xref: /freebsd/sbin/routed/table.c (revision b89a7cc2ed6e4398d5be502f5bb5885d1ec6ff0f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1983, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 #include "defs.h"
35 
36 #ifdef __NetBSD__
37 __RCSID("$NetBSD$");
38 #elif defined(__FreeBSD__)
39 __RCSID("$FreeBSD$");
40 #else
41 __RCSID("$Revision: 2.27 $");
42 #ident "$Revision: 2.27 $"
43 #endif
44 
45 static struct rt_spare *rts_better(struct rt_entry *);
46 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0};
47 static void  set_need_flash(void);
48 #ifdef _HAVE_SIN_LEN
49 static void masktrim(struct sockaddr_in *ap);
50 #else
51 static void masktrim(struct sockaddr_in_new *ap);
52 #endif
53 static void rtbad(struct rt_entry *);
54 
55 
56 struct radix_node_head *rhead;		/* root of the radix tree */
57 
58 int	need_flash = 1;			/* flash update needed
59 					 * start =1 to suppress the 1st
60 					 */
61 
62 struct timeval age_timer;		/* next check of old routes */
63 struct timeval need_kern = {		/* need to update kernel table */
64 	EPOCH+MIN_WAITTIME-1, 0
65 };
66 
67 int	stopint;
68 
69 int	total_routes;
70 
71 /* zap any old routes through this gateway */
72 static naddr age_bad_gate;
73 
74 
75 /* It is desirable to "aggregate" routes, to combine differing routes of
76  * the same metric and next hop into a common route with a smaller netmask
77  * or to suppress redundant routes, routes that add no information to
78  * routes with smaller netmasks.
79  *
80  * A route is redundant if and only if any and all routes with smaller
81  * but matching netmasks and nets are the same.  Since routes are
82  * kept sorted in the radix tree, redundant routes always come second.
83  *
84  * There are two kinds of aggregations.  First, two routes of the same bit
85  * mask and differing only in the least significant bit of the network
86  * number can be combined into a single route with a coarser mask.
87  *
88  * Second, a route can be suppressed in favor of another route with a more
89  * coarse mask provided no incompatible routes with intermediate masks
90  * are present.  The second kind of aggregation involves suppressing routes.
91  * A route must not be suppressed if an incompatible route exists with
92  * an intermediate mask, since the suppressed route would be covered
93  * by the intermediate.
94  *
95  * This code relies on the radix tree walk encountering routes
96  * sorted first by address, with the smallest address first.
97  */
98 
99 static struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
100 
101 /* #define DEBUG_AG */
102 #ifdef DEBUG_AG
103 #define CHECK_AG() {int acnt = 0; struct ag_info *cag;		\
104 	for (cag = ag_avail; cag != NULL; cag = cag->ag_fine)	\
105 		acnt++;						\
106 	for (cag = ag_corsest; cag != NULL; cag = cag->ag_fine)	\
107 		acnt++;						\
108 	if (acnt != NUM_AG_SLOTS) {				\
109 		(void)fflush(stderr);				\
110 		abort();					\
111 	}							\
112 }
113 #else
114 #define CHECK_AG()
115 #endif
116 
117 
118 /* Output the contents of an aggregation table slot.
119  *	This function must always be immediately followed with the deletion
120  *	of the target slot.
121  */
122 static void
123 ag_out(struct ag_info *ag,
124 	 void (*out)(struct ag_info *))
125 {
126 	struct ag_info *ag_cors;
127 	naddr bit;
128 
129 
130 	/* Forget it if this route should not be output for split-horizon. */
131 	if (ag->ag_state & AGS_SPLIT_HZ)
132 		return;
133 
134 	/* If we output both the even and odd twins, then the immediate parent,
135 	 * if it is present, is redundant, unless the parent manages to
136 	 * aggregate into something coarser.
137 	 * On successive calls, this code detects the even and odd twins,
138 	 * and marks the parent.
139 	 *
140 	 * Note that the order in which the radix tree code emits routes
141 	 * ensures that the twins are seen before the parent is emitted.
142 	 */
143 	ag_cors = ag->ag_cors;
144 	if (ag_cors != NULL
145 	    && ag_cors->ag_mask == ag->ag_mask<<1
146 	    && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
147 		ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
148 				      ? AGS_REDUN0
149 				      : AGS_REDUN1);
150 	}
151 
152 	/* Skip it if this route is itself redundant.
153 	 *
154 	 * It is ok to change the contents of the slot here, since it is
155 	 * always deleted next.
156 	 */
157 	if (ag->ag_state & AGS_REDUN0) {
158 		if (ag->ag_state & AGS_REDUN1)
159 			return;		/* quit if fully redundant */
160 		/* make it finer if it is half-redundant */
161 		bit = (-ag->ag_mask) >> 1;
162 		ag->ag_dst_h |= bit;
163 		ag->ag_mask |= bit;
164 
165 	} else if (ag->ag_state & AGS_REDUN1) {
166 		/* make it finer if it is half-redundant */
167 		bit = (-ag->ag_mask) >> 1;
168 		ag->ag_mask |= bit;
169 	}
170 	out(ag);
171 }
172 
173 
174 static void
175 ag_del(struct ag_info *ag)
176 {
177 	CHECK_AG();
178 
179 	if (ag->ag_cors == NULL)
180 		ag_corsest = ag->ag_fine;
181 	else
182 		ag->ag_cors->ag_fine = ag->ag_fine;
183 
184 	if (ag->ag_fine == NULL)
185 		ag_finest = ag->ag_cors;
186 	else
187 		ag->ag_fine->ag_cors = ag->ag_cors;
188 
189 	ag->ag_fine = ag_avail;
190 	ag_avail = ag;
191 
192 	CHECK_AG();
193 }
194 
195 
196 /* Flush routes waiting for aggregation.
197  *	This must not suppress a route unless it is known that among all
198  *	routes with coarser masks that match it, the one with the longest
199  *	mask is appropriate.  This is ensured by scanning the routes
200  *	in lexical order, and with the most restrictive mask first
201  *	among routes to the same destination.
202  */
203 void
204 ag_flush(naddr lim_dst_h,		/* flush routes to here */
205 	 naddr lim_mask,		/* matching this mask */
206 	 void (*out)(struct ag_info *))
207 {
208 	struct ag_info *ag, *ag_cors;
209 	naddr dst_h;
210 
211 
212 	for (ag = ag_finest;
213 	     ag != NULL && ag->ag_mask >= lim_mask;
214 	     ag = ag_cors) {
215 		ag_cors = ag->ag_cors;
216 
217 		/* work on only the specified routes */
218 		dst_h = ag->ag_dst_h;
219 		if ((dst_h & lim_mask) != lim_dst_h)
220 			continue;
221 
222 		if (!(ag->ag_state & AGS_SUPPRESS))
223 			ag_out(ag, out);
224 
225 		else for ( ; ; ag_cors = ag_cors->ag_cors) {
226 			/* Look for a route that can suppress the
227 			 * current route */
228 			if (ag_cors == NULL) {
229 				/* failed, so output it and look for
230 				 * another route to work on
231 				 */
232 				ag_out(ag, out);
233 				break;
234 			}
235 
236 			if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
237 				/* We found a route with a coarser mask that
238 				 * aggregates the current target.
239 				 *
240 				 * If it has a different next hop, it
241 				 * cannot replace the target, so output
242 				 * the target.
243 				 */
244 				if (ag->ag_gate != ag_cors->ag_gate
245 				    && !(ag->ag_state & AGS_FINE_GATE)
246 				    && !(ag_cors->ag_state & AGS_CORS_GATE)) {
247 					ag_out(ag, out);
248 					break;
249 				}
250 
251 				/* If the coarse route has a good enough
252 				 * metric, it suppresses the target.
253 				 * If the suppressed target was redundant,
254 				 * then mark the suppressor redundant.
255 				 */
256 				if (ag_cors->ag_pref <= ag->ag_pref) {
257 				    if (AG_IS_REDUN(ag->ag_state)
258 					&& ag_cors->ag_mask==ag->ag_mask<<1) {
259 					if (ag_cors->ag_dst_h == dst_h)
260 					    ag_cors->ag_state |= AGS_REDUN0;
261 					else
262 					    ag_cors->ag_state |= AGS_REDUN1;
263 				    }
264 				    if (ag->ag_tag != ag_cors->ag_tag)
265 					    ag_cors->ag_tag = 0;
266 				    if (ag->ag_nhop != ag_cors->ag_nhop)
267 					    ag_cors->ag_nhop = 0;
268 				    break;
269 				}
270 			}
271 		}
272 
273 		/* That route has either been output or suppressed */
274 		ag_cors = ag->ag_cors;
275 		ag_del(ag);
276 	}
277 
278 	CHECK_AG();
279 }
280 
281 
282 /* Try to aggregate a route with previous routes.
283  */
284 void
285 ag_check(naddr	dst,
286 	 naddr	mask,
287 	 naddr	gate,
288 	 naddr	nhop,
289 	 char	metric,
290 	 char	pref,
291 	 u_int	new_seqno,
292 	 u_short tag,
293 	 u_short state,
294 	 void (*out)(struct ag_info *))	/* output using this */
295 {
296 	struct ag_info *ag, *nag, *ag_cors;
297 	naddr xaddr;
298 	int x;
299 
300 	dst = ntohl(dst);
301 
302 	/* Punt non-contiguous subnet masks.
303 	 *
304 	 * (X & -X) contains a single bit if and only if X is a power of 2.
