1 /* 2 * FreeSec: libcrypt for NetBSD 3 * 4 * Copyright (c) 1994 David Burren 5 * All rights reserved. 6 * 7 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet 8 * this file should now *only* export crypt(), in order to make 9 * binaries of libcrypt exportable from the USA 10 * 11 * Adapted for FreeBSD-4.0 by Mark R V Murray 12 * this file should now *only* export crypt_des(), in order to make 13 * a module that can be optionally included in libcrypt. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. Neither the name of the author nor the names of other contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * $FreeBSD$ 40 * 41 * This is an original implementation of the DES and the crypt(3) interfaces 42 * by David Burren <davidb@werj.com.au>. 43 * 44 * An excellent reference on the underlying algorithm (and related 45 * algorithms) is: 46 * 47 * B. Schneier, Applied Cryptography: protocols, algorithms, 48 * and source code in C, John Wiley & Sons, 1994. 49 * 50 * Note that in that book's description of DES the lookups for the initial, 51 * pbox, and final permutations are inverted (this has been brought to the 52 * attention of the author). A list of errata for this book has been 53 * posted to the sci.crypt newsgroup by the author and is available for FTP. 54 * 55 * ARCHITECTURE ASSUMPTIONS: 56 * It is assumed that the 8-byte arrays passed by reference can be 57 * addressed as arrays of u_int32_t's (ie. the CPU is not picky about 58 * alignment). 59 */ 60 #include <sys/types.h> 61 #include <sys/param.h> 62 #include <pwd.h> 63 #include <string.h> 64 #include "crypt.h" 65 66 /* We can't always assume gcc */ 67 #ifdef __GNUC__ 68 #define INLINE inline 69 #endif 70 71 72 static u_char IP[64] = { 73 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 74 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 75 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 76 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 77 }; 78 79 static u_char inv_key_perm[64]; 80 static u_char u_key_perm[56]; 81 static u_char key_perm[56] = { 82 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 83 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 84 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 85 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 86 }; 87 88 static u_char key_shifts[16] = { 89 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 90 }; 91 92 static u_char inv_comp_perm[56]; 93 static u_char comp_perm[48] = { 94 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 95 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 96 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 97 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 98 }; 99 100 /* 101 * No E box is used, as it's replaced by some ANDs, shifts, and ORs. 102 */ 103 104 static u_char u_sbox[8][64]; 105 static u_char sbox[8][64] = { 106 { 107 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 108 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 109 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 110 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 111 }, 112 { 113 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 114 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 115 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 116 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 117 }, 118 { 119 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 120 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 121 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 122 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 123 }, 124 { 125 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 126 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 127 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 128 