xref: /freebsd/sbin/routed/table.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Copyright (c) 1983, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgment:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 #include "defs.h"
37 
38 #if !defined(sgi) && !defined(__NetBSD__)
39 static char sccsid[] __attribute__((unused)) = "@(#)tables.c	8.1 (Berkeley) 6/5/93";
40 #elif defined(__NetBSD__)
41 __RCSID("$NetBSD$");
42 #endif
43 #ident "$FreeBSD$"
44 
45 static struct rt_spare *rts_better(struct rt_entry *);
46 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0};
47 static void  set_need_flash(void);
48 #ifdef _HAVE_SIN_LEN
49 static void masktrim(struct sockaddr_in *ap);
50 #else
51 static void masktrim(struct sockaddr_in_new *ap);
52 #endif
53 
54 
55 struct radix_node_head *rhead;		/* root of the radix tree */
56 
57 int	need_flash = 1;			/* flash update needed
58 					 * start =1 to suppress the 1st
59 					 */
60 
61 struct timeval age_timer;		/* next check of old routes */
62 struct timeval need_kern = {		/* need to update kernel table */
63 	EPOCH+MIN_WAITTIME-1
64 };
65 
66 int	stopint;
67 
68 int	total_routes;
69 
70 /* zap any old routes through this gateway */
71 naddr	age_bad_gate;
72 
73 
74 /* It is desirable to "aggregate" routes, to combine differing routes of
75  * the same metric and next hop into a common route with a smaller netmask
76  * or to suppress redundant routes, routes that add no information to
77  * routes with smaller netmasks.
78  *
79  * A route is redundant if and only if any and all routes with smaller
80  * but matching netmasks and nets are the same.  Since routes are
81  * kept sorted in the radix tree, redundant routes always come second.
82  *
83  * There are two kinds of aggregations.  First, two routes of the same bit
84  * mask and differing only in the least significant bit of the network
85  * number can be combined into a single route with a coarser mask.
86  *
87  * Second, a route can be suppressed in favor of another route with a more
88  * coarse mask provided no incompatible routes with intermediate masks
89  * are present.  The second kind of aggregation involves suppressing routes.
90  * A route must not be suppressed if an incompatible route exists with
91  * an intermediate mask, since the suppressed route would be covered
92  * by the intermediate.
93  *
94  * This code relies on the radix tree walk encountering routes
95  * sorted first by address, with the smallest address first.
96  */
97 
98 struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
99 
100 /* #define DEBUG_AG */
101 #ifdef DEBUG_AG
102 #define CHECK_AG() {int acnt = 0; struct ag_info *cag;		\
103 	for (cag = ag_avail; cag != 0; cag = cag->ag_fine)	\
104 		acnt++;						\
105 	for (cag = ag_corsest; cag != 0; cag = cag->ag_fine)	\
106 		acnt++;						\
107 	if (acnt != NUM_AG_SLOTS) {				\
108 		(void)fflush(stderr);				\
109 		abort();					\
110 	}							\
111 }
112 #else
113 #define CHECK_AG()
114 #endif
115 
116 
117 /* Output the contents of an aggregation table slot.
118  *	This function must always be immediately followed with the deletion
119  *	of the target slot.
120  */
121 static void
122 ag_out(struct ag_info *ag,
123 	 void (*out)(struct ag_info *))
124 {
125 	struct ag_info *ag_cors;
126 	naddr bit;
127 
128 
129 	/* Forget it if this route should not be output for split-horizon. */
130 	if (ag->ag_state & AGS_SPLIT_HZ)
131 		return;
132 
133 	/* If we output both the even and odd twins, then the immediate parent,
134 	 * if it is present, is redundant, unless the parent manages to
135 	 * aggregate into something coarser.
136 	 * On successive calls, this code detects the even and odd twins,
137 	 * and marks the parent.
138 	 *
139 	 * Note that the order in which the radix tree code emits routes
140 	 * ensures that the twins are seen before the parent is emitted.
141 	 */
142 	ag_cors = ag->ag_cors;
143 	if (ag_cors != 0
144 	    && ag_cors->ag_mask == ag->ag_mask<<1
145 	    && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
146 		ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
147 				      ? AGS_REDUN0
148 				      : AGS_REDUN1);
149 	}
150 
151 	/* Skip it if this route is itself redundant.
152 	 *
153 	 * It is ok to change the contents of the slot here, since it is
154 	 * always deleted next.
155 	 */
156 	if (ag->ag_state & AGS_REDUN0) {
157 		if (ag->ag_state & AGS_REDUN1)
158 			return;		/* quit if fully redundant */
159 		/* make it finer if it is half-redundant */
160 		bit = (-ag->ag_mask) >> 1;
161 		ag->ag_dst_h |= bit;
162 		ag->ag_mask |= bit;
163 
164 	} else if (ag->ag_state & AGS_REDUN1) {
165 		/* make it finer if it is half-redundant */
166 		bit = (-ag->ag_mask) >> 1;
167 		ag->ag_mask |= bit;
168 	}
169 	out(ag);
170 }
171 
172 
173 static void
174 ag_del(struct ag_info *ag)
175 {
176 	CHECK_AG();
177 
178 	if (ag->ag_cors == 0)
179 		ag_corsest = ag->ag_fine;
180 	else
181 		ag->ag_cors->ag_fine = ag->ag_fine;
182 
183 	if (ag->ag_fine == 0)
184 		ag_finest = ag->ag_cors;
185 	else
186 		ag->ag_fine->ag_cors = ag->ag_cors;
187 
188 	ag->ag_fine = ag_avail;
189 	ag_avail = ag;
190 
191 	CHECK_AG();
192 }
193 
194 
195 /* Flush routes waiting for aggregation.
196  *	This must not suppress a route unless it is known that among all
197  *	routes with coarser masks that match it, the one with the longest
198  *	mask is appropriate.  This is ensured by scanning the routes
199  *	in lexical order, and with the most restrictive mask first
200  *	among routes to the same destination.
201  */
202 void
203 ag_flush(naddr lim_dst_h,		/* flush routes to here */
204 	 naddr lim_mask,		/* matching this mask */
205 	 void (*out)(struct ag_info *))
206 {
207 	struct ag_info *ag, *ag_cors;
208 	naddr dst_h;
209 
210 
211 	for (ag = ag_finest;
212 	     ag != 0 && ag->ag_mask >= lim_mask;
213 	     ag = ag_cors) {
214 		ag_cors = ag->ag_cors;
215 
216 		/* work on only the specified routes */
217 		dst_h = ag->ag_dst_h;
218 		if ((dst_h & lim_mask) != lim_dst_h)
219 			continue;
220 
221 		if (!(ag->ag_state & AGS_SUPPRESS))
222 			ag_out(ag, out);
223 
224 		else for ( ; ; ag_cors = ag_cors->ag_cors) {
225 			/* Look for a route that can suppress the
226 			 * current route */
227 			if (ag_cors == 0) {
228 				/* failed, so output it and look for
229 				 * another route to work on
230 				 */
231 				ag_out(ag, out);
232 				break;
233 			}
234 
235 			if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
236 				/* We found a route with a coarser mask that
237 				 * aggregates the current target.
238 				 *
239 				 * If it has a different next hop, it
240 				 * cannot replace the target, so output
241 				 * the target.
242 				 */
243 				if (ag->ag_gate != ag_cors->ag_gate
244 				    && !(ag->ag_state & AGS_FINE_GATE)
245 				    && !(ag_cors->ag_state & AGS_CORS_GATE)) {
246 					ag_out(ag, out);
247 					break;
248 				}
249 
250 				/* If the coarse route has a good enough
251 				 * metric, it suppresses the target.
252 				 * If the suppressed target was redundant,
253 				 * then mark the suppressor redundant.
254 				 */
255 				if (ag_cors->ag_pref <= ag->ag_pref) {
256 				    if (ag_cors->ag_seqno > ag->ag_seqno)
257 					ag_cors->ag_seqno = ag->ag_seqno;
258 				    if (AG_IS_REDUN(ag->ag_state)
259 					&& ag_cors->ag_mask==ag->ag_mask<<1) {
260 					if (ag_cors->ag_dst_h == dst_h)
261 					    ag_cors->ag_state |= AGS_REDUN0;
262 					else
263 					    ag_cors->ag_state |= AGS_REDUN1;
264 				    }
265 				    if (ag->ag_tag != ag_cors->ag_tag)
266 					    ag_cors->ag_tag = 0;
267 				    if (ag->ag_nhop != ag_cors->ag_nhop)
268 					    ag_cors->ag_nhop = 0;
269 				    break;
270 				}
271 			}
272 		}
273 
274 		/* That route has either been output or suppressed */
275 		ag_cors = ag->ag_cors;
276 		ag_del(ag);
277 	}
278 
279 	CHECK_AG();
280 }
281 
282 
283 /* Try to aggregate a route with previous routes.
284  */
285 void
286 ag_check(naddr	dst,
287 	 naddr	mask,
288 	 naddr	gate,
289 	 naddr	nhop,
290 	 char	metric,
291 	 char	pref,
292 	 u_int	seqno,
293 	 u_short tag,
294 	 u_short state,
295 	 void (*out)(struct ag_info *))	/* output using this */
296 {
297 	struct ag_info *ag, *nag, *ag_cors;
298 	naddr xaddr;
299 	int x;
300 
301 	NTOHL(dst);
302 
303 	/* Punt non-contiguous subnet masks.