305 	 * (X + (X & -X)) == 0 if and only if X is a power of 2.
306 	 */
307 	if ((mask & -mask) + mask != 0) {
308 		struct ag_info nc_ag;
309 
310 		nc_ag.ag_dst_h = dst;
311 		nc_ag.ag_mask = mask;
312 		nc_ag.ag_gate = gate;
313 		nc_ag.ag_nhop = nhop;
314 		nc_ag.ag_metric = metric;
315 		nc_ag.ag_pref = pref;
316 		nc_ag.ag_tag = tag;
317 		nc_ag.ag_state = state;
318 		nc_ag.ag_seqno = new_seqno;
319 		out(&nc_ag);
320 		return;
321 	}
322 
323 	/* Search for the right slot in the aggregation table.
324 	 */
325 	ag_cors = NULL;
326 	ag = ag_corsest;
327 	while (ag != NULL) {
328 		if (ag->ag_mask >= mask)
329 			break;
330 
331 		/* Suppress old routes (i.e. combine with compatible routes
332 		 * with coarser masks) as we look for the right slot in the
333 		 * aggregation table for the new route.
334 		 * A route to an address less than the current destination
335 		 * will not be affected by the current route or any route
336 		 * seen hereafter.  That means it is safe to suppress it.
337 		 * This check keeps poor routes (e.g. with large hop counts)
338 		 * from preventing suppression of finer routes.
339 		 */
340 		if (ag_cors != NULL
341 		    && ag->ag_dst_h < dst
342 		    && (ag->ag_state & AGS_SUPPRESS)
343 		    && ag_cors->ag_pref <= ag->ag_pref
344 		    && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
345 		    && (ag_cors->ag_gate == ag->ag_gate
346 			|| (ag->ag_state & AGS_FINE_GATE)
347 			|| (ag_cors->ag_state & AGS_CORS_GATE))) {
348 			/*  If the suppressed target was redundant,
349 			 * then mark the suppressor redundant.
350 			 */
351 			if (AG_IS_REDUN(ag->ag_state)
352 			    && ag_cors->ag_mask == ag->ag_mask<<1) {
353 				if (ag_cors->ag_dst_h == dst)
354 					ag_cors->ag_state |= AGS_REDUN0;
355 				else
356 					ag_cors->ag_state |= AGS_REDUN1;
357 			}
358 			if (ag->ag_tag != ag_cors->ag_tag)
359 				ag_cors->ag_tag = 0;
360 			if (ag->ag_nhop != ag_cors->ag_nhop)
361 				ag_cors->ag_nhop = 0;
362 			ag_del(ag);
363 			CHECK_AG();
364 		} else {
365 			ag_cors = ag;
366 		}
367 		ag = ag_cors->ag_fine;
368 	}
369 
370 	/* If we find the even/odd twin of the new route, and if the
371 	 * masks and so forth are equal, we can aggregate them.
372 	 * We can probably promote one of the pair.
373 	 *
374 	 * Since the routes are encountered in lexical order,
375 	 * the new route must be odd.  However, the second or later
376 	 * times around this loop, it could be the even twin promoted
377 	 * from the even/odd pair of twins of the finer route.
378 	 */
379 	while (ag != NULL
380 	       && ag->ag_mask == mask
381 	       && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
382 
383 		/* Here we know the target route and the route in the current
384 		 * slot have the same netmasks and differ by at most the
385 		 * last bit.  They are either for the same destination, or
386 		 * for an even/odd pair of destinations.
387 		 */
388 		if (ag->ag_dst_h == dst) {
389 			/* We have two routes to the same destination.
390 			 * Routes are encountered in lexical order, so a
391 			 * route is never promoted until the parent route is
392 			 * already present.  So we know that the new route is
393 			 * a promoted (or aggregated) pair and the route
394 			 * already in the slot is the explicit route.
395 			 *
396 			 * Prefer the best route if their metrics differ,
397 			 * or the aggregated one if not, following a sort
398 			 * of longest-match rule.
399 			 */
400 			if (pref <= ag->ag_pref) {
401 				ag->ag_gate = gate;
402 				ag->ag_nhop = nhop;
403 				ag->ag_tag = tag;
404 				ag->ag_metric = metric;
405 				ag->ag_pref = pref;
406 				if (ag->ag_seqno < new_seqno)
407 					ag->ag_seqno = new_seqno;
408 				x = ag->ag_state;
409 				ag->ag_state = state;
410 				state = x;
411 			}
412 
413 			/* Some bits are set if they are set on either route,
414 			 * except when the route is for an interface.
415 			 */
416 			if (!(ag->ag_state & AGS_IF))
417 				ag->ag_state |= (state & (AGS_AGGREGATE_EITHER
418 							| AGS_REDUN0
419 							| AGS_REDUN1));
420 			return;
421 		}
422 
423 		/* If one of the routes can be promoted and the other can
424 		 * be suppressed, it may be possible to combine them or
425 		 * worthwhile to promote one.
426 		 *
427 		 * Any route that can be promoted is always
428 		 * marked to be eligible to be suppressed.
429 		 */
430 		if (!((state & AGS_AGGREGATE)
431 		      && (ag->ag_state & AGS_SUPPRESS))
432 		    && !((ag->ag_state & AGS_AGGREGATE)
433 			 && (state & AGS_SUPPRESS)))
434 			break;
435 
436 		/* A pair of even/odd twin routes can be combined
437 		 * if either is redundant, or if they are via the
438 		 * same gateway and have the same metric.
439 		 */
440 		if (AG_IS_REDUN(ag->ag_state)
441 		    || AG_IS_REDUN(state)
442 		    || (ag->ag_gate == gate
443 			&& ag->ag_pref == pref
444 			&& (state & ag->ag_state & AGS_AGGREGATE) != 0)) {
445 
446 			/* We have both the even and odd pairs.
447 			 * Since the routes are encountered in order,
448 			 * the route in the slot must be the even twin.
449 			 *
450 			 * Combine and promote (aggregate) the pair of routes.
451 			 */
452 			if (new_seqno < ag->ag_seqno)
453 				new_seqno = ag->ag_seqno;
454 			if (!AG_IS_REDUN(state))
455 				state &= ~AGS_REDUN1;
456 			if (AG_IS_REDUN(ag->ag_state))
457 				state |= AGS_REDUN0;
458 			else
459 				state &= ~AGS_REDUN0;
460 			state |= (ag->ag_state & AGS_AGGREGATE_EITHER);
461 			if (ag->ag_tag != tag)
462 				tag = 0;
463 			if (ag->ag_nhop != nhop)
464 				nhop = 0;
465 
466 			/* Get rid of the even twin that was already
467 			 * in the slot.
468 			 */
469 			ag_del(ag);
470 
471 		} else if (ag->ag_pref >= pref
472 			   && (ag->ag_state & AGS_AGGREGATE)) {
473 			/* If we cannot combine the pair, maybe the route
474 			 * with the worse metric can be promoted.
475 			 *
476 			 * Promote the old, even twin, by giving its slot
477 			 * in the table to the new, odd twin.
478 			 */
479 			ag->ag_dst_h = dst;
480 
481 			xaddr = ag->ag_gate;
482 			ag->ag_gate = gate;
483 			gate = xaddr;
484 
485 			xaddr = ag->ag_nhop;
486 			ag->ag_nhop = nhop;
487 			nhop = xaddr;
488 
489 			x = ag->ag_tag;
490 			ag->ag_tag = tag;
491 			tag = x;
492 
493 			/* The promoted route is even-redundant only if the
494 			 * even twin was fully redundant.  It is not
495 			 * odd-redundant because the odd-twin will still be
496 			 * in the table.
497 			 */
498 			x = ag->ag_state;
499 			if (!AG_IS_REDUN(x))
500 				x &= ~AGS_REDUN0;
501 			x &= ~AGS_REDUN1;
502 			ag->ag_state = state;
503 			state = x;
504 
505 			x = ag->ag_metric;
506 			ag->ag_metric = metric;
507 			metric = x;
508 
509 			x = ag->ag_pref;
510 			ag->ag_pref = pref;
511 			pref = x;
512 
513 			/* take the newest sequence number */
514 			if (new_seqno <= ag->ag_seqno)
515 				new_seqno = ag->ag_seqno;
516 			else
517 				ag->ag_seqno = new_seqno;
518 
519 		} else {
520 			if (!(state & AGS_AGGREGATE))
521 				break;	/* cannot promote either twin */
522 
523 			/* Promote the new, odd twin by shaving its
524 			 * mask and address.
525 			 * The promoted route is odd-redundant only if the
526 			 * odd twin was fully redundant.  It is not
527 			 * even-redundant because the even twin is still in
528 			 * the table.
529 			 */
530 			if (!AG_IS_REDUN(state))
531 				state &= ~AGS_REDUN1;
532 			state &= ~AGS_REDUN0;
533 			if (new_seqno < ag->ag_seqno)
534 				new_seqno = ag->ag_seqno;
535 			else
536 				ag->ag_seqno = new_seqno;
537 		}
538 
539 		mask <<= 1;
540 		dst &= mask;
541 
542 		if (ag_cors == NULL) {
543 			ag = ag_corsest;
544 			break;
545 		}
546 		ag = ag_cors;
547 		ag_cors = ag->ag_cors;
548 	}
549 
550 	/* When we can no longer promote and combine routes,
551 	 * flush the old route in the target slot.  Also flush
552 	 * any finer routes that we know will never be aggregated by
553 	 * the new route.
