1 /* 2 * Copyright (c) 1983, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgment: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * $FreeBSD$ 34 */ 35 36 #include "defs.h" 37 38 #if !defined(sgi) && !defined(__NetBSD__) 39 static char sccsid[] __attribute__((unused)) = "@(#)tables.c 8.1 (Berkeley) 6/5/93"; 40 #elif defined(__NetBSD__) 41 __RCSID("$NetBSD$"); 42 #endif 43 #ident "$Revision: 1.7 $" 44 45 static struct rt_spare *rts_better(struct rt_entry *); 46 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0}; 47 static void set_need_flash(void); 48 #ifdef _HAVE_SIN_LEN 49 static void masktrim(struct sockaddr_in *ap); 50 #else 51 static void masktrim(struct sockaddr_in_new *ap); 52 #endif 53 54 55 struct radix_node_head *rhead; /* root of the radix tree */ 56 57 int need_flash = 1; /* flash update needed 58 * start =1 to suppress the 1st 59 */ 60 61 struct timeval age_timer; /* next check of old routes */ 62 struct timeval need_kern = { /* need to update kernel table */ 63 EPOCH+MIN_WAITTIME-1 64 }; 65 66 int stopint; 67 68 int total_routes; 69 70 /* zap any old routes through this gateway */ 71 naddr age_bad_gate; 72 73 74 /* It is desirable to "aggregate" routes, to combine differing routes of 75 * the same metric and next hop into a common route with a smaller netmask 76 * or to suppress redundant routes, routes that add no information to 77 * routes with smaller netmasks. 78 * 79 * A route is redundant if and only if any and all routes with smaller 80 * but matching netmasks and nets are the same. Since routes are 81 * kept sorted in the radix tree, redundant routes always come second. 82 * 83 * There are two kinds of aggregations. First, two routes of the same bit 84 * mask and differing only in the least significant bit of the network 85 * number can be combined into a single route with a coarser mask. 86 * 87 * Second, a route can be suppressed in favor of another route with a more 88 * coarse mask provided no incompatible routes with intermediate masks 89 * are present. The second kind of aggregation involves suppressing routes. 90 * A route must not be suppressed if an incompatible route exists with 91 * an intermediate mask, since the suppressed route would be covered 92 * by the intermediate. 93 * 94 * This code relies on the radix tree walk encountering routes 95 * sorted first by address, with the smallest address first. 96 */ 97 98 struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest; 99 100 /* #define DEBUG_AG */ 101 #ifdef DEBUG_AG 102 #define CHECK_AG() {int acnt = 0; struct ag_info *cag; \ 103 for (cag = ag_avail; cag != 0; cag = cag->ag_fine) \ 104 acnt++; \ 105 for (cag = ag_corsest; cag != 0; cag = cag->ag_fine) \ 106 acnt++; \ 107 if (acnt != NUM_AG_SLOTS) { \ 108 (void)fflush(stderr); \ 109 abort(); \ 110 } \ 111 } 112 #else 113 #define CHECK_AG() 114 #endif 115 116 117 /* Output the contents of an aggregation table slot. 118 * This function must always be immediately followed with the deletion 119 * of the target slot. 120 */ 121 static void 122 ag_out(struct ag_info *ag, 123 void (*out)(struct ag_info *)) 124 { 125 struct ag_info *ag_cors; 126 naddr bit; 127 128 129 /* Forget it if this route should not be output for split-horizon. */ 130 if (ag->ag_state & AGS_SPLIT_HZ) 131 return; 132 133 /* If we output both the even and odd twins, then the immediate parent, 134 * if it is present, is redundant, unless the parent manages to 135 * aggregate into something coarser. 136 * On successive calls, this code detects the even and odd twins, 137 * and marks the parent. 138 * 139 * Note that the order in which the radix tree code emits routes 140 * ensures that the twins are seen before the parent is emitted. 141 */ 142 ag_cors = ag->ag_cors; 143 if (ag_cors != 0 144 && ag_cors->ag_mask == ag->ag_mask<<1 145 && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) { 146 ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h) 147 ? AGS_REDUN0 148 : AGS_REDUN1); 149 } 150 151 /* Skip it if this route is itself redundant. 152 * 153 * It is ok to change the contents of the slot here, since it is 154 * always deleted next. 155 */ 156 if (ag->ag_state & AGS_REDUN0) { 157 if (ag->ag_state & AGS_REDUN1) 158 return; /* quit if fully redundant */ 159 /* make it finer if it is half-redundant */ 160 bit = (-ag->ag_mask) >> 1; 161 ag->ag_dst_h |= bit; 162 ag->ag_mask |= bit; 163 164 } else if (ag->ag_state & AGS_REDUN1) { 165 /* make it finer if it is half-redundant */ 166 bit = (-ag->ag_mask) >> 1; 167 ag->ag_mask |= bit; 168 } 169 out(ag); 170 } 171 172 173 static void 174 ag_del(struct ag_info *ag) 175 { 176 CHECK_AG(); 177 178 if (ag->ag_cors == 0) 179 ag_corsest = ag->ag_fine; 180 else 181 ag->ag_cors->ag_fine = ag->ag_fine; 182 183 if (ag->ag_fine == 0) 184 ag_finest = ag->ag_cors; 185 else 186 ag->ag_fine->ag_cors = ag->ag_cors; 187 188 ag->ag_fine = ag_avail; 189 ag_avail = ag; 190 191 CHECK_AG(); 192 } 193 194 195 /* Flush routes waiting for aggregation. 196 * This must not suppress a route unless it is known that among all 197 * routes with coarser masks that match it, the one with the longest 198 * mask is appropriate. This is ensured by scanning the routes 199 * in lexical order, and with the most restrictive mask first 200 * among routes to the same destination. 201 */ 202 void 203 ag_flush(naddr lim_dst_h, /* flush routes to here */ 204 naddr lim_mask, /* matching this mask */ 205 void (*out)(struct ag_info *)) 206 { 207 struct ag_info *ag, *ag_cors; 208 naddr dst_h; 209 210 211 for (ag = ag_finest; 212 ag != 0 && ag->ag_mask >= lim_mask; 213 ag = ag_cors) { 214 ag_cors = ag->ag_cors; 215 216 /* work on only the specified routes */ 217 dst_h = ag->ag_dst_h; 218 if ((dst_h & lim_mask) != lim_dst_h) 219 continue; 220 221 if (!(ag->ag_state & AGS_SUPPRESS)) 222 ag_out(ag, out); 223 224 else for ( ; ; ag_cors = ag_cors->ag_cors) { 225 /* Look for a route that can suppress the 226 * current route */ 227 if (ag_cors == 0) { 228 /* failed, so output it and look for 229 * another route to work on 230 */ 231 ag_out(ag, out); 232 break; 233 } 234 235 if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) { 236 /* We found a route with a coarser mask that 237 * aggregates the current target. 238 * 239 * If it has a different next hop, it 240 * cannot replace the target, so output 241 * the target. 242 */ 243 if (ag->ag_gate != ag_cors->ag_gate 244 && !(ag->ag_state & AGS_FINE_GATE) 245 && !(ag_cors->ag_state & AGS_CORS_GATE)) { 246 ag_out(ag, out); 247 break; 248 } 249 250 /* If the coarse route has a good enough 251 * metric, it suppresses the target. 252 * If the suppressed target was redundant, 253 * then mark the suppressor redundant. 