3) or EVP_PKEY_CTX_set_params\|(3), or any other function described in those manuals.
\fBEVP_PKEY_generate() performs the generation operation, the resulting key parameters or key are written to *ppkey. If *ppkey is \s-1NULL\s0 when this function is called, it will be allocated, and should be freed by the caller when no longer useful, using EVP_PKEY_free\|(3).
\fBEVP_PKEY_paramgen() and EVP_PKEY_keygen() do exactly the same thing as \fBEVP_PKEY_generate(), after checking that the corresponding EVP_PKEY_paramgen_init() or EVP_PKEY_keygen_init() was used to initialize ctx. These are older functions that are kept for backward compatibility. It is safe to use EVP_PKEY_generate() instead.
The function EVP_PKEY_set_cb() sets the key or parameter generation callback to cb. The function EVP_PKEY_CTX_get_cb() returns the key or parameter generation callback.
The function EVP_PKEY_CTX_get_keygen_info() returns parameters associated with the generation operation. If idx is -1 the total number of parameters available is returned. Any non negative value returns the value of that parameter. EVP_PKEY_CTX_gen_keygen_info() with a nonnegative value for \fIidx should only be called within the generation callback.
If the callback returns 0 then the key generation operation is aborted and an error occurs. This might occur during a time consuming operation where a user clicks on a \*(L"cancel\*(R" button.
The functions EVP_PKEY_CTX_set_app_data() and EVP_PKEY_CTX_get_app_data() set and retrieve an opaque pointer. This can be used to set some application defined value which can be retrieved in the callback: for example a handle which is used to update a \*(L"progress dialog\*(R".
\fBEVP_PKEY_Q_keygen() abstracts from the explicit use of \s-1EVP_PKEY_CTX\s0 while providing a 'quick' but limited way of generating a new asymmetric key pair. It provides shorthands for simple and common cases of key generation. As usual, the library context libctx and property query propq can be given for fetching algorithms from providers. If type is \*(C`RSA\*(C', a size_t parameter must be given to specify the size of the \s-1RSA\s0 key. If type is \*(C`EC\*(C', a string parameter must be given to specify the name of the \s-1EC\s0 curve. If type is \*(C`X25519\*(C', \*(C`X448\*(C', \*(C`ED25519\*(C', \*(C`ED448\*(C', or \*(C`SM2\*(C' no further parameter is needed.
\fBEVP_PKEY_Q_keygen() returns an \s-1EVP_PKEY\s0, or \s-1NULL\s0 on failure.
The functions EVP_PKEY_keygen() and EVP_PKEY_paramgen() can be called more than once on the same context if several operations are performed using the same parameters.
The meaning of the parameters passed to the callback will depend on the algorithm and the specific implementation of the algorithm. Some might not give any useful information at all during key or parameter generation. Others might not even call the callback.
The operation performed by key or parameter generation depends on the algorithm used. In some cases (e.g. \s-1EC\s0 with a supplied named curve) the \*(L"generation\*(R" option merely sets the appropriate fields in an \s-1EVP_PKEY\s0 structure.
In OpenSSL an \s-1EVP_PKEY\s0 structure containing a private key also contains the public key components and parameters (if any). An OpenSSL private key is equivalent to what some libraries call a \*(L"key pair\*(R". A private key can be used in functions which require the use of a public key or parameters.
.Vb 2 #include <openssl/evp.h> #include <openssl/rsa.h> \& EVP_PKEY_CTX *ctx; EVP_PKEY *pkey = NULL; \& ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); if (!ctx) /* Error occurred */ if (EVP_PKEY_keygen_init(ctx) <= 0) /* Error */ if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048) <= 0) /* Error */ \& /* Generate key */ if (EVP_PKEY_keygen(ctx, &pkey) <= 0) /* Error */ .Ve
Generate a key from a set of parameters:
.Vb 2 #include <openssl/evp.h> #include <openssl/rsa.h> \& EVP_PKEY_CTX *ctx; ENGINE *eng; EVP_PKEY *pkey = NULL, *param; \& /* Assumed param, eng are set up already */ ctx = EVP_PKEY_CTX_new(param, eng); if (!ctx) /* Error occurred */ if (EVP_PKEY_keygen_init(ctx) <= 0) /* Error */ \& /* Generate key */ if (EVP_PKEY_keygen(ctx, &pkey) <= 0) /* Error */ .Ve
Example of generation callback for OpenSSL public key implementations:
.Vb 1 /* Application data is a BIO to output status to */ \& EVP_PKEY_CTX_set_app_data(ctx, status_bio); \& static int genpkey_cb(EVP_PKEY_CTX *ctx) { char c = \*(Aq*\*(Aq; BIO *b = EVP_PKEY_CTX_get_app_data(ctx); int p = EVP_PKEY_CTX_get_keygen_info(ctx, 0); \& if (p == 0) c = \*(Aq.\*(Aq; if (p == 1) c = \*(Aq+\*(Aq; if (p == 2) c = \*(Aq*\*(Aq; if (p == 3) c = \*(Aq\en\*(Aq; BIO_write(b, &c, 1); (void)BIO_flush(b); return 1; } .Ve
\fBEVP_PKEY_Q_keygen() and EVP_PKEY_generate() were added in OpenSSL 3.0.
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.