554 	 *
555 	 * In case we moved toward coarser masks,
556 	 * get back where we belong
557 	 */
558 	if (ag != NULL
559 	    && ag->ag_mask < mask) {
560 		ag_cors = ag;
561 		ag = ag->ag_fine;
562 	}
563 
564 	/* Empty the target slot
565 	 */
566 	if (ag != NULL && ag->ag_mask == mask) {
567 		ag_flush(ag->ag_dst_h, ag->ag_mask, out);
568 		ag = (ag_cors == NULL) ? ag_corsest : ag_cors->ag_fine;
569 	}
570 
571 #ifdef DEBUG_AG
572 	(void)fflush(stderr);
573 	if (ag == NULL && ag_cors != ag_finest)
574 		abort();
575 	if (ag_cors == NULL && ag != ag_corsest)
576 		abort();
577 	if (ag != NULL && ag->ag_cors != ag_cors)
578 		abort();
579 	if (ag_cors != NULL && ag_cors->ag_fine != ag)
580 		abort();
581 	CHECK_AG();
582 #endif
583 
584 	/* Save the new route on the end of the table.
585 	 */
586 	nag = ag_avail;
587 	ag_avail = nag->ag_fine;
588 
589 	nag->ag_dst_h = dst;
590 	nag->ag_mask = mask;
591 	nag->ag_gate = gate;
592 	nag->ag_nhop = nhop;
593 	nag->ag_metric = metric;
594 	nag->ag_pref = pref;
595 	nag->ag_tag = tag;
596 	nag->ag_state = state;
597 	nag->ag_seqno = new_seqno;
598 
599 	nag->ag_fine = ag;
600 	if (ag != NULL)
601 		ag->ag_cors = nag;
602 	else
603 		ag_finest = nag;
604 	nag->ag_cors = ag_cors;
605 	if (ag_cors == NULL)
606 		ag_corsest = nag;
607 	else
608 		ag_cors->ag_fine = nag;
609 	CHECK_AG();
610 }
611 
612 static const char *
613 rtm_type_name(u_char type)
614 {
615 	static const char * const rtm_types[] = {
616 		"RTM_ADD",
617 		"RTM_DELETE",
618 		"RTM_CHANGE",
619 		"RTM_GET",
620 		"RTM_LOSING",
621 		"RTM_REDIRECT",
622 		"RTM_MISS",
623 		"RTM_LOCK",
624 		"RTM_OLDADD",
625 		"RTM_OLDDEL",
626 		"RTM_RESOLVE",
627 		"RTM_NEWADDR",
628 		"RTM_DELADDR",
629 #ifdef RTM_OIFINFO
630 		"RTM_OIFINFO",
631 #endif
632 		"RTM_IFINFO",
633 		"RTM_NEWMADDR",
634 		"RTM_DELMADDR"
635 	};
636 #define NEW_RTM_PAT "RTM type %#x"
637 	static char name0[sizeof(NEW_RTM_PAT)+2];
638 
639 
640 	if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
641 	    || type == 0) {
642 		snprintf(name0, sizeof(name0), NEW_RTM_PAT, type);
643 		return name0;
644 	} else {
645 		return rtm_types[type-1];
646 	}
647 #undef NEW_RTM_PAT
648 }
649 
650 
651 /* Trim a mask in a sockaddr
652  *	Produce a length of 0 for an address of 0.
653  *	Otherwise produce the index of the first zero byte.
654  */
655 void
656 #ifdef _HAVE_SIN_LEN
657 masktrim(struct sockaddr_in *ap)
658 #else
659 masktrim(struct sockaddr_in_new *ap)
660 #endif
661 {
662 	char *cp;
663 
664 	if (ap->sin_addr.s_addr == 0) {
665 		ap->sin_len = 0;
666 		return;
667 	}
668 	cp = (char *)(&ap->sin_addr.s_addr+1);
669 	while (*--cp == 0)
670 		continue;
671 	ap->sin_len = cp - (char*)ap + 1;
672 }
673 
674 
675 /* Tell the kernel to add, delete or change a route
676  */
677 static void
678 rtioctl(int action,			/* RTM_DELETE, etc */
679 	naddr dst,
680 	naddr gate,
681 	naddr mask,
682 	int metric,
683 	int flags)
684 {
685 	struct {
686 		struct rt_msghdr w_rtm;
687 		struct sockaddr_in w_dst;
688 		struct sockaddr_in w_gate;
689 #ifdef _HAVE_SA_LEN
690 		struct sockaddr_in w_mask;
691 #else
692 		struct sockaddr_in_new w_mask;
693 #endif
694 	} w;
695 	long cc;
696 #   define PAT " %-10s %s metric=%d flags=%#x"
697 #   define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
698 
699 again:
700 	memset(&w, 0, sizeof(w));
701 	w.w_rtm.rtm_msglen = sizeof(w);
702 	w.w_rtm.rtm_version = RTM_VERSION;
703 	w.w_rtm.rtm_type = action;
704 	w.w_rtm.rtm_flags = flags;
705 	w.w_rtm.rtm_seq = ++rt_sock_seqno;
706 	w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
707 	if (metric != 0 || action == RTM_CHANGE) {
708 		w.w_rtm.rtm_rmx.rmx_hopcount = metric;
709 		w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
710 	}
711 	w.w_dst.sin_family = AF_INET;
712 	w.w_dst.sin_addr.s_addr = dst;
713 	w.w_gate.sin_family = AF_INET;
714 	w.w_gate.sin_addr.s_addr = gate;
715 #ifdef _HAVE_SA_LEN
716 	w.w_dst.sin_len = sizeof(w.w_dst);
717 	w.w_gate.sin_len = sizeof(w.w_gate);
718 #endif
719 	if (mask == HOST_MASK) {
720 		w.w_rtm.rtm_flags |= RTF_HOST;
721 		w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
722 	} else {
723 		w.w_rtm.rtm_addrs |= RTA_NETMASK;
724 		w.w_mask.sin_addr.s_addr = htonl(mask);
725 #ifdef _HAVE_SA_LEN
726 		masktrim(&w.w_mask);
727 		if (w.w_mask.sin_len == 0)
728 			w.w_mask.sin_len = sizeof(long);
729 		w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
730 #endif
731 	}
732 
733 #ifndef NO_INSTALL
734 	cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
735 	if (cc < 0) {
736 		if (errno == ESRCH
737 		    && (action == RTM_CHANGE || action == RTM_DELETE)) {
738 			trace_act("route disappeared before" PAT, ARGS);
739 			if (action == RTM_CHANGE) {
740 				action = RTM_ADD;
741 				goto again;
742 			}
743 			return;
744 		}
745 		msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno));
746 		return;
747 	} else if (cc != w.w_rtm.rtm_msglen) {
748 		msglog("write(rt_sock) wrote %ld instead of %d for" PAT,
749 		       cc, w.w_rtm.rtm_msglen, ARGS);
750 		return;
751 	}
752 #endif
753 	if (TRACEKERNEL)
754 		trace_misc("write kernel" PAT, ARGS);
755 #undef PAT
756 #undef ARGS
757 }
758 
759 
760 #define KHASH_SIZE 71			/* should be prime */
761 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
762 static struct khash {
763 	struct khash *k_next;
764 	naddr	k_dst;
765 	naddr	k_mask;
766 	naddr	k_gate;
767 	short	k_metric;
768 	u_short	k_state;
769 #define	    KS_NEW	0x001
770 #define	    KS_DELETE	0x002		/* need to delete the route */
771 #define	    KS_ADD	0x004		/* add to the kernel */
772 #define	    KS_CHANGE	0x008		/* tell kernel to change the route */
773 #define	    KS_DEL_ADD	0x010		/* delete & add to change the kernel */
774 #define	    KS_STATIC	0x020		/* Static flag in kernel */
775 #define	    KS_GATEWAY	0x040		/* G flag in kernel */
776 #define	    KS_DYNAMIC	0x080		/* result of redirect */
777 #define	    KS_DELETED	0x100		/* already deleted from kernel */
778 #define	    KS_CHECK	0x200
779 	time_t	k_keep;
780 #define	    K_KEEP_LIM	30
781 	time_t	k_redirect_time;	/* when redirected route 1st seen */
782 } *khash_bins[KHASH_SIZE];
783 
784 
785 static struct khash*
786 kern_find(naddr dst, naddr mask, struct khash ***ppk)
787 {
788 	struct khash *k, **pk;
789 
790 	for (pk = &KHASH(dst,mask); (k = *pk) != NULL; pk = &k->k_next) {
791 		if (k->k_dst == dst && k->k_mask == mask)
792 			break;
793 	}
794 	if (ppk != NULL)
795 		*ppk = pk;
796 	return k;
797 }
798 
799 
800 static struct khash*
801 kern_add(naddr dst, naddr mask)
802 {
803 	struct khash *k, **pk;
804 
805 	k = kern_find(dst, mask, &pk);
806 	if (k != NULL)
807 		return k;
808 
809 	k = (struct khash *)rtmalloc(sizeof(*k), "kern_add");
810 
811 	memset(k, 0, sizeof(*k));
812 	k->k_dst = dst;
813 	k->k_mask = mask;
814 	k->k_state = KS_NEW;
815 	k->k_keep = now.tv_sec;
816 	*pk = k;
817 
818 	return k;
819 }
820 
821 
822 /* If a kernel route has a non-zero metric, check that it is still in the
823  *	daemon table, and not deleted by interfaces coming and going.