254 */ 255 if (ag_cors->ag_pref <= ag->ag_pref) { 256 if (ag_cors->ag_seqno > ag->ag_seqno) 257 ag_cors->ag_seqno = ag->ag_seqno; 258 if (AG_IS_REDUN(ag->ag_state) 259 && ag_cors->ag_mask==ag->ag_mask<<1) { 260 if (ag_cors->ag_dst_h == dst_h) 261 ag_cors->ag_state |= AGS_REDUN0; 262 else 263 ag_cors->ag_state |= AGS_REDUN1; 264 } 265 if (ag->ag_tag != ag_cors->ag_tag) 266 ag_cors->ag_tag = 0; 267 if (ag->ag_nhop != ag_cors->ag_nhop) 268 ag_cors->ag_nhop = 0; 269 break; 270 } 271 } 272 } 273 274 /* That route has either been output or suppressed */ 275 ag_cors = ag->ag_cors; 276 ag_del(ag); 277 } 278 279 CHECK_AG(); 280 } 281 282 283 /* Try to aggregate a route with previous routes. 284 */ 285 void 286 ag_check(naddr dst, 287 naddr mask, 288 naddr gate, 289 naddr nhop, 290 char metric, 291 char pref, 292 u_int seqno, 293 u_short tag, 294 u_short state, 295 void (*out)(struct ag_info *)) /* output using this */ 296 { 297 struct ag_info *ag, *nag, *ag_cors; 298 naddr xaddr; 299 int x; 300 301 NTOHL(dst); 302 303 /* Punt non-contiguous subnet masks. 304 * 305 * (X & -X) contains a single bit if and only if X is a power of 2. 306 * (X + (X & -X)) == 0 if and only if X is a power of 2. 307 */ 308 if ((mask & -mask) + mask != 0) { 309 struct ag_info nc_ag; 310 311 nc_ag.ag_dst_h = dst; 312 nc_ag.ag_mask = mask; 313 nc_ag.ag_gate = gate; 314 nc_ag.ag_nhop = nhop; 315 nc_ag.ag_metric = metric; 316 nc_ag.ag_pref = pref; 317 nc_ag.ag_tag = tag; 318 nc_ag.ag_state = state; 319 nc_ag.ag_seqno = seqno; 320 out(&nc_ag); 321 return; 322 } 323 324 /* Search for the right slot in the aggregation table. 325 */ 326 ag_cors = 0; 327 ag = ag_corsest; 328 while (ag != 0) { 329 if (ag->ag_mask >= mask) 330 break; 331 332 /* Suppress old routes (i.e. combine with compatible routes 333 * with coarser masks) as we look for the right slot in the 334 * aggregation table for the new route. 335 * A route to an address less than the current destination 336 * will not be affected by the current route or any route 337 * seen hereafter. That means it is safe to suppress it. 338 * This check keeps poor routes (e.g. with large hop counts) 339 * from preventing suppression of finer routes. 340 */ 341 if (ag_cors != 0 342 && ag->ag_dst_h < dst 343 && (ag->ag_state & AGS_SUPPRESS) 344 && ag_cors->ag_pref <= ag->ag_pref 345 && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h 346 && (ag_cors->ag_gate == ag->ag_gate 347 || (ag->ag_state & AGS_FINE_GATE) 348 || (ag_cors->ag_state & AGS_CORS_GATE))) { 349 if (ag_cors->ag_seqno > ag->ag_seqno) 350 ag_cors->ag_seqno = ag->ag_seqno; 351 /* If the suppressed target was redundant, 352 * then mark the suppressor redundant. 353 */ 354 if (AG_IS_REDUN(ag->ag_state) 355 && ag_cors->ag_mask==ag->ag_mask<<1) { 356 if (ag_cors->ag_dst_h == dst) 357 ag_cors->ag_state |= AGS_REDUN0; 358 else 359 ag_cors->ag_state |= AGS_REDUN1; 360 } 361 if (ag->ag_tag != ag_cors->ag_tag) 362 ag_cors->ag_tag = 0; 363 if (ag->ag_nhop != ag_cors->ag_nhop) 364 ag_cors->ag_nhop = 0; 365 ag_del(ag); 366 CHECK_AG(); 367 } else { 368 ag_cors = ag; 369 } 370 ag = ag_cors->ag_fine; 371 } 372 373 /* If we find the even/odd twin of the new route, and if the 374 * masks and so forth are equal, we can aggregate them. 375 * We can probably promote one of the pair. 376 * 377 * Since the routes are encountered in lexical order, 378 * the new route must be odd. However, the second or later 379 * times around this loop, it could be the even twin promoted 380 * from the even/odd pair of twins of the finer route. 381 */ 382 while (ag != 0 383 && ag->ag_mask == mask 384 && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) { 385 386 /* Here we know the target route and the route in the current 387 * slot have the same netmasks and differ by at most the 388 * last bit. They are either for the same destination, or 389 * for an even/odd pair of destinations. 390 */ 391 if (ag->ag_dst_h == dst) { 392 /* We have two routes to the same destination. 393 * Routes are encountered in lexical order, so a 394 * route is never promoted until the parent route is 395 * already present. So we know that the new route is 396 * a promoted (or aggregated) pair and the route 397 * already in the slot is the explicit route. 398 * 399 * Prefer the best route if their metrics differ, 400 * or the aggregated one if not, following a sort 401 * of longest-match rule. 402 */ 403 if (pref <= ag->ag_pref) { 404 ag->ag_gate = gate; 405 ag->ag_nhop = nhop; 406 ag->ag_tag = tag; 407 ag->ag_metric = metric; 408 ag->ag_pref = pref; 409 x = ag->ag_state; 410 ag->ag_state = state; 411 state = x; 412 } 413 414 /* The sequence number controls flash updating, 415 * and should be the smaller of the two. 416 */ 417 if (ag->ag_seqno > seqno) 418 ag->ag_seqno = seqno; 419 420 /* Some bits are set if they are set on either route, 421 * except when the route is for an interface. 422 */ 423 if (!(ag->ag_state & AGS_IF)) 424 ag->ag_state |= (state & (AGS_AGGREGATE_EITHER 425 | AGS_REDUN0 426 | AGS_REDUN1)); 427 return; 428 } 429 430 /* If one of the routes can be promoted and the other can 431 * be suppressed, it may be possible to combine them or 432 * worthwhile to promote one. 433 * 434 * Any route that can be promoted is always 435 * marked to be eligible to be suppressed. 436 */ 437 if (!((state & AGS_AGGREGATE) 438 && (ag->ag_state & AGS_SUPPRESS)) 439 && !((ag->ag_state & AGS_AGGREGATE) 440 && (state & AGS_SUPPRESS))) 441 break; 442 443 /* A pair of even/odd twin routes can be combined 444 * if either is redundant, or if they are via the 445 * same gateway and have the same metric. 446 */ 447 if (AG_IS_REDUN(ag->ag_state) 448 || AG_IS_REDUN(state) 449 || (ag->ag_gate == gate 450 && ag->ag_pref == pref 451 && (state & ag->ag_state & AGS_AGGREGATE) != 0)) { 452 453 /* We have both the even and odd pairs. 454 * Since the routes are encountered in order, 455 * the route in the slot must be the even twin. 456 * 457 * Combine and promote (aggregate) the pair of routes. 458 */ 459 if (seqno > ag->ag_seqno) 460 seqno = ag->ag_seqno; 461 if (!AG_IS_REDUN(state)) 462 state &= ~AGS_REDUN1; 463 if (AG_IS_REDUN(ag->ag_state)) 464 state |= AGS_REDUN0; 465 else 466 state &= ~AGS_REDUN0; 467 state |= (ag->ag_state & AGS_AGGREGATE_EITHER); 468 if (ag->ag_tag != tag) 469 tag = 0; 470 if (ag->ag_nhop != nhop) 471 nhop = 0; 472 473 /* Get rid of the even twin that was already 474 * in the slot. 475 */ 476 ag_del(ag); 477 478 } else if (ag->ag_pref >= pref 479 && (ag->ag_state & AGS_AGGREGATE)) { 480 /* If we cannot combine the pair, maybe the route 481 * with the worse metric can be promoted. 482 * 483 * Promote the old, even twin, by giving its slot 484 * in the table to the new, odd twin. 485 */ 486 ag->ag_dst_h = dst; 487 488 xaddr = ag->ag_gate; 489 ag->ag_gate = gate; 490 gate = xaddr; 491 492 xaddr = ag->ag_nhop; 493 ag->ag_nhop = nhop; 494 nhop = xaddr; 495 496 x = ag->ag_tag; 497 ag->ag_tag = tag; 498 tag = x; 499 500 /* The promoted route is even-redundant only if the 501 * even twin was fully redundant. It is not 502 * odd-redundant because the odd-twin will still be 503 * in the table. 