1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 #if 0 36 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 37 #endif 38 static const char rcsid[] = 39 "$FreeBSD$"; 40 #endif /* not lint */ 41 42 #include <err.h> 43 #include <signal.h> 44 #include <string.h> 45 #include <stdio.h> 46 #include <unistd.h> 47 #include <sys/param.h> 48 #include <sys/time.h> 49 #include <sys/types.h> 50 #include <sys/wait.h> 51 #include <sys/resource.h> 52 #include <sys/stat.h> 53 #include <ufs/ufs/dinode.h> 54 #include <ufs/ufs/dir.h> 55 #include <ufs/ffs/fs.h> 56 #include <sys/disklabel.h> 57 #include <sys/file.h> 58 #include <sys/mman.h> 59 #include <sys/ioctl.h> 60 61 #ifndef STANDALONE 62 #include <stdlib.h> 63 #else 64 extern int atoi __P((char *)); 65 extern char * getenv __P((char *)); 66 #endif 67 68 #ifdef FSIRAND 69 extern long random __P((void)); 70 extern void srandomdev __P((void)); 71 #endif 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 77 /* 78 * We limit the size of the inode map to be no more than a 79 * third of the cylinder group space, since we must leave at 80 * least an equal amount of space for the block map. 81 * 82 * N.B.: MAXIPG must be a multiple of INOPB(fs). 83 */ 84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 85 86 #define UMASK 0755 87 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 88 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 89 90 /* 91 * variables set up by front end. 92 */ 93 extern int mfs; /* run as the memory based filesystem */ 94 extern char *mfs_mtpt; /* mount point for mfs */ 95 extern struct stat mfs_mtstat; /* stat prior to mount */ 96 extern int Nflag; /* run mkfs without writing file system */ 97 extern int Oflag; /* format as an 4.3BSD file system */ 98 extern int fssize; /* file system size */ 99 extern int ntracks; /* # tracks/cylinder */ 100 extern int nsectors; /* # sectors/track */ 101 extern int nphyssectors; /* # sectors/track including spares */ 102 extern int secpercyl; /* sectors per cylinder */ 103 extern int sectorsize; /* bytes/sector */ 104 extern int realsectorsize; /* bytes/sector in hardware*/ 105 extern int rpm; /* revolutions/minute of drive */ 106 extern int interleave; /* hardware sector interleave */ 107 extern int trackskew; /* sector 0 skew, per track */ 108 extern int fsize; /* fragment size */ 109 extern int bsize; /* block size */ 110 extern int cpg; /* cylinders/cylinder group */ 111 extern int cpgflg; /* cylinders/cylinder group flag was given */ 112 extern int minfree; /* free space threshold */ 113 extern int opt; /* optimization preference (space or time) */ 114 extern int density; /* number of bytes per inode */ 115 extern int maxcontig; /* max contiguous blocks to allocate */ 116 extern int rotdelay; /* rotational delay between blocks */ 117 extern int maxbpg; /* maximum blocks per file in a cyl group */ 118 extern int nrpos; /* # of distinguished rotational positions */ 119 extern int bbsize; /* boot block size */ 120 extern int sbsize; /* superblock size */ 121 extern u_long memleft; /* virtual memory available */ 122 extern caddr_t membase; /* start address of memory based filesystem */ 123 extern char * filename; 124 125 union { 126 struct fs fs; 127 char pad[SBSIZE]; 128 } fsun; 129 #define sblock fsun.fs 130 struct csum *fscs; 131 132 union { 133 struct cg cg; 134 char pad[MAXBSIZE]; 135 } cgun; 136 #define acg cgun.cg 137 138 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 139 140 int fsi, fso; 141 #ifdef FSIRAND 142 int randinit; 143 #endif 144 daddr_t alloc(); 145 long calcipg(); 146 static int charsperline(); 147 void clrblock __P((struct fs *, unsigned char *, int)); 148 void fsinit __P((time_t)); 149 void initcg __P((int, time_t)); 150 int isblock __P((struct fs *, unsigned char *, int)); 151 void iput __P((struct dinode *, ino_t)); 