Automatically generated by Pod::Man 4.14 (Pod::Simple 3.41) Standard preamble: ========================================================================..
..
..
Set up some character translations and predefined strings. \*(-- will give an unbreakable dash, \*(PI will give pi, \*(L" will give a left double quote, and \*(R" will give a right double quote. \*(C+ will give a nicer C++. Capital omega is used to do unbreakable dashes and therefore won't be available. \*(C` and \*(C' expand to `' in nroff, nothing in troff, for use with C<>..tr \(*W-
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
Escape single quotes in literal strings from groff's Unicode transform. If the F register is >0, we'll generate index entries on stderr for titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index entries marked with X<> in POD. Of course, you'll have to process the output yourself in some meaningful fashion. Avoid warning from groff about undefined register 'F'...
.nr rF 0
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). Fear. Run. Save yourself. No user-serviceable parts.. \" fudge factors for nroff and troff
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #]
.\}
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
. \" corrections for vroff
. \" for low resolution devices (crt and lpr)
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
======================================================================== Title "ASN1_GENERATE_NCONF 3" ASN1_GENERATE_NCONF 3 "2020-12-08" "1.1.1i" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes way too many mistakes in technical documents. "NAME"
ASN1_generate_nconf, ASN1_generate_v3 - ASN1 generation functions
"SYNOPSIS"
Header "SYNOPSIS" .Vb 1
#include <
openssl/
asn1.h>
\&
ASN1_TYPE *ASN1_generate_nconf(const char *str, CONF *nconf);
ASN1_TYPE *ASN1_generate_v3(const char *str, X509V3_CTX *cnf);
.Ve
"DESCRIPTION"
Header "DESCRIPTION" These functions generate the \s-1ASN1\s0 encoding of a string
in an
\s-1ASN1_TYPE\s0 structure.
\fBstr contains the string to encode nconf or cnf contains
the optional configuration information where additional strings
will be read from. nconf will typically come from a config
file whereas cnf is obtained from an X509V3_CTX structure
which will typically be used by X509 v3 certificate extension
functions. cnf or nconf can be set to \s-1NULL\s0 if no additional
configuration will be used.
"GENERATION STRING FORMAT"
Header "GENERATION STRING FORMAT" The actual data encoded is determined by the string
str and
the configuration information. The general format of the string
is:
"[modifier,]type[:value]" 4
Item "[modifier,]type[:value]"
That is zero or more comma separated modifiers followed by a type
followed by an optional colon and a value. The formats of type,
\fBvalue and modifier are explained below.
"Supported Types"
Subsection "Supported Types" The supported types are listed below. Unless otherwise specified
only the
\s-1ASCII\s0 format is permissible.
"\s-1BOOLEAN\s0, \s-1BOOL\s0" 4
Item "BOOLEAN, BOOL" This encodes a boolean type. The
value string is mandatory and
should be
\s-1TRUE\s0 or
\s-1FALSE\s0. Additionally
\s-1TRUE\s0,
true,
Y,
\fBy,
\s-1YES\s0,
yes,
\s-1FALSE\s0,
false,
N,
n,
\s-1NO\s0 and
no
are acceptable.
"\s-1NULL\s0" 4
Item "NULL" Encode the
\s-1NULL\s0 type, the
value string must not be present.
"\s-1INTEGER\s0, \s-1INT\s0" 4
Item "INTEGER, INT" Encodes an \s-1ASN1\s0
\s-1INTEGER\s0 type. The
value string represents
the value of the integer, it can be prefaced by a minus sign and
is normally interpreted as a decimal value unless the prefix
0x
is included.
"\s-1ENUMERATED\s0, \s-1ENUM\s0" 4
Item "ENUMERATED, ENUM" Encodes the \s-1ASN1\s0
\s-1ENUMERATED\s0 type, it is otherwise identical to
\fB\s-1INTEGER\s0.