824  */
825 static void
826 kern_check_static(struct khash *k,
827 		  struct interface *ifp)
828 {
829 	struct rt_entry *rt;
830 	struct rt_spare new;
831 
832 	if (k->k_metric == 0)
833 		return;
834 
835 	memset(&new, 0, sizeof(new));
836 	new.rts_ifp = ifp;
837 	new.rts_gate = k->k_gate;
838 	new.rts_router = (ifp != NULL) ? ifp->int_addr : loopaddr;
839 	new.rts_metric = k->k_metric;
840 	new.rts_time = now.tv_sec;
841 
842 	rt = rtget(k->k_dst, k->k_mask);
843 	if (rt != NULL) {
844 		if (!(rt->rt_state & RS_STATIC))
845 			rtchange(rt, rt->rt_state | RS_STATIC, &new, 0);
846 	} else {
847 		rtadd(k->k_dst, k->k_mask, RS_STATIC, &new);
848 	}
849 }
850 
851 
852 /* operate on a kernel entry
853  */
854 static void
855 kern_ioctl(struct khash *k,
856 	   int action,			/* RTM_DELETE, etc */
857 	   int flags)
858 
859 {
860 	switch (action) {
861 	case RTM_DELETE:
862 		k->k_state &= ~KS_DYNAMIC;
863 		if (k->k_state & KS_DELETED)
864 			return;
865 		k->k_state |= KS_DELETED;
866 		break;
867 	case RTM_ADD:
868 		k->k_state &= ~KS_DELETED;
869 		break;
870 	case RTM_CHANGE:
871 		if (k->k_state & KS_DELETED) {
872 			action = RTM_ADD;
873 			k->k_state &= ~KS_DELETED;
874 		}
875 		break;
876 	}
877 
878 	rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
879 }
880 
881 
882 /* add a route the kernel told us
883  */
884 static void
885 rtm_add(struct rt_msghdr *rtm,
886 	struct rt_addrinfo *info,
887 	time_t keep)
888 {
889 	struct khash *k;
890 	struct interface *ifp;
891 	naddr mask;
892 
893 
894 	if (rtm->rtm_flags & RTF_HOST) {
895 		mask = HOST_MASK;
896 	} else if (INFO_MASK(info) != 0) {
897 		mask = ntohl(S_ADDR(INFO_MASK(info)));
898 	} else {
899 		msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
900 		return;
901 	}
902 
903 	k = kern_add(S_ADDR(INFO_DST(info)), mask);
904 	if (k->k_state & KS_NEW)
905 		k->k_keep = now.tv_sec+keep;
906 	if (INFO_GATE(info) == 0) {
907 		trace_act("note %s without gateway",
908 			  rtm_type_name(rtm->rtm_type));
909 		k->k_metric = HOPCNT_INFINITY;
910 	} else if (INFO_GATE(info)->sa_family != AF_INET) {
911 		trace_act("note %s with gateway AF=%d",
912 			  rtm_type_name(rtm->rtm_type),
913 			  INFO_GATE(info)->sa_family);
914 		k->k_metric = HOPCNT_INFINITY;
915 	} else {
916 		k->k_gate = S_ADDR(INFO_GATE(info));
917 		k->k_metric = rtm->rtm_rmx.rmx_hopcount;
918 		if (k->k_metric < 0)
919 			k->k_metric = 0;
920 		else if (k->k_metric > HOPCNT_INFINITY-1)
921 			k->k_metric = HOPCNT_INFINITY-1;
922 	}
923 	k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD
924 			| KS_DELETED | KS_GATEWAY | KS_STATIC
925 			| KS_NEW | KS_CHECK);
926 	if (rtm->rtm_flags & RTF_GATEWAY)
927 		k->k_state |= KS_GATEWAY;
928 	if (rtm->rtm_flags & RTF_STATIC)
929 		k->k_state |= KS_STATIC;
930 
931 	if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
932 		if (INFO_AUTHOR(info) != 0
933 		    && INFO_AUTHOR(info)->sa_family == AF_INET)
934 			ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
935 		else
936 			ifp = NULL;
937 		if (supplier
938 		    && (ifp == NULL || !(ifp->int_state & IS_REDIRECT_OK))) {
939 			/* Routers are not supposed to listen to redirects,
940 			 * so delete it if it came via an unknown interface
941 			 * or the interface does not have special permission.
942 			 */
943 			k->k_state &= ~KS_DYNAMIC;
944 			k->k_state |= KS_DELETE;
945 			LIM_SEC(need_kern, 0);
946 			trace_act("mark for deletion redirected %s --> %s"
947 				  " via %s",
948 				  addrname(k->k_dst, k->k_mask, 0),
949 				  naddr_ntoa(k->k_gate),
950 				  ifp ? ifp->int_name : "unknown interface");
951 		} else {
952 			k->k_state |= KS_DYNAMIC;
953 			k->k_redirect_time = now.tv_sec;
954 			trace_act("accept redirected %s --> %s via %s",
955 				  addrname(k->k_dst, k->k_mask, 0),
956 				  naddr_ntoa(k->k_gate),
957 				  ifp ? ifp->int_name : "unknown interface");
958 		}
959 		return;
960 	}
961 
962 	/* If it is not a static route, quit until the next comparison
963 	 * between the kernel and daemon tables, when it will be deleted.
964 	 */
965 	if (!(k->k_state & KS_STATIC)) {
966 		k->k_state |= KS_DELETE;
967 		LIM_SEC(need_kern, k->k_keep);
968 		return;
969 	}
970 
971 	/* Put static routes with real metrics into the daemon table so
972 	 * they can be advertised.
973 	 *
974 	 * Find the interface toward the gateway.
975 	 */
976 	ifp = iflookup(k->k_gate);
977 	if (ifp == NULL)
978 		msglog("static route %s --> %s impossibly lacks ifp",
979 		       addrname(S_ADDR(INFO_DST(info)), mask, 0),
980 		       naddr_ntoa(k->k_gate));
981 
982 	kern_check_static(k, ifp);
983 }
984 
985 
986 /* deal with packet loss
987  */
988 static void
989 rtm_lose(struct rt_msghdr *rtm,
990 	 struct rt_addrinfo *info)
991 {
992 	if (INFO_GATE(info) == 0
993 	    || INFO_GATE(info)->sa_family != AF_INET) {
994 		trace_act("ignore %s without gateway",
995 			  rtm_type_name(rtm->rtm_type));
996 		return;
997 	}
998 
999 	if (rdisc_ok)
1000 		rdisc_age(S_ADDR(INFO_GATE(info)));
1001 	age(S_ADDR(INFO_GATE(info)));
1002 }
1003 
1004 
1005 /* Make the gateway slot of an info structure point to something
1006  * useful.  If it is not already useful, but it specifies an interface,
1007  * then fill in the sockaddr_in provided and point it there.
1008  */
1009 static int
1010 get_info_gate(struct sockaddr **sap,
1011 	      struct sockaddr_in *rsin)
1012 {
1013 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap;
1014 	struct interface *ifp;
1015 
1016 	if (sdl == NULL)
1017 		return 0;
1018 	if ((sdl)->sdl_family == AF_INET)
1019 		return 1;
1020 	if ((sdl)->sdl_family != AF_LINK)
1021 		return 0;
1022 
1023 	ifp = ifwithindex(sdl->sdl_index, 1);
1024 	if (ifp == NULL)
1025 		return 0;
1026 
1027 	rsin->sin_addr.s_addr = ifp->int_addr;
1028 #ifdef _HAVE_SA_LEN
1029 	rsin->sin_len = sizeof(*rsin);
1030 #endif
1031 	rsin->sin_family = AF_INET;
1032 	*sap = (struct sockaddr*)rsin;
1033 
1034 	return 1;
1035 }
1036 
1037 
1038 /* Clean the kernel table by copying it to the daemon image.
1039  * Eventually the daemon will delete any extra routes.
1040  */
1041 void
1042 flush_kern(void)
1043 {
1044 	static char *sysctl_buf;
1045 	static size_t sysctl_buf_size = 0;
1046 	size_t needed;
1047 	int mib[6];
1048 	char *next, *lim;
1049 	struct rt_msghdr *rtm;
1050 	struct sockaddr_in gate_sin;
1051 	struct rt_addrinfo info;
1052 	int i;
1053 	struct khash *k;
1054 
1055 
1056 	for (i = 0; i < KHASH_SIZE; i++) {
1057 		for (k = khash_bins[i]; k != NULL; k = k->k_next) {
1058 			k->k_state |= KS_CHECK;
1059 		}
1060 	}
1061 
1062 	mib[0] = CTL_NET;
1063 	mib[1] = PF_ROUTE;
1064 	mib[2] = 0;		/* protocol */
1065 	mib[3] = 0;		/* wildcard address family */
1066 	mib[4] = NET_RT_DUMP;
1067 	mib[5] = 0;		/* no flags */
1068 	for (;;) {
1069 		if ((needed = sysctl_buf_size) != 0) {
1070 			if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0)
1071 				break;
1072 			if (errno != ENOMEM && errno != EFAULT)
1073 				BADERR(1,"flush_kern: sysctl(RT_DUMP)");
1074 			free(sysctl_buf);
1075 			needed = 0;
1076 		}
1077 		if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
1078 			BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate");
1079 		/* Kludge around the habit of some systems, such as
1080 		 * BSD/OS 3.1, to not admit how many routes are in the
1081 		 * kernel, or at least to be quite wrong.