304 	 *
305 	 * (X & -X) contains a single bit if and only if X is a power of 2.
306 	 * (X + (X & -X)) == 0 if and only if X is a power of 2.
307 	 */
308 	if ((mask & -mask) + mask != 0) {
309 		struct ag_info nc_ag;
310 
311 		nc_ag.ag_dst_h = dst;
312 		nc_ag.ag_mask = mask;
313 		nc_ag.ag_gate = gate;
314 		nc_ag.ag_nhop = nhop;
315 		nc_ag.ag_metric = metric;
316 		nc_ag.ag_pref = pref;
317 		nc_ag.ag_tag = tag;
318 		nc_ag.ag_state = state;
319 		nc_ag.ag_seqno = seqno;
320 		out(&nc_ag);
321 		return;
322 	}
323 
324 	/* Search for the right slot in the aggregation table.
325 	 */
326 	ag_cors = 0;
327 	ag = ag_corsest;
328 	while (ag != 0) {
329 		if (ag->ag_mask >= mask)
330 			break;
331 
332 		/* Suppress old routes (i.e. combine with compatible routes
333 		 * with coarser masks) as we look for the right slot in the
334 		 * aggregation table for the new route.
335 		 * A route to an address less than the current destination
336 		 * will not be affected by the current route or any route
337 		 * seen hereafter.  That means it is safe to suppress it.
338 		 * This check keeps poor routes (e.g. with large hop counts)
339 		 * from preventing suppression of finer routes.
340 		 */
341 		if (ag_cors != 0
342 		    && ag->ag_dst_h < dst
343 		    && (ag->ag_state & AGS_SUPPRESS)
344 		    && ag_cors->ag_pref <= ag->ag_pref
345 		    && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
346 		    && (ag_cors->ag_gate == ag->ag_gate
347 			|| (ag->ag_state & AGS_FINE_GATE)
348 			|| (ag_cors->ag_state & AGS_CORS_GATE))) {
349 			if (ag_cors->ag_seqno > ag->ag_seqno)
350 				ag_cors->ag_seqno = ag->ag_seqno;
351 			/*  If the suppressed target was redundant,
352 			 * then mark the suppressor redundant.
353 			 */
354 			if (AG_IS_REDUN(ag->ag_state)
355 			    && ag_cors->ag_mask==ag->ag_mask<<1) {
356 				if (ag_cors->ag_dst_h == dst)
357 					ag_cors->ag_state |= AGS_REDUN0;
358 				else
359 					ag_cors->ag_state |= AGS_REDUN1;
360 			}
361 			if (ag->ag_tag != ag_cors->ag_tag)
362 				ag_cors->ag_tag = 0;
363 			if (ag->ag_nhop != ag_cors->ag_nhop)
364 				ag_cors->ag_nhop = 0;
365 			ag_del(ag);
366 			CHECK_AG();
367 		} else {
368 			ag_cors = ag;
369 		}
370 		ag = ag_cors->ag_fine;
371 	}
372 
373 	/* If we find the even/odd twin of the new route, and if the
374 	 * masks and so forth are equal, we can aggregate them.
375 	 * We can probably promote one of the pair.
376 	 *
377 	 * Since the routes are encountered in lexical order,
378 	 * the new route must be odd.  However, the second or later
379 	 * times around this loop, it could be the even twin promoted
380 	 * from the even/odd pair of twins of the finer route.
381 	 */
382 	while (ag != 0
383 	       && ag->ag_mask == mask
384 	       && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
385 
386 		/* Here we know the target route and the route in the current
387 		 * slot have the same netmasks and differ by at most the
388 		 * last bit.  They are either for the same destination, or
389 		 * for an even/odd pair of destinations.
390 		 */
391 		if (ag->ag_dst_h == dst) {
392 			/* We have two routes to the same destination.
393 			 * Routes are encountered in lexical order, so a
394 			 * route is never promoted until the parent route is
395 			 * already present.  So we know that the new route is
396 			 * a promoted (or aggregated) pair and the route
397 			 * already in the slot is the explicit route.
398 			 *
399 			 * Prefer the best route if their metrics differ,
400 			 * or the aggregated one if not, following a sort
401 			 * of longest-match rule.
402 			 */
403 			if (pref <= ag->ag_pref) {
404 				ag->ag_gate = gate;
405 				ag->ag_nhop = nhop;
406 				ag->ag_tag = tag;
407 				ag->ag_metric = metric;
408 				ag->ag_pref = pref;
409 				x = ag->ag_state;
410 				ag->ag_state = state;
411 				state = x;
412 			}
413 
414 			/* The sequence number controls flash updating,
415 			 * and should be the smaller of the two.
416 			 */
417 			if (ag->ag_seqno > seqno)
418 				ag->ag_seqno = seqno;
419 
420 			/* Some bits are set if they are set on either route,
421 			 * except when the route is for an interface.
422 			 */
423 			if (!(ag->ag_state & AGS_IF))
424 				ag->ag_state |= (state & (AGS_AGGREGATE_EITHER
425 							| AGS_REDUN0
426 							| AGS_REDUN1));
427 			return;
428 		}
429 
430 		/* If one of the routes can be promoted and the other can
431 		 * be suppressed, it may be possible to combine them or
432 		 * worthwhile to promote one.
433 		 *
434 		 * Any route that can be promoted is always
435 		 * marked to be eligible to be suppressed.
436 		 */
437 		if (!((state & AGS_AGGREGATE)
438 		      && (ag->ag_state & AGS_SUPPRESS))
439 		    && !((ag->ag_state & AGS_AGGREGATE)
440 			 && (state & AGS_SUPPRESS)))
441 			break;
442 
443 		/* A pair of even/odd twin routes can be combined
444 		 * if either is redundant, or if they are via the
445 		 * same gateway and have the same metric.
446 		 */
447 		if (AG_IS_REDUN(ag->ag_state)
448 		    || AG_IS_REDUN(state)
449 		    || (ag->ag_gate == gate
450 			&& ag->ag_pref == pref
451 			&& (state & ag->ag_state & AGS_AGGREGATE) != 0)) {
452 
453 			/* We have both the even and odd pairs.
454 			 * Since the routes are encountered in order,
455 			 * the route in the slot must be the even twin.
456 			 *
457 			 * Combine and promote (aggregate) the pair of routes.
458 			 */
459 			if (seqno > ag->ag_seqno)
460 				seqno = ag->ag_seqno;
461 			if (!AG_IS_REDUN(state))
462 				state &= ~AGS_REDUN1;
463 			if (AG_IS_REDUN(ag->ag_state))
464 				state |= AGS_REDUN0;
465 			else
466 				state &= ~AGS_REDUN0;
467 			state |= (ag->ag_state & AGS_AGGREGATE_EITHER);
468 			if (ag->ag_tag != tag)
469 				tag = 0;
470 			if (ag->ag_nhop != nhop)
471 				nhop = 0;
472 
473 			/* Get rid of the even twin that was already
474 			 * in the slot.
475 			 */
476 			ag_del(ag);
477 
478 		} else if (ag->ag_pref >= pref
479 			   && (ag->ag_state & AGS_AGGREGATE)) {
480 			/* If we cannot combine the pair, maybe the route
481 			 * with the worse metric can be promoted.
482 			 *
483 			 * Promote the old, even twin, by giving its slot
484 			 * in the table to the new, odd twin.
485 			 */
486 			ag->ag_dst_h = dst;
487 
488 			xaddr = ag->ag_gate;
489 			ag->ag_gate = gate;
490 			gate = xaddr;
491 
492 			xaddr = ag->ag_nhop;
493 			ag->ag_nhop = nhop;
494 			nhop = xaddr;
495 
496 			x = ag->ag_tag;
497 			ag->ag_tag = tag;
498 			tag = x;
499 
500 			/* The promoted route is even-redundant only if the
501 			 * even twin was fully redundant.  It is not
502 			 * odd-redundant because the odd-twin will still be
503 			 * in the table.
504 			 */
505 			x = ag->ag_state;
506 			if (!AG_IS_REDUN(x))
507 				x &= ~AGS_REDUN0;
508 			x &= ~AGS_REDUN1;
509 			ag->ag_state = state;
510 			state = x;
511 
512 			x = ag->ag_metric;
513 			ag->ag_metric = metric;
514 			metric = x;
515 
516 			x = ag->ag_pref;
517 			ag->ag_pref = pref;
518 			pref = x;
519 
520 			/* take the newest sequence number */
521 			if (seqno >= ag->ag_seqno)
522 				seqno = ag->ag_seqno;
523 			else
524 				ag->ag_seqno = seqno;
525 
526 		} else {
527 			if (!(state & AGS_AGGREGATE))
528 				break;	/* cannot promote either twin */
529 
530 			/* Promote the new, odd twin by shaving its
531 			 * mask and address.
532 			 * The promoted route is odd-redundant only if the
533 			 * odd twin was fully redundant.  It is not
534 			 * even-redundant because the even twin is still in
535 			 * the table.