"\s-1OBJECT\s0, \s-1OID\s0" 4
Item "OBJECT, OID" Encodes an \s-1ASN1\s0
\s-1OBJECT IDENTIFIER\s0, the
value string can be
a short name, a long name or numerical format.
"\s-1UTCTIME\s0, \s-1UTC\s0" 4
Item "UTCTIME, UTC" Encodes an \s-1ASN1\s0
UTCTime structure, the value should be in
the format
\s-1YYMMDDHHMMSSZ\s0.
"\s-1GENERALIZEDTIME\s0, \s-1GENTIME\s0" 4
Item "GENERALIZEDTIME, GENTIME" Encodes an \s-1ASN1\s0
GeneralizedTime structure, the value should be in
the format
\s-1YYYYMMDDHHMMSSZ\s0.
"\s-1OCTETSTRING\s0, \s-1OCT\s0" 4
Item "OCTETSTRING, OCT" Encodes an \s-1ASN1\s0
\s-1OCTET STRING\s0.
value represents the contents
of this structure, the format strings
\s-1ASCII\s0 and
\s-1HEX\s0 can be
used to specify the format of
value.
"\s-1BITSTRING\s0, \s-1BITSTR\s0" 4
Item "BITSTRING, BITSTR" Encodes an \s-1ASN1\s0
\s-1BIT STRING\s0.
value represents the contents
of this structure, the format strings
\s-1ASCII\s0,
\s-1HEX\s0 and
\s-1BITLIST\s0
can be used to specify the format of
value.
.Sp
If the format is anything other than
\s-1BITLIST\s0 the number of unused
bits is set to zero.
"\s-1UNIVERSALSTRING\s0, \s-1UNIV\s0, \s-1IA5\s0, \s-1IA5STRING\s0, \s-1UTF8\s0, UTF8String, \s-1BMP\s0, \s-1BMPSTRING\s0, \s-1VISIBLESTRING\s0, \s-1VISIBLE\s0, \s-1PRINTABLESTRING\s0, \s-1PRINTABLE\s0, T61, T61STRING, \s-1TELETEXSTRING\s0, GeneralString, \s-1NUMERICSTRING\s0, \s-1NUMERIC\s0" 4
Item "UNIVERSALSTRING, UNIV, IA5, IA5STRING, UTF8, UTF8String, BMP, BMPSTRING, VISIBLESTRING, VISIBLE, PRINTABLESTRING, PRINTABLE, T61, T61STRING, TELETEXSTRING, GeneralString, NUMERICSTRING, NUMERIC" These encode the corresponding string types.
value represents the
contents of this structure. The format can be
\s-1ASCII\s0 or
\s-1UTF8\s0.
"\s-1SEQUENCE\s0, \s-1SEQ\s0, \s-1SET\s0" 4
Item "SEQUENCE, SEQ, SET" Formats the result as an \s-1ASN1\s0
\s-1SEQUENCE\s0 or
\s-1SET\s0 type.
value
should be a section name which will contain the contents. The
field names in the section are ignored and the values are in the
generated string format. If
value is absent then an empty \s-1SEQUENCE\s0
will be encoded.
"Modifiers"
Subsection "Modifiers" Modifiers affect the following structure, they can be used to
add \s-1EXPLICIT\s0 or \s-1IMPLICIT\s0 tagging, add wrappers or to change
the string format of the final type and value. The supported
formats are documented below.
"\s-1EXPLICIT\s0, \s-1EXP\s0" 4
Item "EXPLICIT, EXP" Add an explicit tag to the following structure. This string
should be followed by a colon and the tag value to use as a
decimal value.
.Sp
By following the number with
U,
A,
P or
C \s-1UNIVERSAL,
APPLICATION, PRIVATE\s0 or \s-1CONTEXT SPECIFIC\s0 tagging can be used,
the default is \s-1CONTEXT SPECIFIC.\s0
"\s-1IMPLICIT\s0, \s-1IMP\s0" 4
Item "IMPLICIT, IMP" This is the same as
\s-1EXPLICIT\s0 except \s-1IMPLICIT\s0 tagging is used
instead.