1082 		 */
1083 		needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr));
1084 		sysctl_buf = rtmalloc(sysctl_buf_size = needed,
1085 				      "flush_kern sysctl(RT_DUMP)");
1086 	}
1087 
1088 	lim = sysctl_buf + needed;
1089 	for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) {
1090 		rtm = (struct rt_msghdr *)next;
1091 		if (rtm->rtm_msglen == 0) {
1092 			msglog("zero length kernel route at "
1093 			       " %#lx in buffer %#lx before %#lx",
1094 			       (u_long)rtm, (u_long)sysctl_buf, (u_long)lim);
1095 			break;
1096 		}
1097 
1098 		rt_xaddrs(&info,
1099 			  (struct sockaddr *)(rtm+1),
1100 			  (struct sockaddr *)(next + rtm->rtm_msglen),
1101 			  rtm->rtm_addrs);
1102 
1103 		if (INFO_DST(&info) == 0
1104 		    || INFO_DST(&info)->sa_family != AF_INET)
1105 			continue;
1106 
1107 #if defined (RTF_LLINFO)
1108 		/* ignore ARP table entries on systems with a merged route
1109 		 * and ARP table.
1110 		 */
1111 		if (rtm->rtm_flags & RTF_LLINFO)
1112 			continue;
1113 #endif
1114 #if defined(RTF_WASCLONED) && defined(__FreeBSD__)
1115 		/* ignore cloned routes
1116 		 */
1117 		if (rtm->rtm_flags & RTF_WASCLONED)
1118 			continue;
1119 #endif
1120 
1121 		/* ignore multicast addresses
1122 		 */
1123 		if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
1124 			continue;
1125 
1126 		if (!get_info_gate(&INFO_GATE(&info), &gate_sin))
1127 			continue;
1128 
1129 		/* Note static routes and interface routes, and also
1130 		 * preload the image of the kernel table so that
1131 		 * we can later clean it, as well as avoid making
1132 		 * unneeded changes.  Keep the old kernel routes for a
1133 		 * few seconds to allow a RIP or router-discovery
1134 		 * response to be heard.
1135 		 */
1136 		rtm_add(rtm,&info,MIN_WAITTIME);
1137 	}
1138 
1139 	for (i = 0; i < KHASH_SIZE; i++) {
1140 		for (k = khash_bins[i]; k != NULL; k = k->k_next) {
1141 			if (k->k_state & KS_CHECK) {
1142 				msglog("%s --> %s disappeared from kernel",
1143 				       addrname(k->k_dst, k->k_mask, 0),
1144 				       naddr_ntoa(k->k_gate));
1145 				del_static(k->k_dst, k->k_mask, k->k_gate, 1);
1146 			}
1147 		}
1148 	}
1149 }
1150 
1151 
1152 /* Listen to announcements from the kernel
1153  */
1154 void
1155 read_rt(void)
1156 {
1157 	long cc;
1158 	struct interface *ifp;
1159 	struct sockaddr_in gate_sin;
1160 	naddr mask, gate;
1161 	union {
1162 		struct {
1163 			struct rt_msghdr rtm;
1164 			struct sockaddr addrs[RTAX_MAX];
1165 		} r;
1166 		struct if_msghdr ifm;
1167 	} m;
1168 	char str[100], *strp;
1169 	struct rt_addrinfo info;
1170 
1171 
1172 	for (;;) {
1173 		cc = read(rt_sock, &m, sizeof(m));
1174 		if (cc <= 0) {
1175 			if (cc < 0 && errno != EWOULDBLOCK)
1176 				LOGERR("read(rt_sock)");
1177 			return;
1178 		}
1179 
1180 		if (m.r.rtm.rtm_version != RTM_VERSION) {
1181 			msglog("bogus routing message version %d",
1182 			       m.r.rtm.rtm_version);
1183 			continue;
1184 		}
1185 
1186 		/* Ignore our own results.
1187 		 */
1188 		if (m.r.rtm.rtm_type <= RTM_CHANGE
1189 		    && m.r.rtm.rtm_pid == mypid) {
1190 			static int complained = 0;
1191 			if (!complained) {
1192 				msglog("receiving our own change messages");
1193 				complained = 1;
1194 			}
1195 			continue;
1196 		}
1197 
1198 		if (m.r.rtm.rtm_type == RTM_IFINFO
1199 		    || m.r.rtm.rtm_type == RTM_NEWADDR
1200 		    || m.r.rtm.rtm_type == RTM_DELADDR) {
1201 			ifp = ifwithindex(m.ifm.ifm_index,
1202 					  m.r.rtm.rtm_type != RTM_DELADDR);
1203 			if (ifp == NULL)
1204 				trace_act("note %s with flags %#x"
1205 					  " for unknown interface index #%d",
1206 					  rtm_type_name(m.r.rtm.rtm_type),
1207 					  m.ifm.ifm_flags,
1208 					  m.ifm.ifm_index);
1209 			else
1210 				trace_act("note %s with flags %#x for %s",
1211 					  rtm_type_name(m.r.rtm.rtm_type),
1212 					  m.ifm.ifm_flags,
1213 					  ifp->int_name);
1214 
1215 			/* After being informed of a change to an interface,
1216 			 * check them all now if the check would otherwise
1217 			 * be a long time from now, if the interface is
1218 			 * not known, or if the interface has been turned
1219 			 * off or on.
1220 			 */
1221 			if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
1222 			    || ifp == NULL
1223 			    || ((ifp->int_if_flags ^ m.ifm.ifm_flags)
1224 				& IFF_UP) != 0)
1225 				ifinit_timer.tv_sec = now.tv_sec;
1226 			continue;
1227 		}
1228 #ifdef RTM_OIFINFO
1229 		if (m.r.rtm.rtm_type == RTM_OIFINFO)
1230 			continue;	/* ignore compat message */
1231 #endif
1232 
1233 		strlcpy(str, rtm_type_name(m.r.rtm.rtm_type), sizeof(str));
1234 		strp = &str[strlen(str)];
1235 		if (m.r.rtm.rtm_type <= RTM_CHANGE)
1236 			strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
1237 
1238 		/*
1239 		 * Only messages that use the struct rt_msghdr format are
1240 		 * allowed beyond this point.
1241 		 */
1242 		if (m.r.rtm.rtm_type > RTM_RESOLVE) {
1243 			trace_act("ignore %s", str);
1244 			continue;
1245 		}
1246 
1247 		rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
1248 			  m.r.rtm.rtm_addrs);
1249 
1250 		if (INFO_DST(&info) == 0) {
1251 			trace_act("ignore %s without dst", str);
1252 			continue;
1253 		}
1254 
1255 		if (INFO_DST(&info)->sa_family != AF_INET) {
1256 			trace_act("ignore %s for AF %d", str,
1257 				  INFO_DST(&info)->sa_family);
1258 			continue;
1259 		}
1260 
1261 		mask = ((INFO_MASK(&info) != 0)
1262 			? ntohl(S_ADDR(INFO_MASK(&info)))
1263 			: (m.r.rtm.rtm_flags & RTF_HOST)
1264 			? HOST_MASK
1265 			: std_mask(S_ADDR(INFO_DST(&info))));
1266 
1267 		strp += sprintf(strp, ": %s",
1268 				addrname(S_ADDR(INFO_DST(&info)), mask, 0));
1269 
1270 		if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
1271 			trace_act("ignore multicast %s", str);
1272 			continue;
1273 		}
1274 
1275 #if defined(RTF_LLINFO)
1276 		if (m.r.rtm.rtm_flags & RTF_LLINFO) {
1277 			trace_act("ignore ARP %s", str);
1278 			continue;
1279 		}
1280 #endif
1281 
1282 #if defined(RTF_WASCLONED) && defined(__FreeBSD__)
1283 		if (m.r.rtm.rtm_flags & RTF_WASCLONED) {
1284 			trace_act("ignore cloned %s", str);
1285 			continue;
1286 		}
1287 #endif
1288 
1289 		if (get_info_gate(&INFO_GATE(&info), &gate_sin)) {
1290 			gate = S_ADDR(INFO_GATE(&info));
1291 			strp += sprintf(strp, " --> %s", naddr_ntoa(gate));
1292 		} else {
1293 			gate = 0;
1294 		}
1295 
1296 		if (INFO_AUTHOR(&info) != 0)
1297 			strp += sprintf(strp, " by authority of %s",
1298 					saddr_ntoa(INFO_AUTHOR(&info)));
1299 
1300 		switch (m.r.rtm.rtm_type) {
1301 		case RTM_ADD:
1302 		case RTM_CHANGE:
1303 		case RTM_REDIRECT:
1304 			if (m.r.rtm.rtm_errno != 0) {
1305 				trace_act("ignore %s with \"%s\" error",
1306 					  str, strerror(m.r.rtm.rtm_errno));
1307 			} else {
1308 				trace_act("%s", str);
1309 				rtm_add(&m.r.rtm,&info,0);
1310 			}
1311 			break;
1312 
1313 		case RTM_DELETE:
1314 			if (m.r.rtm.rtm_errno != 0
1315 			    && m.r.rtm.rtm_errno != ESRCH) {
1316 				trace_act("ignore %s with \"%s\" error",
1317 					  str, strerror(m.r.rtm.rtm_errno));
1318 			} else {
1319 				trace_act("%s", str);
1320 				del_static(S_ADDR(INFO_DST(&info)), mask,
1321 					   gate, 1);
1322 			}
1323 			break;
1324 
1325 		case RTM_LOSING:
1326 			trace_act("%s", str);
1327 			rtm_lose(&m.r.rtm,&info);
1328 			break;
1329 
1330 		default:
1331 			trace_act("ignore %s", str);
1332 			break;
1333 		}
1334 	}
1335 }
1336 
1337 
1338 /* after aggregating, note routes that belong in the kernel
1339  */
1340 static void
1341 kern_out(struct ag_info *ag)
1342 {
1343 	struct khash *k;
1344 
1345 
1346 	/* Do not install bad routes if they are not already present.