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 129 }, 130 { 131 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 132 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 133 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 134 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 135 }, 136 { 137 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 138 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 139 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 140 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 141 }, 142 { 143 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 144 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 145 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 146 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 147 }, 148 { 149 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 150 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 151 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 152 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 153 } 154 }; 155 156 static u_char un_pbox[32]; 157 static u_char pbox[32] = { 158 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 159 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 160 }; 161 162 static u_int32_t bits32[32] = 163 { 164 0x80000000, 0x40000000, 0x20000000, 0x10000000, 165 0x08000000, 0x04000000, 0x02000000, 0x01000000, 166 0x00800000, 0x00400000, 0x00200000, 0x00100000, 167 0x00080000, 0x00040000, 0x00020000, 0x00010000, 168 0x00008000, 0x00004000, 0x00002000, 0x00001000, 169 0x00000800, 0x00000400, 0x00000200, 0x00000100, 170 0x00000080, 0x00000040, 0x00000020, 0x00000010, 171 0x00000008, 0x00000004, 0x00000002, 0x00000001 172 }; 173 174 static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; 175 176 static u_int32_t saltbits; 177 static long old_salt; 178 static u_int32_t *bits28, *bits24; 179 static u_char init_perm[64], final_perm[64]; 180 static u_int32_t en_keysl[16], en_keysr[16]; 181 static u_int32_t de_keysl[16], de_keysr[16]; 182 static int des_initialised = 0; 183 static u_char m_sbox[4][4096]; 184 static u_int32_t psbox[4][256]; 185 static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; 186 static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; 187 static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; 188 static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; 189 static u_int32_t old_rawkey0, old_rawkey1; 190 191 static u_char ascii64[] = 192 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; 193 /* 0000000000111111111122222222223333333333444444444455555555556666 */ 194 /* 0123456789012345678901234567890123456789012345678901234567890123 */ 195 196 static INLINE int 197 ascii_to_bin(char ch) 198 { 199 if (ch > 'z') 200 return(0); 201 if (ch >= 'a') 202 return(ch - 'a' + 38); 203 if (ch > 'Z') 204 return(0); 205 if (ch >= 'A') 206 return(ch - 'A' + 12); 207 if (ch > '9') 208 return(0); 209 if (ch >= '.') 210 return(ch - '.'); 211 return(0); 212 } 213 214 static void 215 des_init() 216 { 217 int i, j, b, k, inbit, obit; 218 u_int32_t *p, *il, *ir, *fl, *fr; 219 220 old_rawkey0 = old_rawkey1 = 0L; 221 saltbits = 0L; 222 old_salt = 0L; 223 bits24 = (bits28 = bits32 + 4) + 4; 224 225 /* 226 * Invert the S-boxes, reordering the input bits. 227 */ 228 for (i = 0; i < 8; i++) 229 for (j = 0; j < 64; j++) { 230 b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); 231 u_sbox[i][j] = sbox[i][b]; 232 } 233 234 /* 235 * Convert the inverted S-boxes into 4 arrays of 8 bits. 236 * Each will handle 12 bits of the S-box input. 237 */ 238 for (b = 0; b < 4; b++) 239 for (i = 0; i < 64; i++) 240 for (j = 0; j < 64; j++) 241 m_sbox[b][(i << 6) | j] = 242 (u_sbox[(b << 1)][i] << 4) | 243 u_sbox[(b << 1) + 1][j]; 244 245 /* 246 * Set up the initial & final permutations into a useful form, and 247 * initialise the inverted key permutation. 