1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #ifndef lint 44 #if 0 45 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 46 #endif 47 static const char rcsid[] = 48 "$FreeBSD$"; 49 #endif /* not lint */ 50 51 #include <err.h> 52 #include <limits.h> 53 #include <signal.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <unistd.h> 59 #include <sys/param.h> 60 #include <sys/time.h> 61 #include <sys/types.h> 62 #include <sys/wait.h> 63 #include <sys/resource.h> 64 #include <sys/stat.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include <sys/disklabel.h> 69 #include <sys/file.h> 70 #include <sys/mman.h> 71 #include <sys/ioctl.h> 72 #include "newfs.h" 73 74 /* 75 * make file system for cylinder-group style file systems 76 */ 77 #define UMASK 0755 78 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 79 80 static struct csum *fscs; 81 #define sblock disk.d_fs 82 #define acg disk.d_cg 83 84 union dinode { 85 struct ufs1_dinode dp1; 86 struct ufs2_dinode dp2; 87 }; 88 #define DIP(dp, field) \ 89 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 90 (dp)->dp1.field : (dp)->dp2.field) 91 92 static caddr_t iobuf; 93 static long iobufsize; 94 static ufs2_daddr_t alloc(int size, int mode); 95 static int charsperline(void); 96 static void clrblock(struct fs *, unsigned char *, int); 97 static void fsinit(time_t); 98 static int ilog2(int); 99 static void initcg(int, time_t); 100 static int isblock(struct fs *, unsigned char *, int); 101 static void iput(union dinode *, ino_t); 102 static int makedir(struct direct *, int); 103 static void setblock(struct fs *, unsigned char *, int); 104 static void wtfs(ufs2_daddr_t, int, char *); 105 static u_int32_t newfs_random(void); 106 107 void 108 mkfs(struct partition *pp, char *fsys) 109 { 110 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 111 long i, j, cylno, csfrags; 112 time_t utime; 113 quad_t sizepb; 114 int width; 115 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 116 117 /* 118 * Our blocks == sector size, and the version of UFS we are using is 119 * specified by Oflag. 120 */ 121 disk.d_bsize = sectorsize; 122 disk.d_ufs = Oflag; 123 if (Rflag) { 124 utime = 1000000000; 125 } else { 126 time(&utime); 127 arc4random_stir(); 128 } 129 sblock.fs_old_flags = FS_FLAGS_UPDATED; 130 sblock.fs_flags = 0; 131 if (Uflag) 132 sblock.fs_flags |= FS_DOSOFTDEP; 133 if (Lflag) 134 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 135 /* 136 * Validate the given file system size. 137 * Verify that its last block can actually be accessed. 138 * Convert to file system fragment sized units. 139 */ 140 if (fssize <= 0) { 141 printf("preposterous size %jd\n", (intmax_t)fssize); 142 exit(13); 143 } 144 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 145 (char *)&sblock); 146 /* 147 * collect and verify the file system density info 148 */ 149 sblock.fs_avgfilesize = avgfilesize; 150 sblock.fs_avgfpdir = avgfilesperdir; 151 if (sblock.fs_avgfilesize <= 0) 152 printf("illegal expected average file size %d\n", 153 sblock.fs_avgfilesize), exit(14); 154 if (sblock.fs_avgfpdir <= 0) 155 printf("illegal expected number of files per directory %d\n", 156 sblock.fs_avgfpdir), exit(15); 157 /* 158 * collect and verify the block and fragment sizes 159 */ 160 sblock.fs_bsize = bsize; 161 sblock.fs_fsize = fsize; 162 if (!POWEROF2(sblock.fs_bsize)) { 163 printf("block size must be a power of 2, not %d\n", 164 sblock.fs_bsize); 165 exit(16); 166 } 167 if (!POWEROF2(sblock.fs_fsize)) { 168 printf("fragment size must be a power of 2, not %d\n", 169 sblock.fs_fsize); 170 exit(17); 171 } 172 if (sblock.fs_fsize < sectorsize) { 173 printf("increasing fragment size from %d to sector size (%d)\n", 174 sblock.fs_fsize, sectorsize); 175 sblock.fs_fsize = sectorsize; 176 } 177 if (sblock.fs_bsize > MAXBSIZE) { 178 printf("decreasing block size from %d to maximum (%d)\n", 179 sblock.fs_bsize, MAXBSIZE); 180 sblock.fs_bsize = MAXBSIZE; 181 } 182 if (sblock.fs_bsize < MINBSIZE) { 183 printf("increasing block size from %d to minimum (%d)\n", 184 sblock.fs_bsize, MINBSIZE); 