504 */ 505 x = ag->ag_state; 506 if (!AG_IS_REDUN(x)) 507 x &= ~AGS_REDUN0; 508 x &= ~AGS_REDUN1; 509 ag->ag_state = state; 510 state = x; 511 512 x = ag->ag_metric; 513 ag->ag_metric = metric; 514 metric = x; 515 516 x = ag->ag_pref; 517 ag->ag_pref = pref; 518 pref = x; 519 520 /* take the newest sequence number */ 521 if (seqno >= ag->ag_seqno) 522 seqno = ag->ag_seqno; 523 else 524 ag->ag_seqno = seqno; 525 526 } else { 527 if (!(state & AGS_AGGREGATE)) 528 break; /* cannot promote either twin */ 529 530 /* Promote the new, odd twin by shaving its 531 * mask and address. 532 * The promoted route is odd-redundant only if the 533 * odd twin was fully redundant. It is not 534 * even-redundant because the even twin is still in 535 * the table. 536 */ 537 if (!AG_IS_REDUN(state)) 538 state &= ~AGS_REDUN1; 539 state &= ~AGS_REDUN0; 540 if (seqno > ag->ag_seqno) 541 seqno = ag->ag_seqno; 542 else 543 ag->ag_seqno = seqno; 544 } 545 546 mask <<= 1; 547 dst &= mask; 548 549 if (ag_cors == 0) { 550 ag = ag_corsest; 551 break; 552 } 553 ag = ag_cors; 554 ag_cors = ag->ag_cors; 555 } 556 557 /* When we can no longer promote and combine routes, 558 * flush the old route in the target slot. Also flush 559 * any finer routes that we know will never be aggregated by 560 * the new route. 561 * 562 * In case we moved toward coarser masks, 563 * get back where we belong 564 */ 565 if (ag != 0 566 && ag->ag_mask < mask) { 567 ag_cors = ag; 568 ag = ag->ag_fine; 569 } 570 571 /* Empty the target slot 572 */ 573 if (ag != 0 && ag->ag_mask == mask) { 574 ag_flush(ag->ag_dst_h, ag->ag_mask, out); 575 ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine; 576 } 577 578 #ifdef DEBUG_AG 579 (void)fflush(stderr); 580 if (ag == 0 && ag_cors != ag_finest) 581 abort(); 582 if (ag_cors == 0 && ag != ag_corsest) 583 abort(); 584 if (ag != 0 && ag->ag_cors != ag_cors) 585 abort(); 586 if (ag_cors != 0 && ag_cors->ag_fine != ag) 587 abort(); 588 CHECK_AG(); 589 #endif 590 591 /* Save the new route on the end of the table. 592 */ 593 nag = ag_avail; 594 ag_avail = nag->ag_fine; 595 596 nag->ag_dst_h = dst; 597 nag->ag_mask = mask; 598 nag->ag_gate = gate; 599 nag->ag_nhop = nhop; 600 nag->ag_metric = metric; 601 nag->ag_pref = pref; 602 nag->ag_tag = tag; 603 nag->ag_state = state; 604 nag->ag_seqno = seqno; 605 606 nag->ag_fine = ag; 607 if (ag != 0) 608 ag->ag_cors = nag; 609 else 610 ag_finest = nag; 611 nag->ag_cors = ag_cors; 612 if (ag_cors == 0) 613 ag_corsest = nag; 614 else 615 ag_cors->ag_fine = nag; 616 CHECK_AG(); 617 } 618 619 620 static const char * 621 rtm_type_name(u_char type) 622 { 623 static const char *rtm_types[] = { 624 "RTM_ADD", 625 "RTM_DELETE", 626 "RTM_CHANGE", 627 "RTM_GET", 628 "RTM_LOSING", 629 "RTM_REDIRECT", 630 "RTM_MISS", 631 "RTM_LOCK", 632 "RTM_OLDADD", 633 "RTM_OLDDEL", 634 "RTM_RESOLVE", 635 "RTM_NEWADDR", 636 "RTM_DELADDR", 637 "RTM_IFINFO" 638 }; 639 static char name0[10]; 640 641 642 if (type > sizeof(rtm_types)/sizeof(rtm_types[0]) 643 || type == 0) { 644 sprintf(name0, "RTM type %#x", type); 645 return name0; 646 } else { 647 return rtm_types[type-1]; 648 } 649 } 650 651 652 /* Trim a mask in a sockaddr 653 * Produce a length of 0 for an address of 0. 654 * Otherwise produce the index of the first zero byte. 655 */ 656 void 657 #ifdef _HAVE_SIN_LEN 658 masktrim(struct sockaddr_in *ap) 659 #else 660 masktrim(struct sockaddr_in_new *ap) 661 #endif 662 { 663 char *cp; 664 665 if (ap->sin_addr.s_addr == 0) { 666 ap->sin_len = 0; 667 return; 668 } 669 cp = (char *)(&ap->sin_addr.s_addr+1); 670 while (*--cp == 0) 671 continue; 672 ap->sin_len = cp - (char*)ap + 1; 673 } 674 675 676 /* Tell the kernel to add, delete or change a route 677 */ 678 static void 679 rtioctl(int action, /* RTM_DELETE, etc */ 680 naddr dst, 681 naddr gate, 682 naddr mask, 683 int metric, 684 int flags) 685 { 686 struct { 687 struct rt_msghdr w_rtm; 688 struct sockaddr_in w_dst; 689 struct sockaddr_in w_gate; 690 #ifdef _HAVE_SA_LEN 691 struct sockaddr_in w_mask; 692 #else 693 struct sockaddr_in_new w_mask; 694 #endif 695 } w; 696 long cc; 697 # define PAT " %-10s %s metric=%d flags=%#x" 698 # define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags 699 700 again: 701 memset(&w, 0, sizeof(w)); 702 w.w_rtm.rtm_msglen = sizeof(w); 703 w.w_rtm.rtm_version = RTM_VERSION; 704 w.w_rtm.rtm_type = action; 705 w.w_rtm.rtm_flags = flags; 706 w.w_rtm.rtm_seq = ++rt_sock_seqno; 707 w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY; 708 if (metric != 0 || action == RTM_CHANGE) { 709 w.w_rtm.rtm_rmx.rmx_hopcount = metric; 710 w.w_rtm.rtm_inits |= RTV_HOPCOUNT; 711 } 712 w.w_dst.sin_family = AF_INET; 713 w.w_dst.sin_addr.s_addr = dst; 714 w.w_gate.sin_family = AF_INET; 715 w.w_gate.sin_addr.s_addr = gate; 716 #ifdef _HAVE_SA_LEN 717 w.w_dst.sin_len = sizeof(w.w_dst); 718 w.w_gate.sin_len = sizeof(w.w_gate); 719 #endif 720 if (mask == HOST_MASK) { 721 w.w_rtm.rtm_flags |= RTF_HOST; 722 w.w_rtm.rtm_msglen -= sizeof(w.w_mask); 723 } else { 724 w.w_rtm.rtm_addrs |= RTA_NETMASK; 725 w.w_mask.sin_addr.s_addr = htonl(mask); 726 #ifdef _HAVE_SA_LEN 727 masktrim(&w.w_mask); 728 if (w.w_mask.sin_len == 0) 729 w.w_mask.sin_len = sizeof(long); 730 w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len); 731 #endif 732 } 733 734 #ifndef NO_INSTALL 735 cc = write(rt_sock, &w, w.w_rtm.rtm_msglen); 736 if (cc < 0) { 737 if (errno == ESRCH 738 && (action == RTM_CHANGE || action == RTM_DELETE)) { 739 trace_act("route disappeared before" PAT, ARGS); 740 if (action == RTM_CHANGE) { 741 action = RTM_ADD; 742 goto again; 743 } 744 return; 745 } 746 msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno)); 747 return; 748 } else if (cc != w.w_rtm.rtm_msglen) { 749 msglog("write(rt_sock) wrote %ld instead of %d for" PAT, 750 cc, w.w_rtm.rtm_msglen, ARGS); 751 return; 752 } 753 #endif 754 if (TRACEKERNEL) 755 trace_misc("write kernel" PAT, ARGS); 756 #undef PAT 757 #undef ARGS 758 } 759 760 761 #define KHASH_SIZE 71 /* should be prime */ 762 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE] 763 static struct khash { 764 struct khash *k_next; 765 naddr k_dst; 766 naddr k_mask; 767 naddr k_gate; 768 short k_metric; 769 u_short k_state; 770 #define KS_NEW 0x001 771 #define KS_DELETE 0x002 /* need to delete the route */ 772 #define KS_ADD 0x004 /* add to the kernel */ 773 #define KS_CHANGE 0x008 /* tell kernel to change the route */ 774 #define KS_DEL_ADD 0x010 /* delete & add to change the kernel */ 775 #define KS_STATIC 0x020 /* Static flag in kernel */ 776 #define KS_GATEWAY 0x040 /* G flag in kernel */ 777 #define KS_DYNAMIC 0x080 /* result of redirect */ 778 #define KS_DELETED 0x100 /* already deleted from kernel */ 779 #define KS_CHECK 0x200 780 time_t k_keep; 781 #define K_KEEP_LIM 30 782 time_t k_redirect_time; /* when redirected route 1st seen */ 783 } *khash_bins[KHASH_SIZE]; 784 785 786 static struct khash* 787 kern_find(naddr dst, naddr mask, struct khash ***ppk) 788 { 789 struct khash *k, **pk; 790 791 for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) { 792 if (k->k_dst == dst && k->k_mask == mask) 793 break; 794 } 795 if (ppk != 0) 796 *ppk = pk; 797 return k; 798 } 799 800 801 static struct khash* 802 kern_add(naddr dst, naddr mask) 803 { 804 struct khash *k, **pk; 805 806 k = kern_find(dst, mask, &pk); 807 if (k != 0) 808 return k; 809 810 k = (struct khash *)rtmalloc(sizeof(*k), "kern_add"); 811 812 memset(k, 0, sizeof(*k)); 813 k->k_dst = dst; 814 k->k_mask = mask; 815 k->k_state = KS_NEW; 816 k->k_keep = now.tv_sec; 817 *pk = k; 818 819 return k; 820 } 821 822 823 /* If a kernel route has a non-zero metric, check that it is still in the 824 * daemon table, and not deleted by interfaces coming and going. 