248 */ 249 for (i = 0; i < 64; i++) { 250 init_perm[final_perm[i] = IP[i] - 1] = i; 251 inv_key_perm[i] = 255; 252 } 253 254 /* 255 * Invert the key permutation and initialise the inverted key 256 * compression permutation. 257 */ 258 for (i = 0; i < 56; i++) { 259 u_key_perm[i] = key_perm[i] - 1; 260 inv_key_perm[key_perm[i] - 1] = i; 261 inv_comp_perm[i] = 255; 262 } 263 264 /* 265 * Invert the key compression permutation. 266 */ 267 for (i = 0; i < 48; i++) { 268 inv_comp_perm[comp_perm[i] - 1] = i; 269 } 270 271 /* 272 * Set up the OR-mask arrays for the initial and final permutations, 273 * and for the key initial and compression permutations. 274 */ 275 for (k = 0; k < 8; k++) { 276 for (i = 0; i < 256; i++) { 277 *(il = &ip_maskl[k][i]) = 0L; 278 *(ir = &ip_maskr[k][i]) = 0L; 279 *(fl = &fp_maskl[k][i]) = 0L; 280 *(fr = &fp_maskr[k][i]) = 0L; 281 for (j = 0; j < 8; j++) { 282 inbit = 8 * k + j; 283 if (i & bits8[j]) { 284 if ((obit = init_perm[inbit]) < 32) 285 *il |= bits32[obit]; 286 else 287 *ir |= bits32[obit-32]; 288 if ((obit = final_perm[inbit]) < 32) 289 *fl |= bits32[obit]; 290 else 291 *fr |= bits32[obit - 32]; 292 } 293 } 294 } 295 for (i = 0; i < 128; i++) { 296 *(il = &key_perm_maskl[k][i]) = 0L; 297 *(ir = &key_perm_maskr[k][i]) = 0L; 298 for (j = 0; j < 7; j++) { 299 inbit = 8 * k + j; 300 if (i & bits8[j + 1]) { 301 if ((obit = inv_key_perm[inbit]) == 255) 302 continue; 303 if (obit < 28) 304 *il |= bits28[obit]; 305 else 306 *ir |= bits28[obit - 28]; 307 } 308 } 309 *(il = &comp_maskl[k][i]) = 0L; 310 *(ir = &comp_maskr[k][i]) = 0L; 311 for (j = 0; j < 7; j++) { 312 inbit = 7 * k + j; 313 if (i & bits8[j + 1]) { 314 if ((obit=inv_comp_perm[inbit]) == 255) 315 continue; 316 if (obit < 24) 317 *il |= bits24[obit]; 318 else 319 *ir |= bits24[obit - 24]; 320 } 321 } 322 } 323 } 324 325 /* 326 * Invert the P-box permutation, and convert into OR-masks for 327 * handling the output of the S-box arrays setup above. 328 */ 329 for (i = 0; i < 32; i++) 330 un_pbox[pbox[i] - 1] = i; 331 332 for (b = 0; b < 4; b++) 333 for (i = 0; i < 256; i++) { 334 *(p = &psbox[b][i]) = 0L; 335 for (j = 0; j < 8; j++) { 336 if (i & bits8[j]) 337 *p |= bits32[un_pbox[8 * b + j]]; 338 } 339 } 340 341 des_initialised = 1; 342 } 343 344 static void 345 setup_salt(long salt) 346 { 347 u_int32_t obit, saltbit; 348 int i; 349 350 if (salt == old_salt) 351 return; 352 old_salt = salt; 353 354 saltbits = 0L; 355 saltbit = 1; 356 obit = 0x800000; 357 for (i = 0; i < 24; i++) { 358 if (salt & saltbit) 359 saltbits |= obit; 360 saltbit <<= 1; 361 obit >>= 1; 362 } 363 } 364 365 static int 366 des_setkey(const char *key) 367 { 368 u_int32_t k0, k1, rawkey0, rawkey1; 369 int shifts, round; 370 371 if (!des_initialised) 372 des_init(); 373 374 rawkey0 = ntohl(*(u_int32_t *) key); 375 rawkey1 = ntohl(*(u_int32_t *) (key + 4)); 376 377 if ((rawkey0 | rawkey1) 378 && rawkey0 == old_rawkey0 379 && rawkey1 == old_rawkey1) { 380 /* 381 * Already setup for this key. 382 * This optimisation fails on a zero key (which is weak and 383 * has bad parity anyway) in order to simplify the starting 384 * conditions. 385 */ 386 return(0); 387 } 388 old_rawkey0 = rawkey0; 389 old_rawkey1 = rawkey1; 390 391 /* 392 * Do key permutation and split into two 28-bit subkeys. 