536 			 */
537 			if (!AG_IS_REDUN(state))
538 				state &= ~AGS_REDUN1;
539 			state &= ~AGS_REDUN0;
540 			if (seqno > ag->ag_seqno)
541 				seqno = ag->ag_seqno;
542 			else
543 				ag->ag_seqno = seqno;
544 		}
545 
546 		mask <<= 1;
547 		dst &= mask;
548 
549 		if (ag_cors == 0) {
550 			ag = ag_corsest;
551 			break;
552 		}
553 		ag = ag_cors;
554 		ag_cors = ag->ag_cors;
555 	}
556 
557 	/* When we can no longer promote and combine routes,
558 	 * flush the old route in the target slot.  Also flush
559 	 * any finer routes that we know will never be aggregated by
560 	 * the new route.
561 	 *
562 	 * In case we moved toward coarser masks,
563 	 * get back where we belong
564 	 */
565 	if (ag != 0
566 	    && ag->ag_mask < mask) {
567 		ag_cors = ag;
568 		ag = ag->ag_fine;
569 	}
570 
571 	/* Empty the target slot
572 	 */
573 	if (ag != 0 && ag->ag_mask == mask) {
574 		ag_flush(ag->ag_dst_h, ag->ag_mask, out);
575 		ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine;
576 	}
577 
578 #ifdef DEBUG_AG
579 	(void)fflush(stderr);
580 	if (ag == 0 && ag_cors != ag_finest)
581 		abort();
582 	if (ag_cors == 0 && ag != ag_corsest)
583 		abort();
584 	if (ag != 0 && ag->ag_cors != ag_cors)
585 		abort();
586 	if (ag_cors != 0 && ag_cors->ag_fine != ag)
587 		abort();
588 	CHECK_AG();
589 #endif
590 
591 	/* Save the new route on the end of the table.
592 	 */
593 	nag = ag_avail;
594 	ag_avail = nag->ag_fine;
595 
596 	nag->ag_dst_h = dst;
597 	nag->ag_mask = mask;
598 	nag->ag_gate = gate;
599 	nag->ag_nhop = nhop;
600 	nag->ag_metric = metric;
601 	nag->ag_pref = pref;
602 	nag->ag_tag = tag;
603 	nag->ag_state = state;
604 	nag->ag_seqno = seqno;
605 
606 	nag->ag_fine = ag;
607 	if (ag != 0)
608 		ag->ag_cors = nag;
609 	else
610 		ag_finest = nag;
611 	nag->ag_cors = ag_cors;
612 	if (ag_cors == 0)
613 		ag_corsest = nag;
614 	else
615 		ag_cors->ag_fine = nag;
616 	CHECK_AG();
617 }
618 
619 
620 #define	NAME0_LEN 14
621 static const char *
622 rtm_type_name(u_char type)
623 {
624 	static const char *rtm_types[] = {
625 		"RTM_ADD",
626 		"RTM_DELETE",
627 		"RTM_CHANGE",
628 		"RTM_GET",
629 		"RTM_LOSING",
630 		"RTM_REDIRECT",
631 		"RTM_MISS",
632 		"RTM_LOCK",
633 		"RTM_OLDADD",
634 		"RTM_OLDDEL",
635 		"RTM_RESOLVE",
636 		"RTM_NEWADDR",
637 		"RTM_DELADDR",
638 		"RTM_IFINFO",
639 		"RTM_NEWMADDR",
640 		"RTM_DELMADDR"
641 	};
642 	static char name0[NAME0_LEN];
643 
644 
645 	if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
646 	    || type == 0) {
647 		snprintf(name0, NAME0_LEN, "RTM type %#x", type);
648 		return name0;
649 	} else {
650 		return rtm_types[type-1];
651 	}
652 }
653 
654 
655 /* Trim a mask in a sockaddr
656  *	Produce a length of 0 for an address of 0.
657  *	Otherwise produce the index of the first zero byte.
658  */
659 void
660 #ifdef _HAVE_SIN_LEN
661 masktrim(struct sockaddr_in *ap)
662 #else
663 masktrim(struct sockaddr_in_new *ap)
664 #endif
665 {
666 	char *cp;
667 
668 	if (ap->sin_addr.s_addr == 0) {
669 		ap->sin_len = 0;
670 		return;
671 	}
672 	cp = (char *)(&ap->sin_addr.s_addr+1);
673 	while (*--cp == 0)
674 		continue;
675 	ap->sin_len = cp - (char*)ap + 1;
676 }
677 
678 
679 /* Tell the kernel to add, delete or change a route
680  */
681 static void
682 rtioctl(int action,			/* RTM_DELETE, etc */
683 	naddr dst,
684 	naddr gate,
685 	naddr mask,
686 	int metric,
687 	int flags)
688 {
689 	struct {
690 		struct rt_msghdr w_rtm;
691 		struct sockaddr_in w_dst;
692 		struct sockaddr_in w_gate;
693 #ifdef _HAVE_SA_LEN
694 		struct sockaddr_in w_mask;
695 #else
696 		struct sockaddr_in_new w_mask;
697 #endif
698 	} w;
699 	long cc;
700 #   define PAT " %-10s %s metric=%d flags=%#x"
701 #   define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
702 
703 again:
704 	memset(&w, 0, sizeof(w));
705 	w.w_rtm.rtm_msglen = sizeof(w);
706 	w.w_rtm.rtm_version = RTM_VERSION;
707 	w.w_rtm.rtm_type = action;
708 	w.w_rtm.rtm_flags = flags;
709 	w.w_rtm.rtm_seq = ++rt_sock_seqno;
710 	w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
711 	if (metric != 0 || action == RTM_CHANGE) {
712 		w.w_rtm.rtm_rmx.rmx_hopcount = metric;
713 		w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
714 	}
715 	w.w_dst.sin_family = AF_INET;
716 	w.w_dst.sin_addr.s_addr = dst;
717 	w.w_gate.sin_family = AF_INET;
718 	w.w_gate.sin_addr.s_addr = gate;
719 #ifdef _HAVE_SA_LEN
720 	w.w_dst.sin_len = sizeof(w.w_dst);
721 	w.w_gate.sin_len = sizeof(w.w_gate);
722 #endif
723 	if (mask == HOST_MASK) {
724 		w.w_rtm.rtm_flags |= RTF_HOST;
725 		w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
726 	} else {
727 		w.w_rtm.rtm_addrs |= RTA_NETMASK;
728 		w.w_mask.sin_addr.s_addr = htonl(mask);
729 #ifdef _HAVE_SA_LEN
730 		masktrim(&w.w_mask);
731 		if (w.w_mask.sin_len == 0)
732 			w.w_mask.sin_len = sizeof(long);
733 		w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
734 #endif
735 	}
736 
737 #ifndef NO_INSTALL
738 	cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
739 	if (cc < 0) {
740 		if (errno == ESRCH
741 		    && (action == RTM_CHANGE || action == RTM_DELETE)) {
742 			trace_act("route disappeared before" PAT, ARGS);
743 			if (action == RTM_CHANGE) {
744 				action = RTM_ADD;
745 				goto again;
746 			}
747 			return;
748 		}
749 		msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno));
750 		return;
751 	} else if (cc != w.w_rtm.rtm_msglen) {
752 		msglog("write(rt_sock) wrote %ld instead of %d for" PAT,
753 		       cc, w.w_rtm.rtm_msglen, ARGS);
754 		return;
755 	}
756 #endif
757 	if (TRACEKERNEL)
758 		trace_misc("write kernel" PAT, ARGS);
759 #undef PAT
760 #undef ARGS
761 }
762 
763 
764 #define KHASH_SIZE 71			/* should be prime */
765 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
766 static struct khash {
767 	struct khash *k_next;
768 	naddr	k_dst;
769 	naddr	k_mask;
770 	naddr	k_gate;
771 	short	k_metric;
772 	u_short	k_state;
773 #define	    KS_NEW	0x001
774 #define	    KS_DELETE	0x002		/* need to delete the route */
775 #define	    KS_ADD	0x004		/* add to the kernel */
776 #define	    KS_CHANGE	0x008		/* tell kernel to change the route */
777 #define	    KS_DEL_ADD	0x010		/* delete & add to change the kernel */
778 #define	    KS_STATIC	0x020		/* Static flag in kernel */
779 #define	    KS_GATEWAY	0x040		/* G flag in kernel */
780 #define	    KS_DYNAMIC	0x080		/* result of redirect */
781 #define	    KS_DELETED	0x100		/* already deleted from kernel */
782 #define	    KS_CHECK	0x200
783 	time_t	k_keep;
784 #define	    K_KEEP_LIM	30
785 	time_t	k_redirect_time;	/* when redirected route 1st seen */
786 } *khash_bins[KHASH_SIZE];
787 
788 
789 static struct khash*
790 kern_find(naddr dst, naddr mask, struct khash ***ppk)
791 {
792 	struct khash *k, **pk;
793 
794 	for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) {
795 		if (k->k_dst == dst && k->k_mask == mask)
796 			break;
797 	}
798 	if (ppk != 0)
799 		*ppk = pk;
800 	return k;
801 }
802 
803 
804 static struct khash*
805 kern_add(naddr dst, naddr mask)
806 {
807 	struct khash *k, **pk;
808 
809 	k = kern_find(dst, mask, &pk);
810 	if (k != 0)
811 		return k;
812 
813 	k = (struct khash *)rtmalloc(sizeof(*k), "kern_add");
814 
815 	memset(k, 0, sizeof(*k));
816 	k->k_dst = dst;
817 	k->k_mask = mask;
818 	k->k_state = KS_NEW;
819 	k->k_keep = now.tv_sec;
820 	*pk = k;
821 
822 	return k;
823 }
824 
825 
826 /* If a kernel route has a non-zero metric, check that it is still in the
827  *	daemon table, and not deleted by interfaces coming and going.