825 */ 826 static void 827 kern_check_static(struct khash *k, 828 struct interface *ifp) 829 { 830 struct rt_entry *rt; 831 struct rt_spare new; 832 833 if (k->k_metric == 0) 834 return; 835 836 memset(&new, 0, sizeof(new)); 837 new.rts_ifp = ifp; 838 new.rts_gate = k->k_gate; 839 new.rts_router = (ifp != 0) ? ifp->int_addr : loopaddr; 840 new.rts_metric = k->k_metric; 841 new.rts_time = now.tv_sec; 842 843 rt = rtget(k->k_dst, k->k_mask); 844 if (rt != 0) { 845 if (!(rt->rt_state & RS_STATIC)) 846 rtchange(rt, rt->rt_state | RS_STATIC, &new, 0); 847 } else { 848 rtadd(k->k_dst, k->k_mask, RS_STATIC, &new); 849 } 850 } 851 852 853 /* operate on a kernel entry 854 */ 855 static void 856 kern_ioctl(struct khash *k, 857 int action, /* RTM_DELETE, etc */ 858 int flags) 859 860 { 861 switch (action) { 862 case RTM_DELETE: 863 k->k_state &= ~KS_DYNAMIC; 864 if (k->k_state & KS_DELETED) 865 return; 866 k->k_state |= KS_DELETED; 867 break; 868 case RTM_ADD: 869 k->k_state &= ~KS_DELETED; 870 break; 871 case RTM_CHANGE: 872 if (k->k_state & KS_DELETED) { 873 action = RTM_ADD; 874 k->k_state &= ~KS_DELETED; 875 } 876 break; 877 } 878 879 rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags); 880 } 881 882 883 /* add a route the kernel told us 884 */ 885 static void 886 rtm_add(struct rt_msghdr *rtm, 887 struct rt_addrinfo *info, 888 time_t keep) 889 { 890 struct khash *k; 891 struct interface *ifp; 892 naddr mask; 893 894 895 if (rtm->rtm_flags & RTF_HOST) { 896 mask = HOST_MASK; 897 } else if (INFO_MASK(info) != 0) { 898 mask = ntohl(S_ADDR(INFO_MASK(info))); 899 } else { 900 msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type)); 901 return; 902 } 903 904 k = kern_add(S_ADDR(INFO_DST(info)), mask); 905 if (k->k_state & KS_NEW) 906 k->k_keep = now.tv_sec+keep; 907 if (INFO_GATE(info) == 0) { 908 trace_act("note %s without gateway", 909 rtm_type_name(rtm->rtm_type)); 910 k->k_metric = HOPCNT_INFINITY; 911 } else if (INFO_GATE(info)->sa_family != AF_INET) { 912 trace_act("note %s with gateway AF=%d", 913 rtm_type_name(rtm->rtm_type), 914 INFO_GATE(info)->sa_family); 915 k->k_metric = HOPCNT_INFINITY; 916 } else { 917 k->k_gate = S_ADDR(INFO_GATE(info)); 918 k->k_metric = rtm->rtm_rmx.rmx_hopcount; 919 if (k->k_metric < 0) 920 k->k_metric = 0; 921 else if (k->k_metric > HOPCNT_INFINITY-1) 922 k->k_metric = HOPCNT_INFINITY-1; 923 } 924 k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD 925 | KS_DELETED | KS_GATEWAY | KS_STATIC 926 | KS_NEW | KS_CHECK); 927 if (rtm->rtm_flags & RTF_GATEWAY) 928 k->k_state |= KS_GATEWAY; 929 if (rtm->rtm_flags & RTF_STATIC) 930 k->k_state |= KS_STATIC; 931 932 if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) { 933 if (INFO_AUTHOR(info) != 0 934 && INFO_AUTHOR(info)->sa_family == AF_INET) 935 ifp = iflookup(S_ADDR(INFO_AUTHOR(info))); 936 else 937 ifp = 0; 938 if (supplier 939 && (ifp == 0 || !(ifp->int_state & IS_REDIRECT_OK))) { 940 /* Routers are not supposed to listen to redirects, 941 * so delete it if it came via an unknown interface 942 * or the interface does not have special permission. 943 */ 944 k->k_state &= ~KS_DYNAMIC; 945 k->k_state |= KS_DELETE; 946 LIM_SEC(need_kern, 0); 947 trace_act("mark for deletion redirected %s --> %s" 948 " via %s", 949 addrname(k->k_dst, k->k_mask, 0), 950 naddr_ntoa(k->k_gate), 951 ifp ? ifp->int_name : "unknown interface"); 952 } else { 953 k->k_state |= KS_DYNAMIC; 954 k->k_redirect_time = now.tv_sec; 955 trace_act("accept redirected %s --> %s via %s", 956 addrname(k->k_dst, k->k_mask, 0), 957 naddr_ntoa(k->k_gate), 958 ifp ? ifp->int_name : "unknown interface"); 959 } 960 return; 961 } 962 963 /* If it is not a static route, quit until the next comparison 964 * between the kernel and daemon tables, when it will be deleted. 965 */ 966 if (!(k->k_state & KS_STATIC)) { 967 k->k_state |= KS_DELETE; 968 LIM_SEC(need_kern, k->k_keep); 969 return; 970 } 971 972 /* Put static routes with real metrics into the daemon table so 973 * they can be advertised. 974 * 975 * Find the interface toward the gateway. 976 */ 977 ifp = iflookup(k->k_gate); 978 if (ifp == 0) 979 msglog("static route %s --> %s impossibly lacks ifp", 980 addrname(S_ADDR(INFO_DST(info)), mask, 0), 981 naddr_ntoa(k->k_gate)); 982 983 kern_check_static(k, ifp); 984 } 985 986 987 /* deal with packet loss 988 */ 989 static void 990 rtm_lose(struct rt_msghdr *rtm, 991 struct rt_addrinfo *info) 992 { 993 if (INFO_GATE(info) == 0 994 || INFO_GATE(info)->sa_family != AF_INET) { 995 trace_act("ignore %s without gateway", 996 rtm_type_name(rtm->rtm_type)); 997 return; 998 } 999 1000 if (rdisc_ok) 1001 rdisc_age(S_ADDR(INFO_GATE(info))); 1002 age(S_ADDR(INFO_GATE(info))); 1003 } 1004 1005 1006 /* Make the gateway slot of an info structure point to something 1007 * useful. If it is not already useful, but it specifies an interface, 1008 * then fill in the sockaddr_in provided and point it there. 1009 */ 1010 static int 1011 get_info_gate(struct sockaddr **sap, 1012 struct sockaddr_in *sin) 1013 { 1014 struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap; 1015 struct interface *ifp; 1016 1017 if (sdl == 0) 1018 return 0; 1019 if ((sdl)->sdl_family == AF_INET) 1020 return 1; 1021 if ((sdl)->sdl_family != AF_LINK) 1022 return 0; 1023 1024 ifp = ifwithindex(sdl->sdl_index, 1); 1025 if (ifp == 0) 1026 return 0; 1027 1028 sin->sin_addr.s_addr = ifp->int_addr; 1029 #ifdef _HAVE_SA_LEN 1030 sin->sin_len = sizeof(*sin); 1031 #endif 1032 sin->sin_family = AF_INET; 1033 *sap = (struct sockaddr*)sin; 1034 1035 return 1; 1036 } 1037 1038 1039 /* Clean the kernel table by copying it to the daemon image. 1040 * Eventually the daemon will delete any extra routes. 