185 sblock.fs_bsize = MINBSIZE; 186 } 187 if (sblock.fs_fsize > MAXBSIZE) { 188 printf("decreasing fragment size from %d to maximum (%d)\n", 189 sblock.fs_fsize, MAXBSIZE); 190 sblock.fs_fsize = MAXBSIZE; 191 } 192 if (sblock.fs_bsize < sblock.fs_fsize) { 193 printf("increasing block size from %d to fragment size (%d)\n", 194 sblock.fs_bsize, sblock.fs_fsize); 195 sblock.fs_bsize = sblock.fs_fsize; 196 } 197 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 198 printf( 199 "increasing fragment size from %d to block size / %d (%d)\n", 200 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 201 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 202 } 203 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 204 sblock.fs_maxbsize = sblock.fs_bsize; 205 printf("Extent size set to %d\n", sblock.fs_maxbsize); 206 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 207 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 208 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 209 } else { 210 sblock.fs_maxbsize = maxbsize; 211 } 212 sblock.fs_maxcontig = maxcontig; 213 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 214 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 215 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 216 } 217 if (sblock.fs_maxcontig > 1) 218 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 219 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 220 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 221 sblock.fs_qbmask = ~sblock.fs_bmask; 222 sblock.fs_qfmask = ~sblock.fs_fmask; 223 sblock.fs_bshift = ilog2(sblock.fs_bsize); 224 sblock.fs_fshift = ilog2(sblock.fs_fsize); 225 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 226 sblock.fs_fragshift = ilog2(sblock.fs_frag); 227 if (sblock.fs_frag > MAXFRAG) { 228 printf("fragment size %d is still too small (can't happen)\n", 229 sblock.fs_bsize / MAXFRAG); 230 exit(21); 231 } 232 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 233 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 234 if (Oflag == 1) { 235 sblock.fs_magic = FS_UFS1_MAGIC; 236 sblock.fs_sblockloc = SBLOCK_UFS1; 237 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 238 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 239 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 240 sizeof(ufs1_daddr_t)); 241 sblock.fs_old_inodefmt = FS_44INODEFMT; 242 sblock.fs_old_cgoffset = 0; 243 sblock.fs_old_cgmask = 0xffffffff; 244 sblock.fs_old_size = sblock.fs_size; 245 sblock.fs_old_rotdelay = 0; 246 sblock.fs_old_rps = 60; 247 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 248 sblock.fs_old_cpg = 1; 249 sblock.fs_old_interleave = 1; 250 sblock.fs_old_trackskew = 0; 251 sblock.fs_old_cpc = 0; 252 sblock.fs_old_postblformat = 1; 253 sblock.fs_old_nrpos = 1; 254 } else { 255 sblock.fs_magic = FS_UFS2_MAGIC; 256 sblock.fs_sblockloc = SBLOCK_UFS2; 257 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 258 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 259 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 260 sizeof(ufs2_daddr_t)); 261 } 262 sblock.fs_sblkno = 263 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 264 sblock.fs_frag); 265 sblock.fs_cblkno = sblock.fs_sblkno + 266 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 267 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 268 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 269 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 270 sizepb *= NINDIR(&sblock); 271 sblock.fs_maxfilesize += sizepb; 272 } 273 /* 274 * Calculate the number of blocks to put into each cylinder group. 