"\s-1OCTWRAP\s0, \s-1SEQWRAP\s0, \s-1SETWRAP\s0, \s-1BITWRAP\s0" 4
Item "OCTWRAP, SEQWRAP, SETWRAP, BITWRAP" The following structure is surrounded by an \s-1OCTET STRING,\s0 a \s-1SEQUENCE,\s0
a \s-1SET\s0 or a \s-1BIT STRING\s0 respectively. For a \s-1BIT STRING\s0 the number of unused
bits is set to zero.
"\s-1FORMAT\s0" 4
Item "FORMAT" This specifies the format of the ultimate value. It should be followed
by a colon and one of the strings
\s-1ASCII\s0,
\s-1UTF8\s0,
\s-1HEX\s0 or
\s-1BITLIST\s0.
.Sp
If no format specifier is included then
\s-1ASCII\s0 is used. If
\s-1UTF8\s0 is
specified then the value string must be a valid
\s-1UTF8\s0 string. For
\s-1HEX\s0 the
output must be a set of hex digits.
\s-1BITLIST\s0 (which is only valid for a \s-1BIT
STRING\s0) is a comma separated list of the indices of the set bits, all other
bits are zero.
"RETURN VALUES"
Header "RETURN VALUES" \fBASN1_generate_nconf() and
ASN1_generate_v3() return the encoded
data as an
\s-1ASN1_TYPE\s0 structure or
\s-1NULL\s0 if an error occurred.
The error codes that can be obtained by ERR_get_error\|(3).
"EXAMPLES"
Header "EXAMPLES" A simple IA5String:
.Vb 1
IA5STRING:Hello World
.Ve
An IA5String explicitly tagged:
.Vb 1
EXPLICIT:0,IA5STRING:Hello World
.Ve
An IA5String explicitly tagged using \s-1APPLICATION\s0 tagging:
.Vb 1
EXPLICIT:0A,IA5STRING:Hello World
.Ve
A \s-1BITSTRING\s0 with bits 1 and 5 set and all others zero:
.Vb 1
FORMAT:BITLIST,BITSTRING:1,5
.Ve
A more complex example using a config file to produce a
\s-1SEQUENCE\s0 consisting of a \s-1BOOL\s0 an \s-1OID\s0 and a UTF8String:
.Vb 1
asn1 = SEQUENCE:seq_section
\&
[seq_section]
\&
field1 = BOOLEAN:TRUE
field2 = OID:commonName
field3 = UTF8:Third field
.Ve
This example produces an RSAPrivateKey structure, this is the
key contained in the file client.pem in all OpenSSL distributions
(note: the field names such as 'coeff' are ignored and are present just
for clarity):
.Vb 3
asn1=SEQUENCE:private_key
[private_key]
version=INTEGER:0
\&
n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9
\&
e=INTEGER:0x010001
\&
d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\e
F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D
\&
p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\e
D4BD57
\&
q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\e
46EC4F
\&
exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\e
9C0A39B9
\&
exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\e
E7B2458F
\&
coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\e
628657053A
.Ve
This example is the corresponding public key in a SubjectPublicKeyInfo
structure:
.Vb 2
# Start with a SEQUENCE
asn1=SEQUENCE:pubkeyinfo
\&
# pubkeyinfo contains an algorithm identifier and the public key wrapped
# in a BIT STRING
[pubkeyinfo]
algorithm=SEQUENCE:rsa_alg
pubkey=BITWRAP,SEQUENCE:rsapubkey
\&
# algorithm ID for RSA is just an OID and a NULL
[rsa_alg]
algorithm=OID:rsaEncryption
parameter=NULL
\&
# Actual public key: modulus and exponent
[rsapubkey]
n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\e
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9
\&
e=INTEGER:0x010001
.Ve
"SEE ALSO"
Header "SEE ALSO" \fBERR_get_error\|(3)
"COPYRIGHT"
Header "COPYRIGHT" Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.