828  */
829 static void
830 kern_check_static(struct khash *k,
831 		  struct interface *ifp)
832 {
833 	struct rt_entry *rt;
834 	struct rt_spare new;
835 
836 	if (k->k_metric == 0)
837 		return;
838 
839 	memset(&new, 0, sizeof(new));
840 	new.rts_ifp = ifp;
841 	new.rts_gate = k->k_gate;
842 	new.rts_router = (ifp != 0) ? ifp->int_addr : loopaddr;
843 	new.rts_metric = k->k_metric;
844 	new.rts_time = now.tv_sec;
845 
846 	rt = rtget(k->k_dst, k->k_mask);
847 	if (rt != 0) {
848 		if (!(rt->rt_state & RS_STATIC))
849 			rtchange(rt, rt->rt_state | RS_STATIC, &new, 0);
850 	} else {
851 		rtadd(k->k_dst, k->k_mask, RS_STATIC, &new);
852 	}
853 }
854 
855 
856 /* operate on a kernel entry
857  */
858 static void
859 kern_ioctl(struct khash *k,
860 	   int action,			/* RTM_DELETE, etc */
861 	   int flags)
862 
863 {
864 	switch (action) {
865 	case RTM_DELETE:
866 		k->k_state &= ~KS_DYNAMIC;
867 		if (k->k_state & KS_DELETED)
868 			return;
869 		k->k_state |= KS_DELETED;
870 		break;
871 	case RTM_ADD:
872 		k->k_state &= ~KS_DELETED;
873 		break;
874 	case RTM_CHANGE:
875 		if (k->k_state & KS_DELETED) {
876 			action = RTM_ADD;
877 			k->k_state &= ~KS_DELETED;
878 		}
879 		break;
880 	}
881 
882 	rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
883 }
884 
885 
886 /* add a route the kernel told us
887  */
888 static void
889 rtm_add(struct rt_msghdr *rtm,
890 	struct rt_addrinfo *info,
891 	time_t keep)
892 {
893 	struct khash *k;
894 	struct interface *ifp;
895 	naddr mask;
896 
897 
898 	if (rtm->rtm_flags & RTF_HOST) {
899 		mask = HOST_MASK;
900 	} else if (INFO_MASK(info) != 0) {
901 		mask = ntohl(S_ADDR(INFO_MASK(info)));
902 	} else {
903 		msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
904 		return;
905 	}
906 
907 	k = kern_add(S_ADDR(INFO_DST(info)), mask);
908 	if (k->k_state & KS_NEW)
909 		k->k_keep = now.tv_sec+keep;
910 	if (INFO_GATE(info) == 0) {
911 		trace_act("note %s without gateway",
912 			  rtm_type_name(rtm->rtm_type));
913 		k->k_metric = HOPCNT_INFINITY;
914 	} else if (INFO_GATE(info)->sa_family != AF_INET) {
915 		trace_act("note %s with gateway AF=%d",
916 			  rtm_type_name(rtm->rtm_type),
917 			  INFO_GATE(info)->sa_family);
918 		k->k_metric = HOPCNT_INFINITY;
919 	} else {
920 		k->k_gate = S_ADDR(INFO_GATE(info));
921 		k->k_metric = rtm->rtm_rmx.rmx_hopcount;
922 		if (k->k_metric < 0)
923 			k->k_metric = 0;
924 		else if (k->k_metric > HOPCNT_INFINITY-1)
925 			k->k_metric = HOPCNT_INFINITY-1;
926 	}
927 	k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD
928 			| KS_DELETED | KS_GATEWAY | KS_STATIC
929 			| KS_NEW | KS_CHECK);
930 	if (rtm->rtm_flags & RTF_GATEWAY)
931 		k->k_state |= KS_GATEWAY;
932 	if (rtm->rtm_flags & RTF_STATIC)
933 		k->k_state |= KS_STATIC;
934 
935 	if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
936 		if (INFO_AUTHOR(info) != 0
937 		    && INFO_AUTHOR(info)->sa_family == AF_INET)
938 			ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
939 		else
940 			ifp = 0;
941 		if (supplier
942 		    && (ifp == 0 || !(ifp->int_state & IS_REDIRECT_OK))) {
943 			/* Routers are not supposed to listen to redirects,
944 			 * so delete it if it came via an unknown interface
945 			 * or the interface does not have special permission.
946 			 */
947 			k->k_state &= ~KS_DYNAMIC;
948 			k->k_state |= KS_DELETE;
949 			LIM_SEC(need_kern, 0);
950 			trace_act("mark for deletion redirected %s --> %s"
951 				  " via %s",
952 				  addrname(k->k_dst, k->k_mask, 0),
953 				  naddr_ntoa(k->k_gate),
954 				  ifp ? ifp->int_name : "unknown interface");
955 		} else {
956 			k->k_state |= KS_DYNAMIC;
957 			k->k_redirect_time = now.tv_sec;
958 			trace_act("accept redirected %s --> %s via %s",
959 				  addrname(k->k_dst, k->k_mask, 0),
960 				  naddr_ntoa(k->k_gate),
961 				  ifp ? ifp->int_name : "unknown interface");
962 		}
963 		return;
964 	}
965 
966 	/* If it is not a static route, quit until the next comparison
967 	 * between the kernel and daemon tables, when it will be deleted.
968 	 */
969 	if (!(k->k_state & KS_STATIC)) {
970 		k->k_state |= KS_DELETE;
971 		LIM_SEC(need_kern, k->k_keep);
972 		return;
973 	}
974 
975 	/* Put static routes with real metrics into the daemon table so
976 	 * they can be advertised.
977 	 *
978 	 * Find the interface toward the gateway.
979 	 */
980 	ifp = iflookup(k->k_gate);
981 	if (ifp == 0)
982 		msglog("static route %s --> %s impossibly lacks ifp",
983 		       addrname(S_ADDR(INFO_DST(info)), mask, 0),
984 		       naddr_ntoa(k->k_gate));
985 
986 	kern_check_static(k, ifp);
987 }
988 
989 
990 /* deal with packet loss
991  */
992 static void
993 rtm_lose(struct rt_msghdr *rtm,
994 	 struct rt_addrinfo *info)
995 {
996 	if (INFO_GATE(info) == 0
997 	    || INFO_GATE(info)->sa_family != AF_INET) {
998 		trace_act("ignore %s without gateway",
999 			  rtm_type_name(rtm->rtm_type));
1000 		return;
1001 	}
1002 
1003 	if (rdisc_ok)
1004 		rdisc_age(S_ADDR(INFO_GATE(info)));
1005 	age(S_ADDR(INFO_GATE(info)));
1006 }
1007 
1008 
1009 /* Make the gateway slot of an info structure point to something
1010  * useful.  If it is not already useful, but it specifies an interface,
1011  * then fill in the sockaddr_in provided and point it there.
1012  */
1013 static int
1014 get_info_gate(struct sockaddr **sap,
1015 	      struct sockaddr_in *sin)
1016 {
1017 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap;
1018 	struct interface *ifp;
1019 
1020 	if (sdl == 0)
1021 		return 0;
1022 	if ((sdl)->sdl_family == AF_INET)
1023 		return 1;
1024 	if ((sdl)->sdl_family != AF_LINK)
1025 		return 0;
1026 
1027 	ifp = ifwithindex(sdl->sdl_index, 1);
1028 	if (ifp == 0)
1029 		return 0;
1030 
1031 	sin->sin_addr.s_addr = ifp->int_addr;
1032 #ifdef _HAVE_SA_LEN
1033 	sin->sin_len = sizeof(*sin);
1034 #endif
1035 	sin->sin_family = AF_INET;
1036 	*sap = (struct sockaddr*)sin;
1037 
1038 	return 1;
1039 }
1040 
1041 
1042 /* Clean the kernel table by copying it to the daemon image.
1043  * Eventually the daemon will delete any extra routes.
1044  */
1045 void
1046 flush_kern(void)
1047 {
1048 	static char *sysctl_buf;
1049 	static size_t sysctl_buf_size = 0;
1050 	size_t needed;
1051 	int mib[6];
1052 	char *next, *lim;
1053 	struct rt_msghdr *rtm;
1054 	struct sockaddr_in gate_sin;
1055 	struct rt_addrinfo info;
1056 	int i;
1057 	struct khash *k;
1058 
1059 
1060 	for (i = 0; i < KHASH_SIZE; i++) {
1061 		for (k = khash_bins[i]; k != 0; k = k->k_next) {
1062 			k->k_state |= KS_CHECK;
1063 		}
1064 	}
1065 
1066 	mib[0] = CTL_NET;
1067 	mib[1] = PF_ROUTE;
1068 	mib[2] = 0;		/* protocol */
1069 	mib[3] = 0;		/* wildcard address family */
1070 	mib[4] = NET_RT_DUMP;
1071 	mib[5] = 0;		/* no flags */
1072 	for (;;) {
1073 		if ((needed = sysctl_buf_size) != 0) {
1074 			if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0)
1075 				break;
1076 			if (errno != ENOMEM && errno != EFAULT)
1077 				BADERR(1,"flush_kern: sysctl(RT_DUMP)");
1078 			free(sysctl_buf);
1079 			needed = 0;
1080 		}
1081 		if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
1082 			BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate");
1083 		/* Kludge around the habit of some systems, such as
1084 		 * BSD/OS 3.1, to not admit how many routes are in the
1085 		 * kernel, or at least to be quite wrong.