275 * 276 * This algorithm selects the number of blocks per cylinder 277 * group. The first goal is to have at least enough data blocks 278 * in each cylinder group to meet the density requirement. Once 279 * this goal is achieved we try to expand to have at least 280 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 281 * pack as many blocks into each cylinder group map as will fit. 282 * 283 * We start by calculating the smallest number of blocks that we 284 * can put into each cylinder group. If this is too big, we reduce 285 * the density until it fits. 286 */ 287 origdensity = density; 288 for (;;) { 289 fragsperinode = MAX(numfrags(&sblock, density), 1); 290 minfpg = fragsperinode * INOPB(&sblock); 291 if (minfpg > sblock.fs_size) 292 minfpg = sblock.fs_size; 293 sblock.fs_ipg = INOPB(&sblock); 294 sblock.fs_fpg = roundup(sblock.fs_iblkno + 295 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 296 if (sblock.fs_fpg < minfpg) 297 sblock.fs_fpg = minfpg; 298 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 299 INOPB(&sblock)); 300 sblock.fs_fpg = roundup(sblock.fs_iblkno + 301 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 302 if (sblock.fs_fpg < minfpg) 303 sblock.fs_fpg = minfpg; 304 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 305 INOPB(&sblock)); 306 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 307 break; 308 density -= sblock.fs_fsize; 309 } 310 if (density != origdensity) 311 printf("density reduced from %d to %d\n", origdensity, density); 312 /* 313 * Start packing more blocks into the cylinder group until 314 * it cannot grow any larger, the number of cylinder groups 315 * drops below MINCYLGRPS, or we reach the size requested. 316 */ 317 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 318 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 319 INOPB(&sblock)); 320 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 321 break; 322 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 323 continue; 324 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 325 break; 326 sblock.fs_fpg -= sblock.fs_frag; 327 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 328 INOPB(&sblock)); 329 break; 330 } 331 /* 332 * Check to be sure that the last cylinder group has enough blocks 333 * to be viable. If it is too small, reduce the number of blocks 334 * per cylinder group which will have the effect of moving more 335 * blocks into the last cylinder group. 336 */ 337 optimalfpg = sblock.fs_fpg; 338 for (;;) { 339 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 340 lastminfpg = roundup(sblock.fs_iblkno + 341 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 342 if (sblock.fs_size < lastminfpg) { 343 printf("Filesystem size %jd < minimum size of %d\n", 344 (intmax_t)sblock.fs_size, lastminfpg); 345 exit(28); 346 } 347 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 348 sblock.fs_size % sblock.fs_fpg == 0) 349 break; 350 sblock.fs_fpg -= sblock.fs_frag; 351 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 352 INOPB(&sblock)); 353 } 354 if (optimalfpg != sblock.fs_fpg) 355 printf("Reduced frags per cylinder group from %d to %d %s\n", 356 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 357 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 358 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 359 if (Oflag == 1) { 360 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 361 sblock.fs_old_nsect = sblock.fs_old_spc; 362 sblock.fs_old_npsect = sblock.fs_old_spc; 363 sblock.fs_old_ncyl = sblock.fs_ncg; 364 } 365 /* 366 * fill in remaining fields of the super block 367 */ 368 sblock.fs_csaddr = cgdmin(&sblock, 0); 369 sblock.fs_cssize = 370 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 371 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 372 if (fscs == NULL) 373 errx(31, "calloc failed"); 374 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 375 if (sblock.fs_sbsize > SBLOCKSIZE) 376 sblock.fs_sbsize = SBLOCKSIZE; 377 sblock.fs_minfree = minfree; 378 sblock.fs_maxbpg = maxbpg; 379 sblock.fs_optim = opt; 380 sblock.fs_cgrotor = 0; 381 sblock.fs_pendingblocks = 0; 382 sblock.fs_pendinginodes = 0; 383 sblock.fs_fmod = 0; 384 sblock.fs_ronly = 0; 385 sblock.fs_state = 0; 386 sblock.fs_clean = 1; 387 sblock.fs_id[0] = (long)utime; 388 sblock.fs_id[1] = newfs_random(); 389 sblock.fs_fsmnt[0] = '\0'; 390 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 391 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 392 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 393 sblock.fs_cstotal.cs_nbfree = 394 fragstoblks(&sblock, sblock.fs_dsize) - 395 howmany(csfrags, sblock.fs_frag); 396 sblock.fs_cstotal.cs_nffree = 397 fragnum(&sblock, sblock.fs_size) + 398 (fragnum(&sblock, csfrags) > 0 ? 