1041 */ 1042 void 1043 flush_kern(void) 1044 { 1045 static char *sysctl_buf; 1046 static size_t sysctl_buf_size = 0; 1047 size_t needed; 1048 int mib[6]; 1049 char *next, *lim; 1050 struct rt_msghdr *rtm; 1051 struct sockaddr_in gate_sin; 1052 struct rt_addrinfo info; 1053 int i; 1054 struct khash *k; 1055 1056 1057 for (i = 0; i < KHASH_SIZE; i++) { 1058 for (k = khash_bins[i]; k != 0; k = k->k_next) { 1059 k->k_state |= KS_CHECK; 1060 } 1061 } 1062 1063 mib[0] = CTL_NET; 1064 mib[1] = PF_ROUTE; 1065 mib[2] = 0; /* protocol */ 1066 mib[3] = 0; /* wildcard address family */ 1067 mib[4] = NET_RT_DUMP; 1068 mib[5] = 0; /* no flags */ 1069 for (;;) { 1070 if ((needed = sysctl_buf_size) != 0) { 1071 if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0) 1072 break; 1073 if (errno != ENOMEM && errno != EFAULT) 1074 BADERR(1,"flush_kern: sysctl(RT_DUMP)"); 1075 free(sysctl_buf); 1076 needed = 0; 1077 } 1078 if (sysctl(mib, 6, 0, &needed, 0, 0) < 0) 1079 BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate"); 1080 /* Kludge around the habit of some systems, such as 1081 * BSD/OS 3.1, to not admit how many routes are in the 1082 * kernel, or at least to be quite wrong. 1083 */ 1084 needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr)); 1085 sysctl_buf = rtmalloc(sysctl_buf_size = needed, 1086 "flush_kern sysctl(RT_DUMP)"); 1087 } 1088 1089 lim = sysctl_buf + needed; 1090 for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) { 1091 rtm = (struct rt_msghdr *)next; 1092 if (rtm->rtm_msglen == 0) { 1093 msglog("zero length kernel route at " 1094 " %#lx in buffer %#lx before %#lx", 1095 (u_long)rtm, (u_long)sysctl_buf, (u_long)lim); 1096 break; 1097 } 1098 1099 rt_xaddrs(&info, 1100 (struct sockaddr *)(rtm+1), 1101 (struct sockaddr *)(next + rtm->rtm_msglen), 1102 rtm->rtm_addrs); 1103 1104 if (INFO_DST(&info) == 0 1105 || INFO_DST(&info)->sa_family != AF_INET) 1106 continue; 1107 1108 /* ignore ARP table entries on systems with a merged route 1109 * and ARP table. 1110 */ 1111 if (rtm->rtm_flags & RTF_LLINFO) 1112 continue; 1113 1114 /* ignore multicast addresses 1115 */ 1116 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) 1117 continue; 1118 1119 if (!get_info_gate(&INFO_GATE(&info), &gate_sin)) 1120 continue; 1121 1122 /* Note static routes and interface routes, and also 1123 * preload the image of the kernel table so that 1124 * we can later clean it, as well as avoid making 1125 * unneeded changes. Keep the old kernel routes for a 1126 * few seconds to allow a RIP or router-discovery 1127 * response to be heard. 1128 */ 1129 rtm_add(rtm,&info,MIN_WAITTIME); 1130 } 1131 1132 for (i = 0; i < KHASH_SIZE; i++) { 1133 for (k = khash_bins[i]; k != 0; k = k->k_next) { 1134 if (k->k_state & KS_CHECK) { 1135 msglog("%s --> %s disappeared from kernel", 1136 addrname(k->k_dst, k->k_mask, 0), 1137 naddr_ntoa(k->k_gate)); 1138 del_static(k->k_dst, k->k_mask, k->k_gate, 1); 1139 } 1140 } 1141 } 1142 } 1143 1144 1145 /* Listen to announcements from the kernel 1146 */ 1147 void 1148 read_rt(void) 1149 { 1150 long cc; 1151 struct interface *ifp; 1152 struct sockaddr_in gate_sin; 1153 naddr mask, gate; 1154 union { 1155 struct { 1156 struct rt_msghdr rtm; 1157 struct sockaddr addrs[RTAX_MAX]; 1158 } r; 1159 struct if_msghdr ifm; 1160 } m; 1161 char str[100], *strp; 1162 struct rt_addrinfo info; 1163 1164 1165 for (;;) { 1166 cc = read(rt_sock, &m, sizeof(m)); 1167 if (cc <= 0) { 1168 if (cc < 0 && errno != EWOULDBLOCK) 1169 LOGERR("read(rt_sock)"); 1170 return; 1171 } 1172 1173 if (m.r.rtm.rtm_version != RTM_VERSION) { 1174 msglog("bogus routing message version %d", 1175 m.r.rtm.rtm_version); 1176 continue; 1177 } 1178 1179 /* Ignore our own results. 1180 */ 1181 if (m.r.rtm.rtm_type <= RTM_CHANGE 1182 && m.r.rtm.rtm_pid == mypid) { 1183 static int complained = 0; 1184 if (!complained) { 1185 msglog("receiving our own change messages"); 1186 complained = 1; 1187 } 1188 continue; 1189 } 1190 1191 if (m.r.rtm.rtm_type == RTM_IFINFO 1192 || m.r.rtm.rtm_type == RTM_NEWADDR 1193 || m.r.rtm.rtm_type == RTM_DELADDR) { 1194 ifp = ifwithindex(m.ifm.ifm_index, 1195 m.r.rtm.rtm_type != RTM_DELADDR); 1196 if (ifp == 0) 1197 trace_act("note %s with flags %#x" 1198 " for unknown interface index #%d", 1199 rtm_type_name(m.r.rtm.rtm_type), 1200 m.ifm.ifm_flags, 1201 m.ifm.ifm_index); 1202 else 1203 trace_act("note %s with flags %#x for %s", 1204 rtm_type_name(m.r.rtm.rtm_type), 1205 m.ifm.ifm_flags, 1206 ifp->int_name); 1207 1208 /* After being informed of a change to an interface, 1209 * check them all now if the check would otherwise 1210 * be a long time from now, if the interface is 1211 * not known, or if the interface has been turned 1212 * off or on. 1213 */ 1214 if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL 1215 || ifp == 0 1216 || ((ifp->int_if_flags ^ m.ifm.ifm_flags) 1217 & IFF_UP) != 0) 1218 ifinit_timer.tv_sec = now.tv_sec; 1219 continue; 1220 } 1221 1222 strcpy(str, rtm_type_name(m.r.rtm.rtm_type)); 1223 strp = &str[strlen(str)]; 1224 if (m.r.rtm.rtm_type <= RTM_CHANGE) 1225 strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid); 1226 1227 rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX], 1228 m.r.rtm.rtm_addrs); 1229 1230 if (INFO_DST(&info) == 0) { 1231 trace_act("ignore %s without dst", str); 1232 continue; 1233 } 1234 1235 if (INFO_DST(&info)->sa_family != AF_INET) { 1236 trace_act("ignore %s for AF %d", str, 1237 INFO_DST(&info)->sa_family); 1238 continue; 1239 } 1240 1241 mask = ((INFO_MASK(&info) != 0) 1242 ? ntohl(S_ADDR(INFO_MASK(&info))) 1243 : (m.r.rtm.rtm_flags & RTF_HOST) 1244 ? HOST_MASK 1245 : std_mask(S_ADDR(INFO_DST(&info)))); 1246 1247 strp += sprintf(strp, ": %s", 1248 addrname(S_ADDR(INFO_DST(&info)), mask, 0)); 1249 1250 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) { 1251 trace_act("ignore multicast %s", str); 1252 continue; 1253 } 1254 1255 if (m.r.rtm.rtm_flags & RTF_LLINFO) { 1256 trace_act("ignore ARP %s", str); 1257 continue; 1258 } 1259 1260 if (get_info_gate(&INFO_GATE(&info), &gate_sin)) { 1261 gate = S_ADDR(INFO_GATE(&info)); 1262 strp += sprintf(strp, " --> %s", naddr_ntoa(gate)); 1263 } else { 1264 gate = 0; 1265 } 1266 1267 if (INFO_AUTHOR(&info) != 0) 1268 strp += sprintf(strp, " by authority of %s", 1269 saddr_ntoa(INFO_AUTHOR(&info))); 1270 1271 switch (m.r.rtm.rtm_type) { 1272 case RTM_ADD: 1273 case RTM_CHANGE: 1274 case RTM_REDIRECT: 1275 if (m.r.rtm.rtm_errno != 0) { 1276 trace_act("ignore %s with \"%s\" error", 1277 str, strerror(m.r.rtm.rtm_errno)); 1278 } else { 1279 trace_act("%s", str); 1280 rtm_add(&m.r.rtm,&info,0); 1281 } 1282 break; 1283 1284 case RTM_DELETE: 1285 if (m.r.rtm.rtm_errno != 0 1286 && m.r.rtm.rtm_errno != ESRCH) { 1287 trace_act("ignore %s with \"%s\" error", 1288 str, strerror(m.r.rtm.rtm_errno)); 1289 } else { 1290 trace_act("%s", str); 1291 del_static(S_ADDR(INFO_DST(&info)), mask, 1292 gate, 1); 1293 } 1294 break; 1295 1296 case RTM_LOSING: 1297 trace_act("%s", str); 1298 rtm_lose(&m.r.rtm,&info); 1299 break; 1300 1301 default: 1302 trace_act("ignore %s", str); 1303 break; 1304 } 1305 } 1306 } 1307 1308 1309 /* after aggregating, note routes that belong in the kernel 1310 */ 1311 static void 1312 kern_out(struct ag_info *ag) 1313 { 1314 struct khash *k; 1315 1316 1317 /* Do not install bad routes if they are not already present. 