1347 	 * This includes routes that had RS_NET_SYN for interfaces that
1348 	 * recently died.
1349 	 */
1350 	if (ag->ag_metric == HOPCNT_INFINITY) {
1351 		k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
1352 		if (k == NULL)
1353 			return;
1354 	} else {
1355 		k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
1356 	}
1357 
1358 	if (k->k_state & KS_NEW) {
1359 		/* will need to add new entry to the kernel table */
1360 		k->k_state = KS_ADD;
1361 		if (ag->ag_state & AGS_GATEWAY)
1362 			k->k_state |= KS_GATEWAY;
1363 		k->k_gate = ag->ag_gate;
1364 		k->k_metric = ag->ag_metric;
1365 		return;
1366 	}
1367 
1368 	if (k->k_state & KS_STATIC)
1369 		return;
1370 
1371 	/* modify existing kernel entry if necessary */
1372 	if (k->k_gate != ag->ag_gate
1373 	    || k->k_metric != ag->ag_metric) {
1374 		/* Must delete bad interface routes etc. to change them. */
1375 		if (k->k_metric == HOPCNT_INFINITY)
1376 			k->k_state |= KS_DEL_ADD;
1377 		k->k_gate = ag->ag_gate;
1378 		k->k_metric = ag->ag_metric;
1379 		k->k_state |= KS_CHANGE;
1380 	}
1381 
1382 	/* If the daemon thinks the route should exist, forget
1383 	 * about any redirections.
1384 	 * If the daemon thinks the route should exist, eventually
1385 	 * override manual intervention by the operator.
1386 	 */
1387 	if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) {
1388 		k->k_state &= ~KS_DYNAMIC;
1389 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1390 	}
1391 
1392 	if ((k->k_state & KS_GATEWAY)
1393 	    && !(ag->ag_state & AGS_GATEWAY)) {
1394 		k->k_state &= ~KS_GATEWAY;
1395 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1396 	} else if (!(k->k_state & KS_GATEWAY)
1397 		   && (ag->ag_state & AGS_GATEWAY)) {
1398 		k->k_state |= KS_GATEWAY;
1399 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1400 	}
1401 
1402 	/* Deleting-and-adding is necessary to change aspects of a route.
1403 	 * Just delete instead of deleting and then adding a bad route.
1404 	 * Otherwise, we want to keep the route in the kernel.
1405 	 */
1406 	if (k->k_metric == HOPCNT_INFINITY
1407 	    && (k->k_state & KS_DEL_ADD))
1408 		k->k_state |= KS_DELETE;
1409 	else
1410 		k->k_state &= ~KS_DELETE;
1411 #undef RT
1412 }
1413 
1414 
1415 /* ARGSUSED */
1416 static int
1417 walk_kern(struct radix_node *rn,
1418 	  struct walkarg *argp UNUSED)
1419 {
1420 #define RT ((struct rt_entry *)rn)
1421 	char metric, pref;
1422 	u_int ags = 0;
1423 
1424 
1425 	/* Do not install synthetic routes */
1426 	if (RT->rt_state & RS_NET_SYN)
1427 		return 0;
1428 
1429 	if (!(RT->rt_state & RS_IF)) {
1430 		/* This is an ordinary route, not for an interface.
1431 		 */
1432 
1433 		/* aggregate, ordinary good routes without regard to
1434 		 * their metric
1435 		 */
1436 		pref = 1;
1437 		ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1438 
1439 		/* Do not install host routes directly to hosts, to avoid
1440 		 * interfering with ARP entries in the kernel table.
1441 		 */
1442 		if (RT_ISHOST(RT)
1443 		    && ntohl(RT->rt_dst) == RT->rt_gate)
1444 			return 0;
1445 
1446 	} else {
1447 		/* This is an interface route.
1448 		 * Do not install routes for "external" remote interfaces.
1449 		 */
1450 		if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
1451 			return 0;
1452 
1453 		/* Interfaces should override received routes.
1454 		 */
1455 		pref = 0;
1456 		ags |= (AGS_IF | AGS_CORS_GATE);
1457 
1458 		/* If it is not an interface, or an alias for an interface,
1459 		 * it must be a "gateway."
1460 		 *
1461 		 * If it is a "remote" interface, it is also a "gateway" to
1462 		 * the kernel if is not an alias.
1463 		 */
1464 		if (RT->rt_ifp == 0
1465 		    || (RT->rt_ifp->int_state & IS_REMOTE))
1466 			ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1467 	}
1468 
1469 	/* If RIP is off and IRDP is on, let the route to the discovered
1470 	 * route suppress any RIP routes.  Eventually the RIP routes
1471 	 * will time-out and be deleted.  This reaches the steady-state
1472 	 * quicker.
1473 	 */
1474 	if ((RT->rt_state & RS_RDISC) && rip_sock < 0)
1475 		ags |= AGS_CORS_GATE;
1476 
1477 	metric = RT->rt_metric;
1478 	if (metric == HOPCNT_INFINITY) {
1479 		/* if the route is dead, so try hard to aggregate. */
1480 		pref = HOPCNT_INFINITY;
1481 		ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
1482 		ags &= ~(AGS_IF | AGS_CORS_GATE);
1483 	}
1484 
1485 	ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
1486 		 metric,pref, 0, 0, ags, kern_out);
1487 	return 0;
1488 #undef RT
1489 }
1490 
1491 
1492 /* Update the kernel table to match the daemon table.
1493  */
1494 static void
1495 fix_kern(void)
1496 {
1497 	int i;
1498 	struct khash *k, **pk;
1499 
1500 
1501 	need_kern = age_timer;
1502 
1503 	/* Walk daemon table, updating the copy of the kernel table.
1504 	 */
1505 	(void)rn_walktree(rhead, walk_kern, 0);
1506 	ag_flush(0,0,kern_out);
1507 
1508 	for (i = 0; i < KHASH_SIZE; i++) {
1509 		for (pk = &khash_bins[i]; (k = *pk) != NULL; ) {
1510 			/* Do not touch static routes */
1511 			if (k->k_state & KS_STATIC) {
1512 				kern_check_static(k,0);
1513 				pk = &k->k_next;
1514 				continue;
1515 			}
1516 
1517 			/* check hold on routes deleted by the operator */
1518 			if (k->k_keep > now.tv_sec) {
1519 				/* ensure we check when the hold is over */
1520 				LIM_SEC(need_kern, k->k_keep);
1521 				/* mark for the next cycle */
1522 				k->k_state |= KS_DELETE;
1523 				pk = &k->k_next;
1524 				continue;
1525 			}
1526 
1527 			if ((k->k_state & KS_DELETE)
1528 			    && !(k->k_state & KS_DYNAMIC)) {
1529 				kern_ioctl(k, RTM_DELETE, 0);
1530 				*pk = k->k_next;
1531 				free(k);
1532 				continue;
1533 			}
1534 
1535 			if (k->k_state & KS_DEL_ADD)
1536 				kern_ioctl(k, RTM_DELETE, 0);
1537 
1538 			if (k->k_state & KS_ADD) {
1539 				kern_ioctl(k, RTM_ADD,
1540 					   ((0 != (k->k_state & (KS_GATEWAY
1541 							| KS_DYNAMIC)))
1542 					    ? RTF_GATEWAY : 0));
1543 			} else if (k->k_state & KS_CHANGE) {
1544 				kern_ioctl(k,  RTM_CHANGE,
1545 					   ((0 != (k->k_state & (KS_GATEWAY
1546 							| KS_DYNAMIC)))
1547 					    ? RTF_GATEWAY : 0));
1548 			}
1549 			k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
1550 
1551 			/* Mark this route to be deleted in the next cycle.
1552 			 * This deletes routes that disappear from the
1553 			 * daemon table, since the normal aging code
1554 			 * will clear the bit for routes that have not
1555 			 * disappeared from the daemon table.
1556 			 */
1557 			k->k_state |= KS_DELETE;
1558 			pk = &k->k_next;
1559 		}
1560 	}
1561 }
1562 
1563 
1564 /* Delete a static route in the image of the kernel table.
1565  */
1566 void
1567 del_static(naddr dst,
1568 	   naddr mask,
1569 	   naddr gate,
1570 	   int gone)
1571 {
1572 	struct khash *k;
1573 	struct rt_entry *rt;
1574 
1575 	/* Just mark it in the table to be deleted next time the kernel
1576 	 * table is updated.
1577 	 * If it has already been deleted, mark it as such, and set its
1578 	 * keep-timer so that it will not be deleted again for a while.
1579 	 * This lets the operator delete a route added by the daemon
1580 	 * and add a replacement.