399 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 400 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 401 sblock.fs_cstotal.cs_ndir = 0; 402 sblock.fs_dsize -= csfrags; 403 sblock.fs_time = utime; 404 if (Oflag == 1) { 405 sblock.fs_old_time = utime; 406 sblock.fs_old_dsize = sblock.fs_dsize; 407 sblock.fs_old_csaddr = sblock.fs_csaddr; 408 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 409 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 410 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 411 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 412 } 413 414 /* 415 * Dump out summary information about file system. 416 */ 417 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 418 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 419 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 420 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 421 sblock.fs_fsize); 422 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 423 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 424 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 425 if (sblock.fs_flags & FS_DOSOFTDEP) 426 printf("\twith soft updates\n"); 427 # undef B2MBFACTOR 428 /* 429 * Now build the cylinders group blocks and 430 * then print out indices of cylinder groups. 431 */ 432 printf("super-block backups (for fsck -b #) at:\n"); 433 i = 0; 434 width = charsperline(); 435 /* 436 * allocate space for superblock, cylinder group map, and 437 * two sets of inode blocks. 438 */ 439 if (sblock.fs_bsize < SBLOCKSIZE) 440 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 441 else 442 iobufsize = 4 * sblock.fs_bsize; 443 if ((iobuf = malloc(iobufsize)) == 0) { 444 printf("Cannot allocate I/O buffer\n"); 445 exit(38); 446 } 447 bzero(iobuf, iobufsize); 448 /* 449 * Make a copy of the superblock into the buffer that we will be 450 * writing out in each cylinder group. 451 */ 452 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 453 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 454 initcg(cylno, utime); 455 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 456 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 457 cylno < (sblock.fs_ncg-1) ? "," : ""); 458 if (j < 0) 459 tmpbuf[j = 0] = '\0'; 460 if (i + j >= width) { 461 printf("\n"); 462 i = 0; 463 } 464 i += j; 465 printf("%s", tmpbuf); 466 fflush(stdout); 467 } 468 printf("\n"); 469 if (Nflag) 470 exit(0); 471 /* 472 * Now construct the initial file system, 473 * then write out the super-block. 474 */ 475 fsinit(utime); 476 if (Oflag == 1) { 477 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 478 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 479 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 480 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 481 } 482 if (!Nflag) 483 sbwrite(&disk, 0); 484 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 485 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 486 sblock.fs_cssize - i < sblock.fs_bsize ? 487 sblock.fs_cssize - i : sblock.fs_bsize, 488 ((char *)fscs) + i); 489 /* 490 * Update information about this partion in pack 491 * label, to that it may be updated on disk. 492 */ 493 if (pp != NULL) { 494 pp->p_fstype = FS_BSDFFS; 495 pp->p_fsize = sblock.fs_fsize; 496 pp->p_frag = sblock.fs_frag; 497 pp->p_cpg = sblock.fs_fpg; 498 } 499 } 500 501 /* 502 * Initialize a cylinder group. 503 */ 504 void 505 initcg(int cylno, time_t utime) 506 { 507 long i, j, d, dlower, dupper, blkno, start; 508 ufs2_daddr_t cbase, dmax; 509 struct ufs1_dinode *dp1; 510 struct ufs2_dinode *dp2; 511 struct csum *cs; 512 513 /* 514 * Determine block bounds for cylinder group. 515 * Allow space for super block summary information in first 516 * cylinder group. 