1086 		 */
1087 		needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr));
1088 		sysctl_buf = rtmalloc(sysctl_buf_size = needed,
1089 				      "flush_kern sysctl(RT_DUMP)");
1090 	}
1091 
1092 	lim = sysctl_buf + needed;
1093 	for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) {
1094 		rtm = (struct rt_msghdr *)next;
1095 		if (rtm->rtm_msglen == 0) {
1096 			msglog("zero length kernel route at "
1097 			       " %#lx in buffer %#lx before %#lx",
1098 			       (u_long)rtm, (u_long)sysctl_buf, (u_long)lim);
1099 			break;
1100 		}
1101 
1102 		rt_xaddrs(&info,
1103 			  (struct sockaddr *)(rtm+1),
1104 			  (struct sockaddr *)(next + rtm->rtm_msglen),
1105 			  rtm->rtm_addrs);
1106 
1107 		if (INFO_DST(&info) == 0
1108 		    || INFO_DST(&info)->sa_family != AF_INET)
1109 			continue;
1110 
1111 		/* ignore ARP table entries on systems with a merged route
1112 		 * and ARP table.
1113 		 */
1114 		if (rtm->rtm_flags & RTF_LLINFO)
1115 			continue;
1116 
1117 		/* ignore multicast addresses
1118 		 */
1119 		if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
1120 			continue;
1121 
1122 		if (!get_info_gate(&INFO_GATE(&info), &gate_sin))
1123 			continue;
1124 
1125 		/* Note static routes and interface routes, and also
1126 		 * preload the image of the kernel table so that
1127 		 * we can later clean it, as well as avoid making
1128 		 * unneeded changes.  Keep the old kernel routes for a
1129 		 * few seconds to allow a RIP or router-discovery
1130 		 * response to be heard.
1131 		 */
1132 		rtm_add(rtm,&info,MIN_WAITTIME);
1133 	}
1134 
1135 	for (i = 0; i < KHASH_SIZE; i++) {
1136 		for (k = khash_bins[i]; k != 0; k = k->k_next) {
1137 			if (k->k_state & KS_CHECK) {
1138 				msglog("%s --> %s disappeared from kernel",
1139 				       addrname(k->k_dst, k->k_mask, 0),
1140 				       naddr_ntoa(k->k_gate));
1141 				del_static(k->k_dst, k->k_mask, k->k_gate, 1);
1142 			}
1143 		}
1144 	}
1145 }
1146 
1147 
1148 /* Listen to announcements from the kernel
1149  */
1150 void
1151 read_rt(void)
1152 {
1153 	long cc;
1154 	struct interface *ifp;
1155 	struct sockaddr_in gate_sin;
1156 	naddr mask, gate;
1157 	union {
1158 		struct {
1159 			struct rt_msghdr rtm;
1160 			struct sockaddr addrs[RTAX_MAX];
1161 		} r;
1162 		struct if_msghdr ifm;
1163 	} m;
1164 	char str[100], *strp;
1165 	struct rt_addrinfo info;
1166 
1167 
1168 	for (;;) {
1169 		cc = read(rt_sock, &m, sizeof(m));
1170 		if (cc <= 0) {
1171 			if (cc < 0 && errno != EWOULDBLOCK)
1172 				LOGERR("read(rt_sock)");
1173 			return;
1174 		}
1175 
1176 		if (m.r.rtm.rtm_version != RTM_VERSION) {
1177 			msglog("bogus routing message version %d",
1178 			       m.r.rtm.rtm_version);
1179 			continue;
1180 		}
1181 
1182 		/* Ignore our own results.
1183 		 */
1184 		if (m.r.rtm.rtm_type <= RTM_CHANGE
1185 		    && m.r.rtm.rtm_pid == mypid) {
1186 			static int complained = 0;
1187 			if (!complained) {
1188 				msglog("receiving our own change messages");
1189 				complained = 1;
1190 			}
1191 			continue;
1192 		}
1193 
1194 		if (m.r.rtm.rtm_type == RTM_IFINFO
1195 		    || m.r.rtm.rtm_type == RTM_NEWADDR
1196 		    || m.r.rtm.rtm_type == RTM_DELADDR) {
1197 			ifp = ifwithindex(m.ifm.ifm_index,
1198 					  m.r.rtm.rtm_type != RTM_DELADDR);
1199 			if (ifp == 0)
1200 				trace_act("note %s with flags %#x"
1201 					  " for unknown interface index #%d",
1202 					  rtm_type_name(m.r.rtm.rtm_type),
1203 					  m.ifm.ifm_flags,
1204 					  m.ifm.ifm_index);
1205 			else
1206 				trace_act("note %s with flags %#x for %s",
1207 					  rtm_type_name(m.r.rtm.rtm_type),
1208 					  m.ifm.ifm_flags,
1209 					  ifp->int_name);
1210 
1211 			/* After being informed of a change to an interface,
1212 			 * check them all now if the check would otherwise
1213 			 * be a long time from now, if the interface is
1214 			 * not known, or if the interface has been turned
1215 			 * off or on.
1216 			 */
1217 			if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
1218 			    || ifp == 0
1219 			    || ((ifp->int_if_flags ^ m.ifm.ifm_flags)
1220 				& IFF_UP) != 0)
1221 				ifinit_timer.tv_sec = now.tv_sec;
1222 			continue;
1223 		}
1224 
1225 		strcpy(str, rtm_type_name(m.r.rtm.rtm_type));
1226 		strp = &str[strlen(str)];
1227 		if (m.r.rtm.rtm_type <= RTM_CHANGE)
1228 			strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
1229 
1230 		rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
1231 			  m.r.rtm.rtm_addrs);
1232 
1233 		if (INFO_DST(&info) == 0) {
1234 			trace_act("ignore %s without dst", str);
1235 			continue;
1236 		}
1237 
1238 		if (INFO_DST(&info)->sa_family != AF_INET) {
1239 			trace_act("ignore %s for AF %d", str,
1240 				  INFO_DST(&info)->sa_family);
1241 			continue;
1242 		}
1243 
1244 		mask = ((INFO_MASK(&info) != 0)
1245 			? ntohl(S_ADDR(INFO_MASK(&info)))
1246 			: (m.r.rtm.rtm_flags & RTF_HOST)
1247 			? HOST_MASK
1248 			: std_mask(S_ADDR(INFO_DST(&info))));
1249 
1250 		strp += sprintf(strp, ": %s",
1251 				addrname(S_ADDR(INFO_DST(&info)), mask, 0));
1252 
1253 		if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
1254 			trace_act("ignore multicast %s", str);
1255 			continue;
1256 		}
1257 
1258 		if (m.r.rtm.rtm_flags & RTF_LLINFO) {
1259 			trace_act("ignore ARP %s", str);
1260 			continue;
1261 		}
1262 
1263 		if (get_info_gate(&INFO_GATE(&info), &gate_sin)) {
1264 			gate = S_ADDR(INFO_GATE(&info));
1265 			strp += sprintf(strp, " --> %s", naddr_ntoa(gate));
1266 		} else {
1267 			gate = 0;
1268 		}
1269 
1270 		if (INFO_AUTHOR(&info) != 0)
1271 			strp += sprintf(strp, " by authority of %s",
1272 					saddr_ntoa(INFO_AUTHOR(&info)));
1273 
1274 		switch (m.r.rtm.rtm_type) {
1275 		case RTM_ADD:
1276 		case RTM_CHANGE:
1277 		case RTM_REDIRECT:
1278 			if (m.r.rtm.rtm_errno != 0) {
1279 				trace_act("ignore %s with \"%s\" error",
1280 					  str, strerror(m.r.rtm.rtm_errno));
1281 			} else {
1282 				trace_act("%s", str);
1283 				rtm_add(&m.r.rtm,&info,0);
1284 			}
1285 			break;
1286 
1287 		case RTM_DELETE:
1288 			if (m.r.rtm.rtm_errno != 0
1289 			    && m.r.rtm.rtm_errno != ESRCH) {
1290 				trace_act("ignore %s with \"%s\" error",
1291 					  str, strerror(m.r.rtm.rtm_errno));
1292 			} else {
1293 				trace_act("%s", str);
1294 				del_static(S_ADDR(INFO_DST(&info)), mask,
1295 					   gate, 1);
1296 			}
1297 			break;
1298 
1299 		case RTM_LOSING:
1300 			trace_act("%s", str);
1301 			rtm_lose(&m.r.rtm,&info);
1302 			break;
1303 
1304 		default:
1305 			trace_act("ignore %s", str);
1306 			break;
1307 		}
1308 	}
1309 }
1310 
1311 
1312 /* after aggregating, note routes that belong in the kernel
1313  */
1314 static void
1315 kern_out(struct ag_info *ag)
1316 {
1317 	struct khash *k;
1318 
1319 
1320 	/* Do not install bad routes if they are not already present.