1581 	 */
1582 	k = kern_find(dst, mask, 0);
1583 	if (k != NULL && (gate == 0 || k->k_gate == gate)) {
1584 		k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK);
1585 		k->k_state |= KS_DELETE;
1586 		if (gone) {
1587 			k->k_state |= KS_DELETED;
1588 			k->k_keep = now.tv_sec + K_KEEP_LIM;
1589 		}
1590 	}
1591 
1592 	rt = rtget(dst, mask);
1593 	if (rt != NULL && (rt->rt_state & RS_STATIC))
1594 		rtbad(rt);
1595 }
1596 
1597 
1598 /* Delete all routes generated from ICMP Redirects that use a given gateway,
1599  * as well as old redirected routes.
1600  */
1601 void
1602 del_redirects(naddr bad_gate,
1603 	      time_t old)
1604 {
1605 	int i;
1606 	struct khash *k;
1607 
1608 
1609 	for (i = 0; i < KHASH_SIZE; i++) {
1610 		for (k = khash_bins[i]; k != NULL; k = k->k_next) {
1611 			if (!(k->k_state & KS_DYNAMIC)
1612 			    || (k->k_state & KS_STATIC))
1613 				continue;
1614 
1615 			if (k->k_gate != bad_gate
1616 			    && k->k_redirect_time > old
1617 			    && !supplier)
1618 				continue;
1619 
1620 			k->k_state |= KS_DELETE;
1621 			k->k_state &= ~KS_DYNAMIC;
1622 			need_kern.tv_sec = now.tv_sec;
1623 			trace_act("mark redirected %s --> %s for deletion",
1624 				  addrname(k->k_dst, k->k_mask, 0),
1625 				  naddr_ntoa(k->k_gate));
1626 		}
1627 	}
1628 }
1629 
1630 
1631 /* Start the daemon tables.
1632  */
1633 extern int max_keylen;
1634 
1635 void
1636 rtinit(void)
1637 {
1638 	int i;
1639 	struct ag_info *ag;
1640 
1641 	/* Initialize the radix trees */
1642 	max_keylen = sizeof(struct sockaddr_in);
1643 	rn_init();
1644 	rn_inithead(&rhead, 32);
1645 
1646 	/* mark all of the slots in the table free */
1647 	ag_avail = ag_slots;
1648 	for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
1649 		ag->ag_fine = ag+1;
1650 		ag++;
1651 	}
1652 }
1653 
1654 
1655 #ifdef _HAVE_SIN_LEN
1656 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET, 0, {0}, {0}};
1657 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET, 0, {0}, {0}};
1658 #else
1659 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
1660 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
1661 #endif
1662 
1663 
1664 static void
1665 set_need_flash(void)
1666 {
1667 	if (!need_flash) {
1668 		need_flash = 1;
1669 		/* Do not send the flash update immediately.  Wait a little
1670 		 * while to hear from other routers.
1671 		 */
1672 		no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
1673 	}
1674 }
1675 
1676 
1677 /* Get a particular routing table entry
1678  */
1679 struct rt_entry *
1680 rtget(naddr dst, naddr mask)
1681 {
1682 	struct rt_entry *rt;
1683 
1684 	dst_sock.sin_addr.s_addr = dst;
1685 	mask_sock.sin_addr.s_addr = htonl(mask);
1686 	masktrim(&mask_sock);
1687 	rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
1688 	if (!rt
1689 	    || rt->rt_dst != dst
1690 	    || rt->rt_mask != mask)
1691 		return 0;
1692 
1693 	return rt;
1694 }
1695 
1696 
1697 /* Find a route to dst as the kernel would.
1698  */
1699 struct rt_entry *
1700 rtfind(naddr dst)
1701 {
1702 	dst_sock.sin_addr.s_addr = dst;
1703 	return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
1704 }
1705 
1706 
1707 /* add a route to the table
1708  */
1709 void
1710 rtadd(naddr	dst,
1711       naddr	mask,
1712       u_int	state,			/* rt_state for the entry */
1713       struct	rt_spare *new)
1714 {
1715 	struct rt_entry *rt;
1716 	naddr smask;
1717 	int i;
1718 	struct rt_spare *rts;
1719 
1720 	rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
1721 	memset(rt, 0, sizeof(*rt));
1722 	for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
1723 		rts->rts_metric = HOPCNT_INFINITY;
1724 
1725 	rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
1726 	rt->rt_dst = dst;
1727 	rt->rt_dst_sock.sin_family = AF_INET;
1728 #ifdef _HAVE_SIN_LEN
1729 	rt->rt_dst_sock.sin_len = dst_sock.sin_len;
1730 #endif
1731 	if (mask != HOST_MASK) {
1732 		smask = std_mask(dst);
1733 		if ((smask & ~mask) == 0 && mask > smask)
1734 			state |= RS_SUBNET;
1735 	}
1736 	mask_sock.sin_addr.s_addr = htonl(mask);
1737 	masktrim(&mask_sock);
1738 	rt->rt_mask = mask;
1739 	rt->rt_state = state;
1740 	rt->rt_spares[0] = *new;
1741 	rt->rt_time = now.tv_sec;
1742 	rt->rt_poison_metric = HOPCNT_INFINITY;
1743 	rt->rt_seqno = update_seqno;
1744 
1745 	if (++total_routes == MAX_ROUTES)
1746 		msglog("have maximum (%d) routes", total_routes);
1747 	if (TRACEACTIONS)
1748 		trace_add_del("Add", rt);
1749 
1750 	need_kern.tv_sec = now.tv_sec;
1751 	set_need_flash();
1752 
1753 	if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
1754 				    rhead, rt->rt_nodes)) {
1755 		msglog("rnh_addaddr() failed for %s mask=%#lx",
1756 		       naddr_ntoa(dst), (u_long)mask);
1757 		free(rt);
1758 	}
1759 }
1760 
1761 
1762 /* notice a changed route
1763  */
1764 void
1765 rtchange(struct rt_entry *rt,
1766 	 u_int	state,			/* new state bits */
1767 	 struct rt_spare *new,
1768 	 char	*label)
1769 {
1770 	if (rt->rt_metric != new->rts_metric) {
1771 		/* Fix the kernel immediately if it seems the route
1772 		 * has gone bad, since there may be a working route that
1773 		 * aggregates this route.
1774 		 */
1775 		if (new->rts_metric == HOPCNT_INFINITY) {
1776 			need_kern.tv_sec = now.tv_sec;
1777 			if (new->rts_time >= now.tv_sec - EXPIRE_TIME)
1778 				new->rts_time = now.tv_sec - EXPIRE_TIME;
1779 		}
1780 		rt->rt_seqno = update_seqno;
1781 		set_need_flash();
1782 	}
1783 
1784 	if (rt->rt_gate != new->rts_gate) {
1785 		need_kern.tv_sec = now.tv_sec;
1786 		rt->rt_seqno = update_seqno;
1787 		set_need_flash();
1788 	}
1789 
1790 	state |= (rt->rt_state & RS_SUBNET);
1791 
1792 	/* Keep various things from deciding ageless routes are stale.
1793 	 */
1794 	if (!AGE_RT(state, new->rts_ifp))
1795 		new->rts_time = now.tv_sec;
1796 
1797 	if (TRACEACTIONS)
1798 		trace_change(rt, state, new,
1799 			     label ? label : "Chg   ");
1800 
1801 	rt->rt_state = state;
1802 	rt->rt_spares[0] = *new;
1803 }
1804 
1805 
1806 /* check for a better route among the spares
1807  */
1808 static struct rt_spare *
1809 rts_better(struct rt_entry *rt)
1810 {
1811 	struct rt_spare *rts, *rts1;
1812 	int i;
1813 
1814 	/* find the best alternative among the spares */
1815 	rts = rt->rt_spares+1;
1816 	for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
1817 		if (BETTER_LINK(rt,rts1,rts))
1818 			rts = rts1;
1819 	}
1820 
1821 	return rts;
1822 }
1823 
1824 
1825 /* switch to a backup route
1826  */
1827 void
1828 rtswitch(struct rt_entry *rt,
1829 	 struct rt_spare *rts)
1830 {
1831 	struct rt_spare swap;
1832 	char label[10];
1833 
1834 
1835 	/* Do not change permanent routes */
1836 	if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
1837 				  | RS_NET_SYN | RS_IF)))
1838 		return;
1839 
1840 	/* find the best alternative among the spares */
1841 	if (rts == NULL)
1842 		rts = rts_better(rt);
1843 
1844 	/* Do not bother if it is not worthwhile.
1845 	 */
1846 	if (!BETTER_LINK(rt, rts, rt->rt_spares))
1847 		return;
1848 
1849 	swap = rt->rt_spares[0];
1850 	(void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares));
1851 	rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label);
1852 	if (swap.rts_metric == HOPCNT_INFINITY) {
1853 		*rts = rts_empty;
1854 	} else {
1855 		*rts = swap;
1856 	}
1857 }
1858 
1859 
1860 void
1861 rtdelete(struct rt_entry *rt)
1862 {
1863 	struct khash *k;
1864 
1865 
1866 	if (TRACEACTIONS)
1867 		trace_add_del("Del", rt);
1868 
1869 	k = kern_find(rt->rt_dst, rt->rt_mask, 0);
1870 	if (k != NULL) {
1871 		k->k_state |= KS_DELETE;
1872 		need_kern.tv_sec = now.tv_sec;
1873 	}
1874 
1875 	dst_sock.sin_addr.s_addr = rt->rt_dst;
1876 	mask_sock.sin_addr.s_addr = htonl(rt->rt_mask);
1877 	masktrim(&mask_sock);
1878 	if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
1879 							rhead)) {
1880 		msglog("rnh_deladdr() failed");
1881 	} else {
1882 		free(rt);
1883 		total_routes--;
1884 	}
1885 }
1886 
1887 
1888 void
1889 rts_delete(struct rt_entry *rt,
1890 	   struct rt_spare *rts)
1891 {
1892 	trace_upslot(rt, rts, &rts_empty);
1893 	*rts = rts_empty;
1894 }
1895 
1896 
1897 /* Get rid of a bad route, and try to switch to a replacement.