517 */ 518 cbase = cgbase(&sblock, cylno); 519 dmax = cbase + sblock.fs_fpg; 520 if (dmax > sblock.fs_size) 521 dmax = sblock.fs_size; 522 dlower = cgsblock(&sblock, cylno) - cbase; 523 dupper = cgdmin(&sblock, cylno) - cbase; 524 if (cylno == 0) 525 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 526 cs = &fscs[cylno]; 527 memset(&acg, 0, sblock.fs_cgsize); 528 acg.cg_time = utime; 529 acg.cg_magic = CG_MAGIC; 530 acg.cg_cgx = cylno; 531 acg.cg_niblk = sblock.fs_ipg; 532 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 533 sblock.fs_ipg : 2 * INOPB(&sblock); 534 acg.cg_ndblk = dmax - cbase; 535 if (sblock.fs_contigsumsize > 0) 536 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 537 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 538 if (Oflag == 2) { 539 acg.cg_iusedoff = start; 540 } else { 541 acg.cg_old_ncyl = sblock.fs_old_cpg; 542 acg.cg_old_time = acg.cg_time; 543 acg.cg_time = 0; 544 acg.cg_old_niblk = acg.cg_niblk; 545 acg.cg_niblk = 0; 546 acg.cg_initediblk = 0; 547 acg.cg_old_btotoff = start; 548 acg.cg_old_boff = acg.cg_old_btotoff + 549 sblock.fs_old_cpg * sizeof(int32_t); 550 acg.cg_iusedoff = acg.cg_old_boff + 551 sblock.fs_old_cpg * sizeof(u_int16_t); 552 } 553 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 554 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 555 if (sblock.fs_contigsumsize > 0) { 556 acg.cg_clustersumoff = 557 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 558 acg.cg_clustersumoff -= sizeof(u_int32_t); 559 acg.cg_clusteroff = acg.cg_clustersumoff + 560 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 561 acg.cg_nextfreeoff = acg.cg_clusteroff + 562 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 563 } 564 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 565 printf("Panic: cylinder group too big\n"); 566 exit(37); 567 } 568 acg.cg_cs.cs_nifree += sblock.fs_ipg; 569 if (cylno == 0) 570 for (i = 0; i < (long)ROOTINO; i++) { 571 setbit(cg_inosused(&acg), i); 572 acg.cg_cs.cs_nifree--; 573 } 574 if (cylno > 0) { 575 /* 576 * In cylno 0, beginning space is reserved 577 * for boot and super blocks. 578 */ 579 for (d = 0; d < dlower; d += sblock.fs_frag) { 580 blkno = d / sblock.fs_frag; 581 setblock(&sblock, cg_blksfree(&acg), blkno); 582 if (sblock.fs_contigsumsize > 0) 583 setbit(cg_clustersfree(&acg), blkno); 584 acg.cg_cs.cs_nbfree++; 585 } 586 } 587 if ((i = dupper % sblock.fs_frag)) { 588 acg.cg_frsum[sblock.fs_frag - i]++; 589 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 590 setbit(cg_blksfree(&acg), dupper); 591 acg.cg_cs.cs_nffree++; 592 } 593 } 594 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 595 d += sblock.fs_frag) { 596 blkno = d / sblock.fs_frag; 597 setblock(&sblock, cg_blksfree(&acg), blkno); 598 if (sblock.fs_contigsumsize > 0) 599 setbit(cg_clustersfree(&acg), blkno); 600 acg.cg_cs.cs_nbfree++; 601 } 602 if (d < acg.cg_ndblk) { 603 acg.cg_frsum[acg.cg_ndblk - d]++; 604 for (; d < acg.cg_ndblk; d++) { 605 setbit(cg_blksfree(&acg), d); 606 acg.cg_cs.cs_nffree++; 607 } 608 } 609 if (sblock.fs_contigsumsize > 0) { 610 int32_t *sump = cg_clustersum(&acg); 611 u_char *mapp = cg_clustersfree(&acg); 612 int map = *mapp++; 613 int bit = 1; 614 int run = 0; 615 616 for (i = 0; i < acg.cg_nclusterblks; i++) { 617 if ((map & bit) != 0) 618 run++; 619 else if (run != 0) { 620 if (run > sblock.fs_contigsumsize) 621 run = sblock.fs_contigsumsize; 622 sump[run]++; 623 run = 0; 624 } 625 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 626 bit <<= 1; 627 else { 628 map = *mapp++; 629 bit = 1; 630 } 631 } 632 if (run != 0) { 633 if (run > sblock.fs_contigsumsize) 634 run = sblock.fs_contigsumsize; 635 sump[run]++; 636 } 637 } 638 *cs = acg.cg_cs; 639 /* 640 * Write out the duplicate super block, the cylinder group map 641 * and two blocks worth of inodes in a single write. 642 */ 643 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 644 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 645 start += sblock.fs_bsize; 646 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 647 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 648 for (i = 0; i < acg.cg_initediblk; i++) { 649 if (sblock.fs_magic == FS_UFS1_MAGIC) { 650 dp1->di_gen = newfs_random(); 651 dp1++; 652 } else { 653 dp2->di_gen = newfs_random(); 654 dp2++; 655 } 656 } 657 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 658 /* 659 * For the old file system, we have to initialize all the inodes. 