1321 	 * This includes routes that had RS_NET_SYN for interfaces that
1322 	 * recently died.
1323 	 */
1324 	if (ag->ag_metric == HOPCNT_INFINITY) {
1325 		k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
1326 		if (k == 0)
1327 			return;
1328 	} else {
1329 		k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
1330 	}
1331 
1332 	if (k->k_state & KS_NEW) {
1333 		/* will need to add new entry to the kernel table */
1334 		k->k_state = KS_ADD;
1335 		if (ag->ag_state & AGS_GATEWAY)
1336 			k->k_state |= KS_GATEWAY;
1337 		k->k_gate = ag->ag_gate;
1338 		k->k_metric = ag->ag_metric;
1339 		return;
1340 	}
1341 
1342 	if (k->k_state & KS_STATIC)
1343 		return;
1344 
1345 	/* modify existing kernel entry if necessary */
1346 	if (k->k_gate != ag->ag_gate
1347 	    || k->k_metric != ag->ag_metric) {
1348 		/* Must delete bad interface routes etc. to change them. */
1349 		if (k->k_metric == HOPCNT_INFINITY)
1350 			k->k_state |= KS_DEL_ADD;
1351 		k->k_gate = ag->ag_gate;
1352 		k->k_metric = ag->ag_metric;
1353 		k->k_state |= KS_CHANGE;
1354 	}
1355 
1356 	/* If the daemon thinks the route should exist, forget
1357 	 * about any redirections.
1358 	 * If the daemon thinks the route should exist, eventually
1359 	 * override manual intervention by the operator.
1360 	 */
1361 	if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) {
1362 		k->k_state &= ~KS_DYNAMIC;
1363 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1364 	}
1365 
1366 	if ((k->k_state & KS_GATEWAY)
1367 	    && !(ag->ag_state & AGS_GATEWAY)) {
1368 		k->k_state &= ~KS_GATEWAY;
1369 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1370 	} else if (!(k->k_state & KS_GATEWAY)
1371 		   && (ag->ag_state & AGS_GATEWAY)) {
1372 		k->k_state |= KS_GATEWAY;
1373 		k->k_state |= (KS_ADD | KS_DEL_ADD);
1374 	}
1375 
1376 	/* Deleting-and-adding is necessary to change aspects of a route.
1377 	 * Just delete instead of deleting and then adding a bad route.
1378 	 * Otherwise, we want to keep the route in the kernel.
1379 	 */
1380 	if (k->k_metric == HOPCNT_INFINITY
1381 	    && (k->k_state & KS_DEL_ADD))
1382 		k->k_state |= KS_DELETE;
1383 	else
1384 		k->k_state &= ~KS_DELETE;
1385 #undef RT
1386 }
1387 
1388 
1389 /* ARGSUSED */
1390 static int
1391 walk_kern(struct radix_node *rn,
1392 	  struct walkarg *argp UNUSED)
1393 {
1394 #define RT ((struct rt_entry *)rn)
1395 	char metric, pref;
1396 	u_int ags = 0;
1397 
1398 
1399 	/* Do not install synthetic routes */
1400 	if (RT->rt_state & RS_NET_SYN)
1401 		return 0;
1402 
1403 	if (!(RT->rt_state & RS_IF)) {
1404 		/* This is an ordinary route, not for an interface.
1405 		 */
1406 
1407 		/* aggregate, ordinary good routes without regard to
1408 		 * their metric
1409 		 */
1410 		pref = 1;
1411 		ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1412 
1413 		/* Do not install host routes directly to hosts, to avoid
1414 		 * interfering with ARP entries in the kernel table.
1415 		 */
1416 		if (RT_ISHOST(RT)
1417 		    && ntohl(RT->rt_dst) == RT->rt_gate)
1418 			return 0;
1419 
1420 	} else {
1421 		/* This is an interface route.
1422 		 * Do not install routes for "external" remote interfaces.
1423 		 */
1424 		if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
1425 			return 0;
1426 
1427 		/* Interfaces should override received routes.
1428 		 */
1429 		pref = 0;
1430 		ags |= (AGS_IF | AGS_CORS_GATE);
1431 
1432 		/* If it is not an interface, or an alias for an interface,
1433 		 * it must be a "gateway."
1434 		 *
1435 		 * If it is a "remote" interface, it is also a "gateway" to
1436 		 * the kernel if is not a alias.
1437 		 */
1438 		if (RT->rt_ifp == 0
1439 		    || (RT->rt_ifp->int_state & IS_REMOTE))
1440 			ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1441 	}
1442 
1443 	/* If RIP is off and IRDP is on, let the route to the discovered
1444 	 * route suppress any RIP routes.  Eventually the RIP routes
1445 	 * will time-out and be deleted.  This reaches the steady-state
1446 	 * quicker.
1447 	 */
1448 	if ((RT->rt_state & RS_RDISC) && rip_sock < 0)
1449 		ags |= AGS_CORS_GATE;
1450 
1451 	metric = RT->rt_metric;
1452 	if (metric == HOPCNT_INFINITY) {
1453 		/* if the route is dead, so try hard to aggregate. */
1454 		pref = HOPCNT_INFINITY;
1455 		ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
1456 		ags &= ~(AGS_IF | AGS_CORS_GATE);
1457 	}
1458 
1459 	ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
1460 		 metric,pref, 0, 0, ags, kern_out);
1461 	return 0;
1462 #undef RT
1463 }
1464 
1465 
1466 /* Update the kernel table to match the daemon table.
1467  */
1468 static void
1469 fix_kern(void)
1470 {
1471 	int i;
1472 	struct khash *k, **pk;
1473 
1474 
1475 	need_kern = age_timer;
1476 
1477 	/* Walk daemon table, updating the copy of the kernel table.
1478 	 */
1479 	(void)rn_walktree(rhead, walk_kern, 0);
1480 	ag_flush(0,0,kern_out);
1481 
1482 	for (i = 0; i < KHASH_SIZE; i++) {
1483 		for (pk = &khash_bins[i]; (k = *pk) != 0; ) {
1484 			/* Do not touch static routes */
1485 			if (k->k_state & KS_STATIC) {
1486 				kern_check_static(k,0);
1487 				pk = &k->k_next;
1488 				continue;
1489 			}
1490 
1491 			/* check hold on routes deleted by the operator */
1492 			if (k->k_keep > now.tv_sec) {
1493 				/* ensure we check when the hold is over */
1494 				LIM_SEC(need_kern, k->k_keep);
1495 				/* mark for the next cycle */
1496 				k->k_state |= KS_DELETE;
1497 				pk = &k->k_next;
1498 				continue;
1499 			}
1500 
1501 			if ((k->k_state & KS_DELETE)
1502 			    && !(k->k_state & KS_DYNAMIC)) {
1503 				kern_ioctl(k, RTM_DELETE, 0);
1504 				*pk = k->k_next;
1505 				free(k);
1506 				continue;
1507 			}
1508 
1509 			if (k->k_state & KS_DEL_ADD)
1510 				kern_ioctl(k, RTM_DELETE, 0);
1511 
1512 			if (k->k_state & KS_ADD) {
1513 				kern_ioctl(k, RTM_ADD,
1514 					   ((0 != (k->k_state & (KS_GATEWAY
1515 							| KS_DYNAMIC)))
1516 					    ? RTF_GATEWAY : 0));
1517 			} else if (k->k_state & KS_CHANGE) {
1518 				kern_ioctl(k,  RTM_CHANGE,
1519 					   ((0 != (k->k_state & (KS_GATEWAY
1520 							| KS_DYNAMIC)))
1521 					    ? RTF_GATEWAY : 0));
1522 			}
1523 			k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
1524 
1525 			/* Mark this route to be deleted in the next cycle.
1526 			 * This deletes routes that disappear from the
1527 			 * daemon table, since the normal aging code
1528 			 * will clear the bit for routes that have not
1529 			 * disappeared from the daemon table.
1530 			 */
1531 			k->k_state |= KS_DELETE;
1532 			pk = &k->k_next;
1533 		}
1534 	}
1535 }
1536 
1537 
1538 /* Delete a static route in the image of the kernel table.
1539  */
1540 void
1541 del_static(naddr dst,
1542 	   naddr mask,
1543 	   naddr gate,
1544 	   int gone)
1545 {
1546 	struct khash *k;
1547 	struct rt_entry *rt;
1548 
1549 	/* Just mark it in the table to be deleted next time the kernel
1550 	 * table is updated.
1551 	 * If it has already been deleted, mark it as such, and set its
1552 	 * keep-timer so that it will not be deleted again for a while.
1553 	 * This lets the operator delete a route added by the daemon
1554 	 * and add a replacement.
1555 	 */
1556 	k = kern_find(dst, mask, 0);
1557 	if (k != 0 && (gate == 0 || k->k_gate == gate)) {
1558 		k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK);
1559 		k->k_state |= KS_DELETE;
1560 		if (gone) {
1561 			k->k_state |= KS_DELETED;
1562 			k->k_keep = now.tv_sec + K_KEEP_LIM;
1563 		}
1564 	}
1565 
1566 	rt = rtget(dst, mask);
1567 	if (rt != 0 && (rt->rt_state & RS_STATIC))
1568 		rtbad(rt);
1569 }
1570 
1571 
1572 /* Delete all routes generated from ICMP Redirects that use a given gateway,
1573  * as well as old redirected routes.