1318 * This includes routes that had RS_NET_SYN for interfaces that 1319 * recently died. 1320 */ 1321 if (ag->ag_metric == HOPCNT_INFINITY) { 1322 k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0); 1323 if (k == 0) 1324 return; 1325 } else { 1326 k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask); 1327 } 1328 1329 if (k->k_state & KS_NEW) { 1330 /* will need to add new entry to the kernel table */ 1331 k->k_state = KS_ADD; 1332 if (ag->ag_state & AGS_GATEWAY) 1333 k->k_state |= KS_GATEWAY; 1334 k->k_gate = ag->ag_gate; 1335 k->k_metric = ag->ag_metric; 1336 return; 1337 } 1338 1339 if (k->k_state & KS_STATIC) 1340 return; 1341 1342 /* modify existing kernel entry if necessary */ 1343 if (k->k_gate != ag->ag_gate 1344 || k->k_metric != ag->ag_metric) { 1345 /* Must delete bad interface routes etc. to change them. */ 1346 if (k->k_metric == HOPCNT_INFINITY) 1347 k->k_state |= KS_DEL_ADD; 1348 k->k_gate = ag->ag_gate; 1349 k->k_metric = ag->ag_metric; 1350 k->k_state |= KS_CHANGE; 1351 } 1352 1353 /* If the daemon thinks the route should exist, forget 1354 * about any redirections. 1355 * If the daemon thinks the route should exist, eventually 1356 * override manual intervention by the operator. 1357 */ 1358 if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) { 1359 k->k_state &= ~KS_DYNAMIC; 1360 k->k_state |= (KS_ADD | KS_DEL_ADD); 1361 } 1362 1363 if ((k->k_state & KS_GATEWAY) 1364 && !(ag->ag_state & AGS_GATEWAY)) { 1365 k->k_state &= ~KS_GATEWAY; 1366 k->k_state |= (KS_ADD | KS_DEL_ADD); 1367 } else if (!(k->k_state & KS_GATEWAY) 1368 && (ag->ag_state & AGS_GATEWAY)) { 1369 k->k_state |= KS_GATEWAY; 1370 k->k_state |= (KS_ADD | KS_DEL_ADD); 1371 } 1372 1373 /* Deleting-and-adding is necessary to change aspects of a route. 1374 * Just delete instead of deleting and then adding a bad route. 1375 * Otherwise, we want to keep the route in the kernel. 1376 */ 1377 if (k->k_metric == HOPCNT_INFINITY 1378 && (k->k_state & KS_DEL_ADD)) 1379 k->k_state |= KS_DELETE; 1380 else 1381 k->k_state &= ~KS_DELETE; 1382 #undef RT 1383 } 1384 1385 1386 /* ARGSUSED */ 1387 static int 1388 walk_kern(struct radix_node *rn, 1389 struct walkarg *argp UNUSED) 1390 { 1391 #define RT ((struct rt_entry *)rn) 1392 char metric, pref; 1393 u_int ags = 0; 1394 1395 1396 /* Do not install synthetic routes */ 1397 if (RT->rt_state & RS_NET_SYN) 1398 return 0; 1399 1400 if (!(RT->rt_state & RS_IF)) { 1401 /* This is an ordinary route, not for an interface. 1402 */ 1403 1404 /* aggregate, ordinary good routes without regard to 1405 * their metric 1406 */ 1407 pref = 1; 1408 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE); 1409 1410 /* Do not install host routes directly to hosts, to avoid 1411 * interfering with ARP entries in the kernel table. 1412 */ 1413 if (RT_ISHOST(RT) 1414 && ntohl(RT->rt_dst) == RT->rt_gate) 1415 return 0; 1416 1417 } else { 1418 /* This is an interface route. 1419 * Do not install routes for "external" remote interfaces. 1420 */ 1421 if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL)) 1422 return 0; 1423 1424 /* Interfaces should override received routes. 1425 */ 1426 pref = 0; 1427 ags |= (AGS_IF | AGS_CORS_GATE); 1428 1429 /* If it is not an interface, or an alias for an interface, 1430 * it must be a "gateway." 1431 * 1432 * If it is a "remote" interface, it is also a "gateway" to 1433 * the kernel if is not a alias. 1434 */ 1435 if (RT->rt_ifp == 0 1436 || (RT->rt_ifp->int_state & IS_REMOTE)) 1437 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE); 1438 } 1439 1440 /* If RIP is off and IRDP is on, let the route to the discovered 1441 * route suppress any RIP routes. Eventually the RIP routes 1442 * will time-out and be deleted. This reaches the steady-state 1443 * quicker. 1444 */ 1445 if ((RT->rt_state & RS_RDISC) && rip_sock < 0) 1446 ags |= AGS_CORS_GATE; 1447 1448 metric = RT->rt_metric; 1449 if (metric == HOPCNT_INFINITY) { 1450 /* if the route is dead, so try hard to aggregate. */ 1451 pref = HOPCNT_INFINITY; 1452 ags |= (AGS_FINE_GATE | AGS_SUPPRESS); 1453 ags &= ~(AGS_IF | AGS_CORS_GATE); 1454 } 1455 1456 ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0, 1457 metric,pref, 0, 0, ags, kern_out); 1458 return 0; 1459 #undef RT 1460 } 1461 1462 1463 /* Update the kernel table to match the daemon table. 1464 */ 1465 static void 1466 fix_kern(void) 1467 { 1468 int i; 1469 struct khash *k, **pk; 1470 1471 1472 need_kern = age_timer; 1473 1474 /* Walk daemon table, updating the copy of the kernel table. 1475 */ 1476 (void)rn_walktree(rhead, walk_kern, 0); 1477 ag_flush(0,0,kern_out); 1478 1479 for (i = 0; i < KHASH_SIZE; i++) { 1480 for (pk = &khash_bins[i]; (k = *pk) != 0; ) { 1481 /* Do not touch static routes */ 1482 if (k->k_state & KS_STATIC) { 1483 kern_check_static(k,0); 1484 pk = &k->k_next; 1485 continue; 1486 } 1487 1488 /* check hold on routes deleted by the operator */ 1489 if (k->k_keep > now.tv_sec) { 1490 /* ensure we check when the hold is over */ 1491 LIM_SEC(need_kern, k->k_keep); 1492 /* mark for the next cycle */ 1493 k->k_state |= KS_DELETE; 1494 pk = &k->k_next; 1495 continue; 1496 } 1497 1498 if ((k->k_state & KS_DELETE) 1499 && !(k->k_state & KS_DYNAMIC)) { 1500 kern_ioctl(k, RTM_DELETE, 0); 1501 *pk = k->k_next; 1502 free(k); 1503 continue; 1504 } 1505 1506 if (k->k_state & KS_DEL_ADD) 1507 kern_ioctl(k, RTM_DELETE, 0); 1508 1509 if (k->k_state & KS_ADD) { 1510 kern_ioctl(k, RTM_ADD, 1511 ((0 != (k->k_state & (KS_GATEWAY 1512 | KS_DYNAMIC))) 1513 ? RTF_GATEWAY : 0)); 1514 } else if (k->k_state & KS_CHANGE) { 1515 kern_ioctl(k, RTM_CHANGE, 1516 ((0 != (k->k_state & (KS_GATEWAY 1517 | KS_DYNAMIC))) 1518 ? RTF_GATEWAY : 0)); 1519 } 1520 k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD); 1521 1522 /* Mark this route to be deleted in the next cycle. 1523 * This deletes routes that disappear from the 1524 * daemon table, since the normal aging code 1525 * will clear the bit for routes that have not 1526 * disappeared from the daemon table. 1527 */ 1528 k->k_state |= KS_DELETE; 1529 pk = &k->k_next; 1530 } 1531 } 1532 } 1533 1534 1535 /* Delete a static route in the image of the kernel table. 1536 */ 1537 void 1538 del_static(naddr dst, 1539 naddr mask, 1540 naddr gate, 1541 int gone) 1542 { 1543 struct khash *k; 1544 struct rt_entry *rt; 1545 1546 /* Just mark it in the table to be deleted next time the kernel 1547 * table is updated. 1548 * If it has already been deleted, mark it as such, and set its 1549 * keep-timer so that it will not be deleted again for a while. 1550 * This lets the operator delete a route added by the daemon 1551 * and add a replacement. 1552 */ 1553 k = kern_find(dst, mask, 0); 1554 if (k != 0 && (gate == 0 || k->k_gate == gate)) { 1555 k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK); 1556 k->k_state |= KS_DELETE; 1557 if (gone) { 1558 k->k_state |= KS_DELETED; 1559 k->k_keep = now.tv_sec + K_KEEP_LIM; 1560 } 1561 } 1562 1563 rt = rtget(dst, mask); 1564 if (rt != 0 && (rt->rt_state & RS_STATIC)) 1565 rtbad(rt); 1566 } 1567 1568 1569 /* Delete all routes generated from ICMP Redirects that use a given gateway, 1570 * as well as old redirected routes. 