660 */ 661 if (Oflag == 1) { 662 for (i = 2 * sblock.fs_frag; 663 i < sblock.fs_ipg / INOPF(&sblock); 664 i += sblock.fs_frag) { 665 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 666 for (j = 0; j < INOPB(&sblock); j++) { 667 dp1->di_gen = newfs_random(); 668 dp1++; 669 } 670 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 671 sblock.fs_bsize, &iobuf[start]); 672 } 673 } 674 } 675 676 /* 677 * initialize the file system 678 */ 679 #define PREDEFDIR 2 680 681 struct direct root_dir[] = { 682 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 683 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 684 }; 685 686 void 687 fsinit(time_t utime) 688 { 689 union dinode node; 690 691 memset(&node, 0, sizeof node); 692 if (sblock.fs_magic == FS_UFS1_MAGIC) { 693 /* 694 * initialize the node 695 */ 696 node.dp1.di_atime = utime; 697 node.dp1.di_mtime = utime; 698 node.dp1.di_ctime = utime; 699 /* 700 * create the root directory 701 */ 702 node.dp1.di_mode = IFDIR | UMASK; 703 node.dp1.di_nlink = PREDEFDIR; 704 node.dp1.di_size = makedir(root_dir, PREDEFDIR); 705 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 706 node.dp1.di_blocks = 707 btodb(fragroundup(&sblock, node.dp1.di_size)); 708 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 709 iobuf); 710 } else { 711 /* 712 * initialize the node 713 */ 714 node.dp2.di_atime = utime; 715 node.dp2.di_mtime = utime; 716 node.dp2.di_ctime = utime; 717 node.dp2.di_birthtime = utime; 718 /* 719 * create the root directory 720 */ 721 node.dp2.di_mode = IFDIR | UMASK; 722 node.dp2.di_nlink = PREDEFDIR; 723 node.dp2.di_size = makedir(root_dir, PREDEFDIR); 724 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 725 node.dp2.di_blocks = 726 btodb(fragroundup(&sblock, node.dp2.di_size)); 727 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 728 iobuf); 729 } 730 iput(&node, ROOTINO); 731 } 732 733 /* 734 * construct a set of directory entries in "iobuf". 735 * return size of directory. 736 */ 737 int 738 makedir(struct direct *protodir, int entries) 739 { 740 char *cp; 741 int i, spcleft; 742 743 spcleft = DIRBLKSIZ; 744 memset(iobuf, 0, DIRBLKSIZ); 745 for (cp = iobuf, i = 0; i < entries - 1; i++) { 746 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 747 memmove(cp, &protodir[i], protodir[i].d_reclen); 748 cp += protodir[i].d_reclen; 749 spcleft -= protodir[i].d_reclen; 750 } 751 protodir[i].d_reclen = spcleft; 752 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 753 return (DIRBLKSIZ); 754 } 755 756 /* 757 * allocate a block or frag 758 */ 759 ufs2_daddr_t 760 alloc(int size, int mode) 761 { 762 int i, d, blkno, frag; 763 764 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 765 sblock.fs_cgsize); 766 if (acg.cg_magic != CG_MAGIC) { 767 printf("cg 0: bad magic number\n"); 768 return (0); 769 } 770 if (acg.cg_cs.cs_nbfree == 0) { 771 printf("first cylinder group ran out of space\n"); 772 return (0); 773 } 774 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 775 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 776 goto goth; 777 printf("internal error: can't find block in cyl 0\n"); 778 return (0); 779 goth: 780 blkno = fragstoblks(&sblock, d); 781 clrblock(&sblock, cg_blksfree(&acg), blkno); 782 if (sblock.fs_contigsumsize > 0) 783 clrbit(cg_clustersfree(&acg), blkno); 784 acg.cg_cs.cs_nbfree--; 785 sblock.fs_cstotal.cs_nbfree--; 786 fscs[0].cs_nbfree--; 787 if (mode & IFDIR) { 788 acg.cg_cs.cs_ndir++; 789 sblock.fs_cstotal.cs_ndir++; 790 fscs[0].cs_ndir++; 791 } 792 if (size != sblock.fs_bsize) { 793 frag = howmany(size, sblock.fs_fsize); 794 fscs[0].cs_nffree += sblock.fs_frag - frag; 795 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 796 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 797 acg.cg_frsum[sblock.fs_frag - frag]++; 798 for (i = frag; i < sblock.fs_frag; i++) 799 setbit(cg_blksfree(&acg), d + i); 800 } 801 /* XXX cgwrite(&disk, 0)??? */ 802 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 803 (char *)&acg); 804 return ((ufs2_daddr_t)d); 805 } 806 807 /* 808 * Allocate an inode on the disk 809 */ 810 void 811 iput(union dinode *ip, ino_t ino) 812 { 813 ufs2_daddr_t d; 814 int c; 815 816 c = ino_to_cg(&sblock, ino); 817 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 818 sblock.fs_cgsize); 819 if (acg.cg_magic != CG_MAGIC) { 820 printf("cg 0: bad magic number\n"); 821 exit(31); 822 } 823 acg.cg_cs.cs_nifree--; 824 setbit(cg_inosused(&acg), ino); 825 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 826 (char *)&acg); 827 sblock.fs_cstotal.cs_nifree--; 828 fscs[0].cs_nifree--; 829 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 830 printf("fsinit: inode value out of range (%d).\n", ino); 831 exit(32); 832 } 833 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 834 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 835 if (sblock.fs_magic == FS_UFS1_MAGIC) 836 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 837 ip->dp1; 838 else 839 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 840 ip->dp2; 841 wtfs(d, sblock.fs_bsize, (char *)iobuf); 842 } 843 844 /* 845 * possibly write to disk 846 */ 847 static void 848 wtfs(ufs2_daddr_t bno, int size, char *bf) 849 { 850 if (Nflag) 851 return; 852 bwrite(&disk, bno, bf, size); 853 } 854 855 /* 856 * check if a block is available 857 */ 858 static int 859 isblock(struct fs *fs, unsigned char *cp, int h) 860 { 861 unsigned char mask; 862 863 switch (fs->fs_frag) { 864 case 8: 865 return (cp[h] == 0xff); 866 case 4: 867 mask = 0x0f << ((h & 0x1) << 2); 868 return ((cp[h >> 1] & mask) == mask); 869 case 2: 870 mask = 0x03 << ((h & 0x3) << 1); 871 return ((cp[h >> 2] & mask) == mask); 872 case 1: 873 mask = 0x01 << (h & 0x7); 874 return ((cp[h >> 3] & mask) == mask); 875 default: 876 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 877 return (0); 878 } 879 } 880 881 /* 882 * take a block out of the map 883 */ 884 static void 885 clrblock(struct fs *fs, unsigned char *cp, int h) 886 { 887 switch ((fs)->fs_frag) { 888 case 8: 889 cp[h] = 0; 890 return; 891 case 4: 892 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 893 return; 894 case 2: 895 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 896 return; 897 case 1: 898 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 899 return; 900 default: 901 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 902 return; 903 } 904 } 905 906 /* 907 * put a block into the map 908 */ 909 static void 910 setblock(struct fs *fs, unsigned char *cp, int h) 911 { 912 switch (fs->fs_frag) { 913 case 8: 914 cp[h] = 0xff; 915 return; 916 case 4: 917 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 918 return; 919 case 2: 920 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 921 return; 922 case 1: 923 cp[h >> 3] |= (0x01 << (h & 0x7)); 924 return; 925 default: 926 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 927 return; 928 } 929 } 930 931 /* 932 * Determine the number of characters in a 933 * single line. 934 */ 935 936 static int 937 charsperline(void) 938 { 939 int columns; 940 char *cp; 941 struct winsize ws; 942 943 columns = 0; 944 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 945 columns = ws.ws_col; 946 if (columns == 0 && (cp = getenv("COLUMNS"))) 947 columns = atoi(cp); 948 if (columns == 0) 949 columns = 80; /* last resort */ 950 return (columns); 951 } 952 953 static int 954 ilog2(int val) 955 { 956 u_int n; 957 958 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 959 if (1 << n == val) 960 return (n); 961 errx(1, "ilog2: %d is not a power of 2\n", val); 962 } 963 964 /* 965 * For the regression test, return predictable random values. 966 * Otherwise use a true random number generator. 967 */ 968 static u_int32_t 969 newfs_random(void) 970 { 971 static int nextnum = 1; 972 973 if (Rflag) 974 return (nextnum++); 975 return (arc4random()); 976 } 977