393 */ 394 k0 = key_perm_maskl[0][rawkey0 >> 25] 395 | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] 396 | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] 397 | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] 398 | key_perm_maskl[4][rawkey1 >> 25] 399 | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] 400 | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] 401 | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; 402 k1 = key_perm_maskr[0][rawkey0 >> 25] 403 | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] 404 | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] 405 | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] 406 | key_perm_maskr[4][rawkey1 >> 25] 407 | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] 408 | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] 409 | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; 410 /* 411 * Rotate subkeys and do compression permutation. 412 */ 413 shifts = 0; 414 for (round = 0; round < 16; round++) { 415 u_int32_t t0, t1; 416 417 shifts += key_shifts[round]; 418 419 t0 = (k0 << shifts) | (k0 >> (28 - shifts)); 420 t1 = (k1 << shifts) | (k1 >> (28 - shifts)); 421 422 de_keysl[15 - round] = 423 en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] 424 | comp_maskl[1][(t0 >> 14) & 0x7f] 425 | comp_maskl[2][(t0 >> 7) & 0x7f] 426 | comp_maskl[3][t0 & 0x7f] 427 | comp_maskl[4][(t1 >> 21) & 0x7f] 428 | comp_maskl[5][(t1 >> 14) & 0x7f] 429 | comp_maskl[6][(t1 >> 7) & 0x7f] 430 | comp_maskl[7][t1 & 0x7f]; 431 432 de_keysr[15 - round] = 433 en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] 434 | comp_maskr[1][(t0 >> 14) & 0x7f] 435 | comp_maskr[2][(t0 >> 7) & 0x7f] 436 | comp_maskr[3][t0 & 0x7f] 437 | comp_maskr[4][(t1 >> 21) & 0x7f] 438 | comp_maskr[5][(t1 >> 14) & 0x7f] 439 | comp_maskr[6][(t1 >> 7) & 0x7f] 440 | comp_maskr[7][t1 & 0x7f]; 441 } 442 return(0); 443 } 444 445 static int 446 do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) 447 { 448 /* 449 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. 450 */ 451 u_int32_t l, r, *kl, *kr, *kl1, *kr1; 452 u_int32_t f, r48l, r48r; 453 int round; 454 455 if (count == 0) { 456 return(1); 457 } else if (count > 0) { 458 /* 459 * Encrypting 460 */ 461 kl1 = en_keysl; 462 kr1 = en_keysr; 463 } else { 464 /* 465 * Decrypting 466 */ 467 count = -count; 468 kl1 = de_keysl; 469 kr1 = de_keysr; 470 } 471 472 /* 473 * Do initial permutation (IP). 474 */ 475 l = ip_maskl[0][l_in >> 24] 476 | ip_maskl[1][(l_in >> 16) & 0xff] 477 | ip_maskl[2][(l_in >> 8) & 0xff] 478 | ip_maskl[3][l_in & 0xff] 479 | ip_maskl[4][r_in >> 24] 480 | ip_maskl[5][(r_in >> 16) & 0xff] 481 | ip_maskl[6][(r_in >> 8) & 0xff] 482 | ip_maskl[7][r_in & 0xff]; 483 r = ip_maskr[0][l_in >> 24] 484 | ip_maskr[1][(l_in >> 16) & 0xff] 485 | ip_maskr[2][(l_in >> 8) & 0xff] 486 | ip_maskr[3][l_in & 0xff] 487 | ip_maskr[4][r_in >> 24] 488 | ip_maskr[5][(r_in >> 16) & 0xff] 489 | ip_maskr[6][(r_in >> 8) & 0xff] 490 | ip_maskr[7][r_in & 0xff]; 491 492 while (count--) { 493 /* 494 * Do each round. 495 */ 496 kl = kl1; 497 kr = kr1; 498 round = 16; 499 while (round--) { 500 /* 501 * Expand R to 48 bits (simulate the E-box). 502 */ 503 r48l = ((r & 0x00000001) << 23) 504 | ((r & 0xf8000000) >> 9) 505 | ((r & 0x1f800000) >> 11) 506 | ((r & 0x01f80000) >> 13) 507 | ((r & 0x001f8000) >> 15); 508 509 r48r = ((r & 0x0001f800) << 7) 510 | ((r & 0x00001f80) << 5) 511 | ((r & 0x000001f8) << 3) 512 | ((r & 0x0000001f) << 1) 513 | ((r & 0x80000000) >> 31); 514 /* 515 * Do salting for crypt() and friends, and 516 * XOR with the permuted key. 517 */ 518 f = (r48l ^ r48r) & saltbits; 519 r48l ^= f ^ *kl++; 520 r48r ^= f ^ *kr++; 521 /* 522 * Do sbox lookups (which shrink it back to 32 bits) 523 * and do the pbox permutation at the same time. 524 */ 525 f = psbox[0][m_sbox[0][r48l >> 12]] 526 | psbox[1][m_sbox[1][r48l & 0xfff]] 527 | psbox[2][m_sbox[2][r48r >> 12]] 528 | psbox[3][m_sbox[3][r48r & 0xfff]]; 529 /* 530 * Now that we've permuted things, complete f(). 531 */ 532 f ^= l; 533 l = r; 534 r = f; 535 } 536 r = l; 537 l = f; 538 } 539 /* 540 * Do final permutation (inverse of IP). 