Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "BIO_PUSH 3"
way too many mistakes in technical documents.
\fBBIO_pop() removes the \s-1BIO\s0 b from a chain and returns the next \s-1BIO\s0 in the chain, or \s-1NULL\s0 if there is no next \s-1BIO.\s0 The removed \s-1BIO\s0 then becomes a single \s-1BIO\s0 with no association with the original chain, it can thus be freed or attached to a different chain.
\fBBIO_set_next() replaces the existing next \s-1BIO\s0 in a chain with the \s-1BIO\s0 pointed to by next. The new chain may include some of the same BIOs from the old chain or it may be completely different.
The process of calling BIO_push() and BIO_pop() on a \s-1BIO\s0 may have additional consequences (a control call is made to the affected BIOs) any effects will be noted in the descriptions of individual BIOs.
\fBBIO_pop() returns the next \s-1BIO\s0 in the chain, or \s-1NULL\s0 if there is no next \s-1BIO.\s0
If the call:
.Vb 1 BIO_push(b64, f); .Ve
is made then the new chain will be b64-f. After making the calls
.Vb 2 BIO_push(md2, b64); BIO_push(md1, md2); .Ve
the new chain is md1-md2-b64-f. Data written to md1 will be digested by md1 and md2, base64 encoded and written to f.
It should be noted that reading causes data to pass in the reverse direction, that is data is read from f, base64 decoded and digested by md1 and md2. If the call:
.Vb 1 BIO_pop(md2); .Ve
The call will return b64 and the new chain will be md1-b64-f data can be written to md1 as before.
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.