1571 */ 1572 void 1573 del_redirects(naddr bad_gate, 1574 time_t old) 1575 { 1576 int i; 1577 struct khash *k; 1578 1579 1580 for (i = 0; i < KHASH_SIZE; i++) { 1581 for (k = khash_bins[i]; k != 0; k = k->k_next) { 1582 if (!(k->k_state & KS_DYNAMIC) 1583 || (k->k_state & KS_STATIC)) 1584 continue; 1585 1586 if (k->k_gate != bad_gate 1587 && k->k_redirect_time > old 1588 && !supplier) 1589 continue; 1590 1591 k->k_state |= KS_DELETE; 1592 k->k_state &= ~KS_DYNAMIC; 1593 need_kern.tv_sec = now.tv_sec; 1594 trace_act("mark redirected %s --> %s for deletion", 1595 addrname(k->k_dst, k->k_mask, 0), 1596 naddr_ntoa(k->k_gate)); 1597 } 1598 } 1599 } 1600 1601 1602 /* Start the daemon tables. 1603 */ 1604 extern int max_keylen; 1605 1606 void 1607 rtinit(void) 1608 { 1609 int i; 1610 struct ag_info *ag; 1611 1612 /* Initialize the radix trees */ 1613 max_keylen = sizeof(struct sockaddr_in); 1614 rn_init(); 1615 rn_inithead((void**)&rhead, 32); 1616 1617 /* mark all of the slots in the table free */ 1618 ag_avail = ag_slots; 1619 for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) { 1620 ag->ag_fine = ag+1; 1621 ag++; 1622 } 1623 } 1624 1625 1626 #ifdef _HAVE_SIN_LEN 1627 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET}; 1628 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET}; 1629 #else 1630 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET}; 1631 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET}; 1632 #endif 1633 1634 1635 static void 1636 set_need_flash(void) 1637 { 1638 if (!need_flash) { 1639 need_flash = 1; 1640 /* Do not send the flash update immediately. Wait a little 1641 * while to hear from other routers. 1642 */ 1643 no_flash.tv_sec = now.tv_sec + MIN_WAITTIME; 1644 } 1645 } 1646 1647 1648 /* Get a particular routing table entry 1649 */ 1650 struct rt_entry * 1651 rtget(naddr dst, naddr mask) 1652 { 1653 struct rt_entry *rt; 1654 1655 dst_sock.sin_addr.s_addr = dst; 1656 mask_sock.sin_addr.s_addr = mask; 1657 masktrim(&mask_sock); 1658 rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead); 1659 if (!rt 1660 || rt->rt_dst != dst 1661 || rt->rt_mask != mask) 1662 return 0; 1663 1664 return rt; 1665 } 1666 1667 1668 /* Find a route to dst as the kernel would. 1669 */ 1670 struct rt_entry * 1671 rtfind(naddr dst) 1672 { 1673 dst_sock.sin_addr.s_addr = dst; 1674 return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead); 1675 } 1676 1677 1678 /* add a route to the table 1679 */ 1680 void 1681 rtadd(naddr dst, 1682 naddr mask, 1683 u_int state, /* rt_state for the entry */ 1684 struct rt_spare *new) 1685 { 1686 struct rt_entry *rt; 1687 naddr smask; 1688 int i; 1689 struct rt_spare *rts; 1690 1691 rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd"); 1692 memset(rt, 0, sizeof(*rt)); 1693 for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++) 1694 rts->rts_metric = HOPCNT_INFINITY; 1695 1696 rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock; 1697 rt->rt_dst = dst; 1698 rt->rt_dst_sock.sin_family = AF_INET; 1699 #ifdef _HAVE_SIN_LEN 1700 rt->rt_dst_sock.sin_len = dst_sock.sin_len; 1701 #endif 1702 if (mask != HOST_MASK) { 1703 smask = std_mask(dst); 1704 if ((smask & ~mask) == 0 && mask > smask) 1705 state |= RS_SUBNET; 1706 } 1707 mask_sock.sin_addr.s_addr = mask; 1708 masktrim(&mask_sock); 1709 rt->rt_mask = mask; 1710 rt->rt_state = state; 1711 rt->rt_spares[0] = *new; 1712 rt->rt_time = now.tv_sec; 1713 rt->rt_poison_metric = HOPCNT_INFINITY; 1714 rt->rt_seqno = update_seqno; 1715 1716 if (++total_routes == MAX_ROUTES) 1717 msglog("have maximum (%d) routes", total_routes); 1718 if (TRACEACTIONS) 1719 trace_add_del("Add", rt); 1720 1721 need_kern.tv_sec = now.tv_sec; 1722 set_need_flash(); 1723 1724 if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock, 1725 rhead, rt->rt_nodes)) { 1726 msglog("rnh_addaddr() failed for %s mask=%#lx", 1727 naddr_ntoa(dst), (u_long)mask); 1728 } 1729 } 1730 1731 1732 /* notice a changed route 1733 */ 1734 void 1735 rtchange(struct rt_entry *rt, 1736 u_int state, /* new state bits */ 1737 struct rt_spare *new, 1738 char *label) 1739 { 1740 if (rt->rt_metric != new->rts_metric) { 1741 /* Fix the kernel immediately if it seems the route 1742 * has gone bad, since there may be a working route that 1743 * aggregates this route. 1744 */ 1745 if (new->rts_metric == HOPCNT_INFINITY) { 1746 need_kern.tv_sec = now.tv_sec; 1747 if (new->rts_time >= now.tv_sec - EXPIRE_TIME) 1748 new->rts_time = now.tv_sec - EXPIRE_TIME; 1749 } 1750 rt->rt_seqno = update_seqno; 1751 set_need_flash(); 1752 } 1753 1754 if (rt->rt_gate != new->rts_gate) { 1755 need_kern.tv_sec = now.tv_sec; 1756 rt->rt_seqno = update_seqno; 1757 set_need_flash(); 1758 } 1759 1760 state |= (rt->rt_state & RS_SUBNET); 1761 1762 /* Keep various things from deciding ageless routes are stale. 1763 */ 1764 if (!AGE_RT(state, new->rts_ifp)) 1765 new->rts_time = now.tv_sec; 1766 1767 if (TRACEACTIONS) 1768 trace_change(rt, state, new, 1769 label ? label : "Chg "); 1770 1771 rt->rt_state = state; 1772 rt->rt_spares[0] = *new; 1773 } 1774 1775 1776 /* check for a better route among the spares 1777 */ 1778 static struct rt_spare * 1779 rts_better(struct rt_entry *rt) 1780 { 1781 struct rt_spare *rts, *rts1; 1782 int i; 1783 1784 /* find the best alternative among the spares */ 1785 rts = rt->rt_spares+1; 1786 for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) { 1787 if (BETTER_LINK(rt,rts1,rts)) 1788 rts = rts1; 1789 } 1790 1791 return rts; 1792 } 1793 1794 1795 /* switch to a backup route 1796 */ 1797 void 1798 rtswitch(struct rt_entry *rt, 1799 struct rt_spare *rts) 1800 { 1801 struct rt_spare swap; 1802 char label[10]; 1803 1804 1805 /* Do not change permanent routes */ 1806 if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC 1807 | RS_NET_SYN | RS_IF))) 1808 return; 1809 1810 /* find the best alternative among the spares */ 1811 if (rts == 0) 1812 rts = rts_better(rt); 1813 1814 /* Do not bother if it is not worthwhile. 1815 */ 1816 if (!BETTER_LINK(rt, rts, rt->rt_spares)) 1817 return; 1818 1819 swap = rt->rt_spares[0]; 1820 (void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares)); 1821 rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label); 1822 if (swap.rts_metric == HOPCNT_INFINITY) { 1823 *rts = rts_empty; 1824 } else { 1825 *rts = swap; 1826 } 1827 } 1828 1829 1830 void 1831 rtdelete(struct rt_entry *rt) 1832 { 1833 struct khash *k; 1834 1835 1836 if (TRACEACTIONS) 1837 trace_add_del("Del", rt); 1838 1839 k = kern_find(rt->rt_dst, rt->rt_mask, 0); 1840 if (k != 0) { 1841 k->k_state |= KS_DELETE; 1842 need_kern.tv_sec = now.tv_sec; 1843 } 1844 1845 dst_sock.sin_addr.s_addr = rt->rt_dst; 1846 mask_sock.sin_addr.s_addr = rt->rt_mask; 1847 masktrim(&mask_sock); 1848 if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock, 1849 rhead)) { 1850 msglog("rnh_deladdr() failed"); 1851 } else { 1852 free(rt); 1853 total_routes--; 1854 } 1855 } 1856 1857 1858 void 1859 rts_delete(struct rt_entry *rt, 1860 struct rt_spare *rts) 1861 { 1862 trace_upslot(rt, rts, &rts_empty); 1863 *rts = rts_empty; 1864 } 1865 1866 1867 /* Get rid of a bad route, and try to switch to a replacement. 