1574  */
1575 void
1576 del_redirects(naddr bad_gate,
1577 	      time_t old)
1578 {
1579 	int i;
1580 	struct khash *k;
1581 
1582 
1583 	for (i = 0; i < KHASH_SIZE; i++) {
1584 		for (k = khash_bins[i]; k != 0; k = k->k_next) {
1585 			if (!(k->k_state & KS_DYNAMIC)
1586 			    || (k->k_state & KS_STATIC))
1587 				continue;
1588 
1589 			if (k->k_gate != bad_gate
1590 			    && k->k_redirect_time > old
1591 			    && !supplier)
1592 				continue;
1593 
1594 			k->k_state |= KS_DELETE;
1595 			k->k_state &= ~KS_DYNAMIC;
1596 			need_kern.tv_sec = now.tv_sec;
1597 			trace_act("mark redirected %s --> %s for deletion",
1598 				  addrname(k->k_dst, k->k_mask, 0),
1599 				  naddr_ntoa(k->k_gate));
1600 		}
1601 	}
1602 }
1603 
1604 
1605 /* Start the daemon tables.
1606  */
1607 extern int max_keylen;
1608 
1609 void
1610 rtinit(void)
1611 {
1612 	int i;
1613 	struct ag_info *ag;
1614 
1615 	/* Initialize the radix trees */
1616 	max_keylen = sizeof(struct sockaddr_in);
1617 	rn_init();
1618 	rn_inithead((void**)&rhead, 32);
1619 
1620 	/* mark all of the slots in the table free */
1621 	ag_avail = ag_slots;
1622 	for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
1623 		ag->ag_fine = ag+1;
1624 		ag++;
1625 	}
1626 }
1627 
1628 
1629 #ifdef _HAVE_SIN_LEN
1630 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET};
1631 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET};
1632 #else
1633 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
1634 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
1635 #endif
1636 
1637 
1638 static void
1639 set_need_flash(void)
1640 {
1641 	if (!need_flash) {
1642 		need_flash = 1;
1643 		/* Do not send the flash update immediately.  Wait a little
1644 		 * while to hear from other routers.
1645 		 */
1646 		no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
1647 	}
1648 }
1649 
1650 
1651 /* Get a particular routing table entry
1652  */
1653 struct rt_entry *
1654 rtget(naddr dst, naddr mask)
1655 {
1656 	struct rt_entry *rt;
1657 
1658 	dst_sock.sin_addr.s_addr = dst;
1659 	mask_sock.sin_addr.s_addr = mask;
1660 	masktrim(&mask_sock);
1661 	rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
1662 	if (!rt
1663 	    || rt->rt_dst != dst
1664 	    || rt->rt_mask != mask)
1665 		return 0;
1666 
1667 	return rt;
1668 }
1669 
1670 
1671 /* Find a route to dst as the kernel would.
1672  */
1673 struct rt_entry *
1674 rtfind(naddr dst)
1675 {
1676 	dst_sock.sin_addr.s_addr = dst;
1677 	return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
1678 }
1679 
1680 
1681 /* add a route to the table
1682  */
1683 void
1684 rtadd(naddr	dst,
1685       naddr	mask,
1686       u_int	state,			/* rt_state for the entry */
1687       struct	rt_spare *new)
1688 {
1689 	struct rt_entry *rt;
1690 	naddr smask;
1691 	int i;
1692 	struct rt_spare *rts;
1693 
1694 	rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
1695 	memset(rt, 0, sizeof(*rt));
1696 	for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
1697 		rts->rts_metric = HOPCNT_INFINITY;
1698 
1699 	rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
1700 	rt->rt_dst = dst;
1701 	rt->rt_dst_sock.sin_family = AF_INET;
1702 #ifdef _HAVE_SIN_LEN
1703 	rt->rt_dst_sock.sin_len = dst_sock.sin_len;
1704 #endif
1705 	if (mask != HOST_MASK) {
1706 		smask = std_mask(dst);
1707 		if ((smask & ~mask) == 0 && mask > smask)
1708 			state |= RS_SUBNET;
1709 	}
1710 	mask_sock.sin_addr.s_addr = mask;
1711 	masktrim(&mask_sock);
1712 	rt->rt_mask = mask;
1713 	rt->rt_state = state;
1714 	rt->rt_spares[0] = *new;
1715 	rt->rt_time = now.tv_sec;
1716 	rt->rt_poison_metric = HOPCNT_INFINITY;
1717 	rt->rt_seqno = update_seqno;
1718 
1719 	if (++total_routes == MAX_ROUTES)
1720 		msglog("have maximum (%d) routes", total_routes);
1721 	if (TRACEACTIONS)
1722 		trace_add_del("Add", rt);
1723 
1724 	need_kern.tv_sec = now.tv_sec;
1725 	set_need_flash();
1726 
1727 	if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
1728 				    rhead, rt->rt_nodes)) {
1729 		msglog("rnh_addaddr() failed for %s mask=%#lx",
1730 		       naddr_ntoa(dst), (u_long)mask);
1731 	}
1732 }
1733 
1734 
1735 /* notice a changed route
1736  */
1737 void
1738 rtchange(struct rt_entry *rt,
1739 	 u_int	state,			/* new state bits */
1740 	 struct rt_spare *new,
1741 	 char	*label)
1742 {
1743 	if (rt->rt_metric != new->rts_metric) {
1744 		/* Fix the kernel immediately if it seems the route
1745 		 * has gone bad, since there may be a working route that
1746 		 * aggregates this route.
1747 		 */
1748 		if (new->rts_metric == HOPCNT_INFINITY) {
1749 			need_kern.tv_sec = now.tv_sec;
1750 			if (new->rts_time >= now.tv_sec - EXPIRE_TIME)
1751 				new->rts_time = now.tv_sec - EXPIRE_TIME;
1752 		}
1753 		rt->rt_seqno = update_seqno;
1754 		set_need_flash();
1755 	}
1756 
1757 	if (rt->rt_gate != new->rts_gate) {
1758 		need_kern.tv_sec = now.tv_sec;
1759 		rt->rt_seqno = update_seqno;
1760 		set_need_flash();
1761 	}
1762 
1763 	state |= (rt->rt_state & RS_SUBNET);
1764 
1765 	/* Keep various things from deciding ageless routes are stale.
1766 	 */
1767 	if (!AGE_RT(state, new->rts_ifp))
1768 		new->rts_time = now.tv_sec;
1769 
1770 	if (TRACEACTIONS)
1771 		trace_change(rt, state, new,
1772 			     label ? label : "Chg   ");
1773 
1774 	rt->rt_state = state;
1775 	rt->rt_spares[0] = *new;
1776 }
1777 
1778 
1779 /* check for a better route among the spares
1780  */
1781 static struct rt_spare *
1782 rts_better(struct rt_entry *rt)
1783 {
1784 	struct rt_spare *rts, *rts1;
1785 	int i;
1786 
1787 	/* find the best alternative among the spares */
1788 	rts = rt->rt_spares+1;
1789 	for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
1790 		if (BETTER_LINK(rt,rts1,rts))
1791 			rts = rts1;
1792 	}
1793 
1794 	return rts;
1795 }
1796 
1797 
1798 /* switch to a backup route
1799  */
1800 void
1801 rtswitch(struct rt_entry *rt,
1802 	 struct rt_spare *rts)
1803 {
1804 	struct rt_spare swap;
1805 	char label[10];
1806 
1807 
1808 	/* Do not change permanent routes */
1809 	if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
1810 				  | RS_NET_SYN | RS_IF)))
1811 		return;
1812 
1813 	/* find the best alternative among the spares */
1814 	if (rts == 0)
1815 		rts = rts_better(rt);
1816 
1817 	/* Do not bother if it is not worthwhile.
1818 	 */
1819 	if (!BETTER_LINK(rt, rts, rt->rt_spares))
1820 		return;
1821 
1822 	swap = rt->rt_spares[0];
1823 	(void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares));
1824 	rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label);
1825 	if (swap.rts_metric == HOPCNT_INFINITY) {
1826 		*rts = rts_empty;
1827 	} else {
1828 		*rts = swap;
1829 	}
1830 }
1831 
1832 
1833 void
1834 rtdelete(struct rt_entry *rt)
1835 {
1836 	struct khash *k;
1837 
1838 
1839 	if (TRACEACTIONS)
1840 		trace_add_del("Del", rt);
1841 
1842 	k = kern_find(rt->rt_dst, rt->rt_mask, 0);
1843 	if (k != 0) {
1844 		k->k_state |= KS_DELETE;
1845 		need_kern.tv_sec = now.tv_sec;
1846 	}
1847 
1848 	dst_sock.sin_addr.s_addr = rt->rt_dst;
1849 	mask_sock.sin_addr.s_addr = rt->rt_mask;
1850 	masktrim(&mask_sock);
1851 	if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
1852 							rhead)) {
1853 		msglog("rnh_deladdr() failed");
1854 	} else {
1855 		free(rt);
1856 		total_routes--;
1857 	}
1858 }
1859 
1860 
1861 void
1862 rts_delete(struct rt_entry *rt,
1863 	   struct rt_spare *rts)
1864 {
1865 	trace_upslot(rt, rts, &rts_empty);
1866 	*rts = rts_empty;
1867 }
1868 
1869 
1870 /* Get rid of a bad route, and try to switch to a replacement.