1898  */
1899 static void
1900 rtbad(struct rt_entry *rt)
1901 {
1902 	struct rt_spare new;
1903 
1904 	/* Poison the route */
1905 	new = rt->rt_spares[0];
1906 	new.rts_metric = HOPCNT_INFINITY;
1907 	rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0);
1908 	rtswitch(rt, 0);
1909 }
1910 
1911 
1912 /* Junk a RS_NET_SYN or RS_LOCAL route,
1913  *	unless it is needed by another interface.
1914  */
1915 void
1916 rtbad_sub(struct rt_entry *rt)
1917 {
1918 	struct interface *ifp, *ifp1;
1919 	struct intnet *intnetp;
1920 	u_int state;
1921 
1922 
1923 	ifp1 = NULL;
1924 	state = 0;
1925 
1926 	if (rt->rt_state & RS_LOCAL) {
1927 		/* Is this the route through loopback for the interface?
1928 		 * If so, see if it is used by any other interfaces, such
1929 		 * as a point-to-point interface with the same local address.
1930 		 */
1931 		LIST_FOREACH(ifp, &ifnet, int_list) {
1932 			/* Retain it if another interface needs it.
1933 			 */
1934 			if (ifp->int_addr == rt->rt_ifp->int_addr) {
1935 				state |= RS_LOCAL;
1936 				ifp1 = ifp;
1937 				break;
1938 			}
1939 		}
1940 
1941 	}
1942 
1943 	if (!(state & RS_LOCAL)) {
1944 		/* Retain RIPv1 logical network route if there is another
1945 		 * interface that justifies it.
1946 		 */
1947 		if (rt->rt_state & RS_NET_SYN) {
1948 			LIST_FOREACH(ifp, &ifnet, int_list) {
1949 				if ((ifp->int_state & IS_NEED_NET_SYN)
1950 				    && rt->rt_mask == ifp->int_std_mask
1951 				    && rt->rt_dst == ifp->int_std_addr) {
1952 					state |= RS_NET_SYN;
1953 					ifp1 = ifp;
1954 					break;
1955 				}
1956 			}
1957 		}
1958 
1959 		/* or if there is an authority route that needs it. */
1960 		for (intnetp = intnets;
1961 		     intnetp != NULL;
1962 		     intnetp = intnetp->intnet_next) {
1963 			if (intnetp->intnet_addr == rt->rt_dst
1964 			    && intnetp->intnet_mask == rt->rt_mask) {
1965 				state |= (RS_NET_SYN | RS_NET_INT);
1966 				break;
1967 			}
1968 		}
1969 	}
1970 
1971 	if (ifp1 != NULL || (state & RS_NET_SYN)) {
1972 		struct rt_spare new = rt->rt_spares[0];
1973 		new.rts_ifp = ifp1;
1974 		rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state),
1975 			 &new, 0);
1976 	} else {
1977 		rtbad(rt);
1978 	}
1979 }
1980 
1981 
1982 /* Called while walking the table looking for sick interfaces
1983  * or after a time change.
1984  */
1985 /* ARGSUSED */
1986 int
1987 walk_bad(struct radix_node *rn,
1988 	 struct walkarg *argp UNUSED)
1989 {
1990 #define RT ((struct rt_entry *)rn)
1991 	struct rt_spare *rts;
1992 	int i;
1993 
1994 
1995 	/* fix any spare routes through the interface
1996 	 */
1997 	rts = RT->rt_spares;
1998 	for (i = NUM_SPARES; i != 1; i--) {
1999 		rts++;
2000 		if (rts->rts_metric < HOPCNT_INFINITY
2001 		    && (rts->rts_ifp == NULL
2002 			|| (rts->rts_ifp->int_state & IS_BROKE)))
2003 			rts_delete(RT, rts);
2004 	}
2005 
2006 	/* Deal with the main route
2007 	 */
2008 	/* finished if it has been handled before or if its interface is ok
2009 	 */
2010 	if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
2011 		return 0;
2012 
2013 	/* Bad routes for other than interfaces are easy.
2014 	 */
2015 	if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
2016 		rtbad(RT);
2017 		return 0;
2018 	}
2019 
2020 	rtbad_sub(RT);
2021 	return 0;
2022 #undef RT
2023 }
2024 
2025 
2026 /* Check the age of an individual route.
2027  */
2028 /* ARGSUSED */
2029 static int
2030 walk_age(struct radix_node *rn,
2031 	   struct walkarg *argp UNUSED)
2032 {
2033 #define RT ((struct rt_entry *)rn)
2034 	struct interface *ifp;
2035 	struct rt_spare *rts;
2036 	int i;
2037 
2038 
2039 	/* age all of the spare routes, including the primary route
2040 	 * currently in use
2041 	 */
2042 	rts = RT->rt_spares;
2043 	for (i = NUM_SPARES; i != 0; i--, rts++) {
2044 
2045 		ifp = rts->rts_ifp;
2046 		if (i == NUM_SPARES) {
2047 			if (!AGE_RT(RT->rt_state, ifp)) {
2048 				/* Keep various things from deciding ageless
2049 				 * routes are stale
2050 				 */
2051 				rts->rts_time = now.tv_sec;
2052 				continue;
2053 			}
2054 
2055 			/* forget RIP routes after RIP has been turned off.
2056 			 */
2057 			if (rip_sock < 0) {
2058 				rtdelete(RT);
2059 				return 0;
2060 			}
2061 		}
2062 
2063 		/* age failing routes
2064 		 */
2065 		if (age_bad_gate == rts->rts_gate
2066 		    && rts->rts_time >= now_stale) {
2067 			rts->rts_time -= SUPPLY_INTERVAL;
2068 		}
2069 
2070 		/* trash the spare routes when they go bad */
2071 		if (rts->rts_metric < HOPCNT_INFINITY
2072 		    && now_garbage > rts->rts_time
2073 		    && i != NUM_SPARES)
2074 			rts_delete(RT, rts);
2075 	}
2076 
2077 
2078 	/* finished if the active route is still fresh */
2079 	if (now_stale <= RT->rt_time)
2080 		return 0;
2081 
2082 	/* try to switch to an alternative */
2083 	rtswitch(RT, 0);
2084 
2085 	/* Delete a dead route after it has been publicly mourned. */
2086 	if (now_garbage > RT->rt_time) {
2087 		rtdelete(RT);
2088 		return 0;
2089 	}
2090 
2091 	/* Start poisoning a bad route before deleting it. */
2092 	if (now.tv_sec - RT->rt_time > EXPIRE_TIME) {
2093 		struct rt_spare new = RT->rt_spares[0];
2094 		new.rts_metric = HOPCNT_INFINITY;
2095 		rtchange(RT, RT->rt_state, &new, 0);
2096 	}
2097 	return 0;
2098 }
2099 
2100 
2101 /* Watch for dead routes and interfaces.
2102  */
2103 void
2104 age(naddr bad_gate)
2105 {
2106 	struct interface *ifp;
2107 	int need_query = 0;
2108 
2109 	/* If not listening to RIP, there is no need to age the routes in
2110 	 * the table.
2111 	 */
2112 	age_timer.tv_sec = (now.tv_sec
2113 			    + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
2114 
2115 	/* Check for dead IS_REMOTE interfaces by timing their
2116 	 * transmissions.
2117 	 */
2118 	LIST_FOREACH(ifp, &ifnet, int_list) {
2119 		if (!(ifp->int_state & IS_REMOTE))
2120 			continue;
2121 
2122 		/* ignore unreachable remote interfaces */
2123 		if (!check_remote(ifp))
2124 			continue;
2125 
2126 		/* Restore remote interface that has become reachable
2127 		 */
2128 		if (ifp->int_state & IS_BROKE)
2129 			if_ok(ifp, "remote ");
2130 
2131 		if (ifp->int_act_time != NEVER
2132 		    && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
2133 			msglog("remote interface %s to %s timed out after"
2134 			       " %ld:%ld",
2135 			       ifp->int_name,
2136 			       naddr_ntoa(ifp->int_dstaddr),
2137 			       (long)(now.tv_sec - ifp->int_act_time)/60,
2138 			       (long)(now.tv_sec - ifp->int_act_time)%60);
2139 			if_sick(ifp);
2140 		}
2141 
2142 		/* If we have not heard from the other router
2143 		 * recently, ask it.
2144 		 */
2145 		if (now.tv_sec >= ifp->int_query_time) {
2146 			ifp->int_query_time = NEVER;
2147 			need_query = 1;
2148 		}
2149 	}
2150 
2151 	/* Age routes. */
2152 	age_bad_gate = bad_gate;
2153 	(void)rn_walktree(rhead, walk_age, 0);
2154 
2155 	/* delete old redirected routes to keep the kernel table small
2156 	 * and prevent blackholes
2157 	 */
2158 	del_redirects(bad_gate, now.tv_sec-STALE_TIME);
2159 
2160 	/* Update the kernel routing table. */
2161 	fix_kern();
2162 
2163 	/* poke reticent remote gateways */
2164 	if (need_query)
2165 		rip_query();
2166 }
2167