541 */ 542 *l_out = fp_maskl[0][l >> 24] 543 | fp_maskl[1][(l >> 16) & 0xff] 544 | fp_maskl[2][(l >> 8) & 0xff] 545 | fp_maskl[3][l & 0xff] 546 | fp_maskl[4][r >> 24] 547 | fp_maskl[5][(r >> 16) & 0xff] 548 | fp_maskl[6][(r >> 8) & 0xff] 549 | fp_maskl[7][r & 0xff]; 550 *r_out = fp_maskr[0][l >> 24] 551 | fp_maskr[1][(l >> 16) & 0xff] 552 | fp_maskr[2][(l >> 8) & 0xff] 553 | fp_maskr[3][l & 0xff] 554 | fp_maskr[4][r >> 24] 555 | fp_maskr[5][(r >> 16) & 0xff] 556 | fp_maskr[6][(r >> 8) & 0xff] 557 | fp_maskr[7][r & 0xff]; 558 return(0); 559 } 560 561 static int 562 des_cipher(const char *in, char *out, long salt, int count) 563 { 564 u_int32_t l_out, r_out, rawl, rawr; 565 int retval; 566 567 if (!des_initialised) 568 des_init(); 569 570 setup_salt(salt); 571 572 rawl = ntohl(*((u_int32_t *) in)++); 573 rawr = ntohl(*((u_int32_t *) in)); 574 575 retval = do_des(rawl, rawr, &l_out, &r_out, count); 576 577 *((u_int32_t *) out)++ = htonl(l_out); 578 *((u_int32_t *) out) = htonl(r_out); 579 return(retval); 580 } 581 582 char * 583 crypt_des(const char *key, const char *setting) 584 { 585 int i; 586 u_int32_t count, salt, l, r0, r1, keybuf[2]; 587 u_char *p, *q; 588 static u_char output[21]; 589 590 if (!des_initialised) 591 des_init(); 592 593 594 /* 595 * Copy the key, shifting each character up by one bit 596 * and padding with zeros. 597 */ 598 q = (u_char *) keybuf; 599 while (q - (u_char *) keybuf - 8) { 600 if ((*q++ = *key << 1)) 601 key++; 602 } 603 if (des_setkey((u_char *) keybuf)) 604 return(NULL); 605 606 if (*setting == _PASSWORD_EFMT1) { 607 /* 608 * "new"-style: 609 * setting - underscore, 4 bytes of count, 4 bytes of salt 610 * key - unlimited characters 611 */ 612 for (i = 1, count = 0L; i < 5; i++) 613 count |= ascii_to_bin(setting[i]) << (i - 1) * 6; 614 615 for (i = 5, salt = 0L; i < 9; i++) 616 salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; 617 618 while (*key) { 619 /* 620 * Encrypt the key with itself. 621 */ 622 if (des_cipher((u_char*)keybuf, (u_char*)keybuf, 0L, 1)) 623 return(NULL); 624 /* 625 * And XOR with the next 8 characters of the key. 626 */ 627 q = (u_char *) keybuf; 628 while (q - (u_char *) keybuf - 8 && *key) 629 *q++ ^= *key++ << 1; 630 631 if (des_setkey((u_char *) keybuf)) 632 return(NULL); 633 } 634 strncpy(output, setting, 9); 635 636 /* 637 * Double check that we weren't given a short setting. 638 * If we were, the above code will probably have created 639 * wierd values for count and salt, but we don't really care. 640 * Just make sure the output string doesn't have an extra 641 * NUL in it. 642 */ 643 output[9] = '\0'; 644 p = output + strlen(output); 645 } else { 646 /* 647 * "old"-style: 648 * setting - 2 bytes of salt 649 * key - up to 8 characters 650 */ 651 count = 25; 652 653 salt = (ascii_to_bin(setting[1]) << 6) 654 | ascii_to_bin(setting[0]); 655 656 output[0] = setting[0]; 657 /* 658 * If the encrypted password that the salt was extracted from 659 * is only 1 character long, the salt will be corrupted. We 660 * need to ensure that the output string doesn't have an extra 661 * NUL in it! 662 */ 663 output[1] = setting[1] ? setting[1] : output[0]; 664 665 p = output + 2; 666 } 667 setup_salt(salt); 668 /* 669 * Do it. 670 */ 671 if (do_des(0L, 0L, &r0, &r1, count)) 672 return(NULL); 673 /* 674 * Now encode the result... 675 */ 676 l = (r0 >> 8); 677 *p++ = ascii64[(l >> 18) & 0x3f]; 678 *p++ = ascii64[(l >> 12) & 0x3f]; 679 *p++ = ascii64[(l >> 6) & 0x3f]; 680 *p++ = ascii64[l & 0x3f]; 681 682 l = (r0 << 16) | ((r1 >> 16) & 0xffff); 683 *p++ = ascii64[(l >> 18) & 0x3f]; 684 *p++ = ascii64[(l >> 12) & 0x3f]; 685 *p++ = ascii64[(l >> 6) & 0x3f]; 686 *p++ = ascii64[l & 0x3f]; 687 688 l = r1 << 2; 689 *p++ = ascii64[(l >> 12) & 0x3f]; 690 *p++ = ascii64[(l >> 6) & 0x3f]; 691 *p++ = ascii64[l & 0x3f]; 692 *p = 0; 693 694 return(output); 695 } 696