1871  */
1872 void
1873 rtbad(struct rt_entry *rt)
1874 {
1875 	struct rt_spare new;
1876 
1877 	/* Poison the route */
1878 	new = rt->rt_spares[0];
1879 	new.rts_metric = HOPCNT_INFINITY;
1880 	rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0);
1881 	rtswitch(rt, 0);
1882 }
1883 
1884 
1885 /* Junk a RS_NET_SYN or RS_LOCAL route,
1886  *	unless it is needed by another interface.
1887  */
1888 void
1889 rtbad_sub(struct rt_entry *rt)
1890 {
1891 	struct interface *ifp, *ifp1;
1892 	struct intnet *intnetp;
1893 	u_int state;
1894 
1895 
1896 	ifp1 = 0;
1897 	state = 0;
1898 
1899 	if (rt->rt_state & RS_LOCAL) {
1900 		/* Is this the route through loopback for the interface?
1901 		 * If so, see if it is used by any other interfaces, such
1902 		 * as a point-to-point interface with the same local address.
1903 		 */
1904 		for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1905 			/* Retain it if another interface needs it.
1906 			 */
1907 			if (ifp->int_addr == rt->rt_ifp->int_addr) {
1908 				state |= RS_LOCAL;
1909 				ifp1 = ifp;
1910 				break;
1911 			}
1912 		}
1913 
1914 	}
1915 
1916 	if (!(state & RS_LOCAL)) {
1917 		/* Retain RIPv1 logical network route if there is another
1918 		 * interface that justifies it.
1919 		 */
1920 		if (rt->rt_state & RS_NET_SYN) {
1921 			for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1922 				if ((ifp->int_state & IS_NEED_NET_SYN)
1923 				    && rt->rt_mask == ifp->int_std_mask
1924 				    && rt->rt_dst == ifp->int_std_addr) {
1925 					state |= RS_NET_SYN;
1926 					ifp1 = ifp;
1927 					break;
1928 				}
1929 			}
1930 		}
1931 
1932 		/* or if there is an authority route that needs it. */
1933 		for (intnetp = intnets;
1934 		     intnetp != 0;
1935 		     intnetp = intnetp->intnet_next) {
1936 			if (intnetp->intnet_addr == rt->rt_dst
1937 			    && intnetp->intnet_mask == rt->rt_mask) {
1938 				state |= (RS_NET_SYN | RS_NET_INT);
1939 				break;
1940 			}
1941 		}
1942 	}
1943 
1944 	if (ifp1 != 0 || (state & RS_NET_SYN)) {
1945 		struct rt_spare new = rt->rt_spares[0];
1946 		new.rts_ifp = ifp1;
1947 		rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state),
1948 			 &new, 0);
1949 	} else {
1950 		rtbad(rt);
1951 	}
1952 }
1953 
1954 
1955 /* Called while walking the table looking for sick interfaces
1956  * or after a time change.
1957  */
1958 /* ARGSUSED */
1959 int
1960 walk_bad(struct radix_node *rn,
1961 	 struct walkarg *argp UNUSED)
1962 {
1963 #define RT ((struct rt_entry *)rn)
1964 	struct rt_spare *rts;
1965 	int i;
1966 
1967 
1968 	/* fix any spare routes through the interface
1969 	 */
1970 	rts = RT->rt_spares;
1971 	for (i = NUM_SPARES; i != 1; i--) {
1972 		rts++;
1973 		if (rts->rts_metric < HOPCNT_INFINITY
1974 		    && (rts->rts_ifp == 0
1975 			|| (rts->rts_ifp->int_state & IS_BROKE)))
1976 			rts_delete(RT, rts);
1977 	}
1978 
1979 	/* Deal with the main route
1980 	 */
1981 	/* finished if it has been handled before or if its interface is ok
1982 	 */
1983 	if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
1984 		return 0;
1985 
1986 	/* Bad routes for other than interfaces are easy.
1987 	 */
1988 	if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
1989 		rtbad(RT);
1990 		return 0;
1991 	}
1992 
1993 	rtbad_sub(RT);
1994 	return 0;
1995 #undef RT
1996 }
1997 
1998 
1999 /* Check the age of an individual route.
2000  */
2001 /* ARGSUSED */
2002 static int
2003 walk_age(struct radix_node *rn,
2004 	   struct walkarg *argp UNUSED)
2005 {
2006 #define RT ((struct rt_entry *)rn)
2007 	struct interface *ifp;
2008 	struct rt_spare *rts;
2009 	int i;
2010 
2011 
2012 	/* age all of the spare routes, including the primary route
2013 	 * currently in use
2014 	 */
2015 	rts = RT->rt_spares;
2016 	for (i = NUM_SPARES; i != 0; i--, rts++) {
2017 
2018 		ifp = rts->rts_ifp;
2019 		if (i == NUM_SPARES) {
2020 			if (!AGE_RT(RT->rt_state, ifp)) {
2021 				/* Keep various things from deciding ageless
2022 				 * routes are stale
2023 				 */
2024 				rts->rts_time = now.tv_sec;
2025 				continue;
2026 			}
2027 
2028 			/* forget RIP routes after RIP has been turned off.
2029 			 */
2030 			if (rip_sock < 0) {
2031 				rtdelete(RT);
2032 				return 0;
2033 			}
2034 		}
2035 
2036 		/* age failing routes
2037 		 */
2038 		if (age_bad_gate == rts->rts_gate
2039 		    && rts->rts_time >= now_stale) {
2040 			rts->rts_time -= SUPPLY_INTERVAL;
2041 		}
2042 
2043 		/* trash the spare routes when they go bad */
2044 		if (rts->rts_metric < HOPCNT_INFINITY
2045 		    && now_garbage > rts->rts_time
2046 		    && i != NUM_SPARES)
2047 			rts_delete(RT, rts);
2048 	}
2049 
2050 
2051 	/* finished if the active route is still fresh */
2052 	if (now_stale <= RT->rt_time)
2053 		return 0;
2054 
2055 	/* try to switch to an alternative */
2056 	rtswitch(RT, 0);
2057 
2058 	/* Delete a dead route after it has been publically mourned. */
2059 	if (now_garbage > RT->rt_time) {
2060 		rtdelete(RT);
2061 		return 0;
2062 	}
2063 
2064 	/* Start poisoning a bad route before deleting it. */
2065 	if (now.tv_sec - RT->rt_time > EXPIRE_TIME) {
2066 		struct rt_spare new = RT->rt_spares[0];
2067 		new.rts_metric = HOPCNT_INFINITY;
2068 		rtchange(RT, RT->rt_state, &new, 0);
2069 	}
2070 	return 0;
2071 }
2072 
2073 
2074 /* Watch for dead routes and interfaces.
2075  */
2076 void
2077 age(naddr bad_gate)
2078 {
2079 	struct interface *ifp;
2080 	int need_query = 0;
2081 
2082 	/* If not listening to RIP, there is no need to age the routes in
2083 	 * the table.
2084 	 */
2085 	age_timer.tv_sec = (now.tv_sec
2086 			    + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
2087 
2088 	/* Check for dead IS_REMOTE interfaces by timing their
2089 	 * transmissions.
2090 	 */
2091 	for (ifp = ifnet; ifp; ifp = ifp->int_next) {
2092 		if (!(ifp->int_state & IS_REMOTE))
2093 			continue;
2094 
2095 		/* ignore unreachable remote interfaces */
2096 		if (!check_remote(ifp))
2097 			continue;
2098 
2099 		/* Restore remote interface that has become reachable
2100 		 */
2101 		if (ifp->int_state & IS_BROKE)
2102 			if_ok(ifp, "remote ");
2103 
2104 		if (ifp->int_act_time != NEVER
2105 		    && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
2106 			msglog("remote interface %s to %s timed out after"
2107 			       " %ld:%ld",
2108 			       ifp->int_name,
2109 			       naddr_ntoa(ifp->int_dstaddr),
2110 			       (now.tv_sec - ifp->int_act_time)/60,
2111 			       (now.tv_sec - ifp->int_act_time)%60);
2112 			if_sick(ifp);
2113 		}
2114 
2115 		/* If we have not heard from the other router
2116 		 * recently, ask it.
2117 		 */
2118 		if (now.tv_sec >= ifp->int_query_time) {
2119 			ifp->int_query_time = NEVER;
2120 			need_query = 1;
2121 		}
2122 	}
2123 
2124 	/* Age routes. */
2125 	age_bad_gate = bad_gate;
2126 	(void)rn_walktree(rhead, walk_age, 0);
2127 
2128 	/* delete old redirected routes to keep the kernel table small
2129 	 * and prevent blackholes
2130 	 */
2131 	del_redirects(bad_gate, now.tv_sec-STALE_TIME);
2132 
2133 	/* Update the kernel routing table. */
2134 	fix_kern();
2135 
2136 	/* poke reticent remote gateways */
2137 	if (need_query)
2138 		rip_query();
2139 }
2140