1868 */ 1869 void 1870 rtbad(struct rt_entry *rt) 1871 { 1872 struct rt_spare new; 1873 1874 /* Poison the route */ 1875 new = rt->rt_spares[0]; 1876 new.rts_metric = HOPCNT_INFINITY; 1877 rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0); 1878 rtswitch(rt, 0); 1879 } 1880 1881 1882 /* Junk a RS_NET_SYN or RS_LOCAL route, 1883 * unless it is needed by another interface. 1884 */ 1885 void 1886 rtbad_sub(struct rt_entry *rt) 1887 { 1888 struct interface *ifp, *ifp1; 1889 struct intnet *intnetp; 1890 u_int state; 1891 1892 1893 ifp1 = 0; 1894 state = 0; 1895 1896 if (rt->rt_state & RS_LOCAL) { 1897 /* Is this the route through loopback for the interface? 1898 * If so, see if it is used by any other interfaces, such 1899 * as a point-to-point interface with the same local address. 1900 */ 1901 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) { 1902 /* Retain it if another interface needs it. 1903 */ 1904 if (ifp->int_addr == rt->rt_ifp->int_addr) { 1905 state |= RS_LOCAL; 1906 ifp1 = ifp; 1907 break; 1908 } 1909 } 1910 1911 } 1912 1913 if (!(state & RS_LOCAL)) { 1914 /* Retain RIPv1 logical network route if there is another 1915 * interface that justifies it. 1916 */ 1917 if (rt->rt_state & RS_NET_SYN) { 1918 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) { 1919 if ((ifp->int_state & IS_NEED_NET_SYN) 1920 && rt->rt_mask == ifp->int_std_mask 1921 && rt->rt_dst == ifp->int_std_addr) { 1922 state |= RS_NET_SYN; 1923 ifp1 = ifp; 1924 break; 1925 } 1926 } 1927 } 1928 1929 /* or if there is an authority route that needs it. */ 1930 for (intnetp = intnets; 1931 intnetp != 0; 1932 intnetp = intnetp->intnet_next) { 1933 if (intnetp->intnet_addr == rt->rt_dst 1934 && intnetp->intnet_mask == rt->rt_mask) { 1935 state |= (RS_NET_SYN | RS_NET_INT); 1936 break; 1937 } 1938 } 1939 } 1940 1941 if (ifp1 != 0 || (state & RS_NET_SYN)) { 1942 struct rt_spare new = rt->rt_spares[0]; 1943 new.rts_ifp = ifp1; 1944 rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state), 1945 &new, 0); 1946 } else { 1947 rtbad(rt); 1948 } 1949 } 1950 1951 1952 /* Called while walking the table looking for sick interfaces 1953 * or after a time change. 1954 */ 1955 /* ARGSUSED */ 1956 int 1957 walk_bad(struct radix_node *rn, 1958 struct walkarg *argp UNUSED) 1959 { 1960 #define RT ((struct rt_entry *)rn) 1961 struct rt_spare *rts; 1962 int i; 1963 1964 1965 /* fix any spare routes through the interface 1966 */ 1967 rts = RT->rt_spares; 1968 for (i = NUM_SPARES; i != 1; i--) { 1969 rts++; 1970 if (rts->rts_metric < HOPCNT_INFINITY 1971 && (rts->rts_ifp == 0 1972 || (rts->rts_ifp->int_state & IS_BROKE))) 1973 rts_delete(RT, rts); 1974 } 1975 1976 /* Deal with the main route 1977 */ 1978 /* finished if it has been handled before or if its interface is ok 1979 */ 1980 if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE)) 1981 return 0; 1982 1983 /* Bad routes for other than interfaces are easy. 1984 */ 1985 if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) { 1986 rtbad(RT); 1987 return 0; 1988 } 1989 1990 rtbad_sub(RT); 1991 return 0; 1992 #undef RT 1993 } 1994 1995 1996 /* Check the age of an individual route. 1997 */ 1998 /* ARGSUSED */ 1999 static int 2000 walk_age(struct radix_node *rn, 2001 struct walkarg *argp UNUSED) 2002 { 2003 #define RT ((struct rt_entry *)rn) 2004 struct interface *ifp; 2005 struct rt_spare *rts; 2006 int i; 2007 2008 2009 /* age all of the spare routes, including the primary route 2010 * currently in use 2011 */ 2012 rts = RT->rt_spares; 2013 for (i = NUM_SPARES; i != 0; i--, rts++) { 2014 2015 ifp = rts->rts_ifp; 2016 if (i == NUM_SPARES) { 2017 if (!AGE_RT(RT->rt_state, ifp)) { 2018 /* Keep various things from deciding ageless 2019 * routes are stale 2020 */ 2021 rts->rts_time = now.tv_sec; 2022 continue; 2023 } 2024 2025 /* forget RIP routes after RIP has been turned off. 2026 */ 2027 if (rip_sock < 0) { 2028 rtdelete(RT); 2029 return 0; 2030 } 2031 } 2032 2033 /* age failing routes 2034 */ 2035 if (age_bad_gate == rts->rts_gate 2036 && rts->rts_time >= now_stale) { 2037 rts->rts_time -= SUPPLY_INTERVAL; 2038 } 2039 2040 /* trash the spare routes when they go bad */ 2041 if (rts->rts_metric < HOPCNT_INFINITY 2042 && now_garbage > rts->rts_time 2043 && i != NUM_SPARES) 2044 rts_delete(RT, rts); 2045 } 2046 2047 2048 /* finished if the active route is still fresh */ 2049 if (now_stale <= RT->rt_time) 2050 return 0; 2051 2052 /* try to switch to an alternative */ 2053 rtswitch(RT, 0); 2054 2055 /* Delete a dead route after it has been publically mourned. */ 2056 if (now_garbage > RT->rt_time) { 2057 rtdelete(RT); 2058 return 0; 2059 } 2060 2061 /* Start poisoning a bad route before deleting it. */ 2062 if (now.tv_sec - RT->rt_time > EXPIRE_TIME) { 2063 struct rt_spare new = RT->rt_spares[0]; 2064 new.rts_metric = HOPCNT_INFINITY; 2065 rtchange(RT, RT->rt_state, &new, 0); 2066 } 2067 return 0; 2068 } 2069 2070 2071 /* Watch for dead routes and interfaces. 2072 */ 2073 void 2074 age(naddr bad_gate) 2075 { 2076 struct interface *ifp; 2077 int need_query = 0; 2078 2079 /* If not listening to RIP, there is no need to age the routes in 2080 * the table. 2081 */ 2082 age_timer.tv_sec = (now.tv_sec 2083 + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL)); 2084 2085 /* Check for dead IS_REMOTE interfaces by timing their 2086 * transmissions. 2087 */ 2088 for (ifp = ifnet; ifp; ifp = ifp->int_next) { 2089 if (!(ifp->int_state & IS_REMOTE)) 2090 continue; 2091 2092 /* ignore unreachable remote interfaces */ 2093 if (!check_remote(ifp)) 2094 continue; 2095 2096 /* Restore remote interface that has become reachable 2097 */ 2098 if (ifp->int_state & IS_BROKE) 2099 if_ok(ifp, "remote "); 2100 2101 if (ifp->int_act_time != NEVER 2102 && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) { 2103 msglog("remote interface %s to %s timed out after" 2104 " %ld:%ld", 2105 ifp->int_name, 2106 naddr_ntoa(ifp->int_dstaddr), 2107 (now.tv_sec - ifp->int_act_time)/60, 2108 (now.tv_sec - ifp->int_act_time)%60); 2109 if_sick(ifp); 2110 } 2111 2112 /* If we have not heard from the other router 2113 * recently, ask it. 2114 */ 2115 if (now.tv_sec >= ifp->int_query_time) { 2116 ifp->int_query_time = NEVER; 2117 need_query = 1; 2118 } 2119 } 2120 2121 /* Age routes. */ 2122 age_bad_gate = bad_gate; 2123 (void)rn_walktree(rhead, walk_age, 0); 2124 2125 /* delete old redirected routes to keep the kernel table small 2126 * and prevent blackholes 2127 */ 2128 del_redirects(bad_gate, now.tv_sec-STALE_TIME); 2129 2130 /* Update the kernel routing table. */ 2131 fix_kern(); 2132 2133 /* poke reticent remote gateways */ 2134 if (need_query) 2135 rip_query(); 2136 } 2137