152 int makedir __P((struct direct *, int)); 153 void rdfs __P((daddr_t, int, char *)); 154 void setblock __P((struct fs *, unsigned char *, int)); 155 void wtfs __P((daddr_t, int, char *)); 156 void wtfsflush __P((void)); 157 158 #ifndef STANDALONE 159 void get_memleft __P((void)); 160 void raise_data_limit __P((void)); 161 #else 162 void free __P((char *)); 163 char * calloc __P((u_long, u_long)); 164 caddr_t malloc __P((u_long)); 165 caddr_t realloc __P((char *, u_long)); 166 #endif 167 168 int mfs_ppid = 0; 169 170 void 171 mkfs(pp, fsys, fi, fo) 172 struct partition *pp; 173 char *fsys; 174 int fi, fo; 175 { 176 register long i, mincpc, mincpg, inospercg; 177 long cylno, rpos, blk, j, warn = 0; 178 long used, mincpgcnt, bpcg; 179 off_t usedb; 180 long mapcramped, inodecramped; 181 long postblsize, rotblsize, totalsbsize; 182 int status, fd; 183 time_t utime; 184 quad_t sizepb; 185 void started(); 186 int width; 187 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 188 189 #ifndef STANDALONE 190 time(&utime); 191 #endif 192 #ifdef FSIRAND 193 if (!randinit) { 194 randinit = 1; 195 srandomdev(); 196 } 197 #endif 198 if (mfs) { 199 mfs_ppid = getpid(); 200 (void) signal(SIGUSR1, started); 201 if ((i = fork())) { 202 if (i == -1) 203 err(10, "mfs"); 204 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 205 exit(WEXITSTATUS(status)); 206 exit(11); 207 /* NOTREACHED */ 208 } 209 #ifdef STANDALONE 210 (void)malloc(0); 211 #else 212 raise_data_limit(); 213 #endif 214 if(filename) { 215 unsigned char buf[BUFSIZ]; 216 unsigned long l,l1; 217 fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644); 218 if(fd < 0) 219 err(12, "%s", filename); 220 for(l=0;l< fssize * sectorsize;l += l1) { 221 l1 = fssize * sectorsize; 222 if (BUFSIZ < l1) 223 l1 = BUFSIZ; 224 if (l1 != write(fd,buf,l1)) 225 err(12, "%s", filename); 226 } 227 membase = mmap( 228 0, 229 fssize * sectorsize, 230 PROT_READ|PROT_WRITE, 231 MAP_SHARED, 232 fd, 233 0); 234 if(membase == MAP_FAILED) 235 err(12, "mmap"); 236 close(fd); 237 } else { 238 #ifndef STANDALONE 239 get_memleft(); 240 #endif 241 if (fssize * sectorsize > (memleft - 131072)) 242 fssize = (memleft - 131072) / sectorsize; 243 if ((membase = malloc(fssize * sectorsize)) == NULL) 244 errx(13, "malloc failed"); 245 } 246 } 247 fsi = fi; 248 fso = fo; 249 if (Oflag) { 250 sblock.fs_inodefmt = FS_42INODEFMT; 251 sblock.fs_maxsymlinklen = 0; 252 } else { 253 sblock.fs_inodefmt = FS_44INODEFMT; 254 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 255 } 256 /* 257 * Validate the given file system size. 258 * Verify that its last block can actually be accessed. 259 */ 260 if (fssize <= 0) 261 printf("preposterous size %d\n", fssize), exit(13); 262 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 263 (char *)&sblock); 264 /* 265 * collect and verify the sector and track info 266 */ 267 sblock.fs_nsect = nsectors; 268 sblock.fs_ntrak = ntracks; 269 if (sblock.fs_ntrak <= 0) 270 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 271 if (sblock.fs_nsect <= 0) 272 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 273 /* 274 * collect and verify the block and fragment sizes 275 */ 276 sblock.fs_bsize = bsize; 277 sblock.fs_fsize = fsize; 278 if (!POWEROF2(sblock.fs_bsize)) { 279 printf("block size must be a power of 2, not %d\n", 280 sblock.fs_bsize); 281 exit(16); 282 } 283 if (!POWEROF2(sblock.fs_fsize)) { 284 printf("fragment size must be a power of 2, not %d\n", 285 sblock.fs_fsize); 286 exit(17); 287 } 288 if (sblock.fs_fsize < sectorsize) { 289 printf("fragment size %d is too small, minimum is %d\n", 290 sblock.fs_fsize, sectorsize); 291 exit(18); 292 } 293 if (sblock.fs_bsize < MINBSIZE) { 294 printf("block size %d is too small, minimum is %d\n", 295 sblock.fs_bsize, MINBSIZE); 296 exit(19); 297 } 298 if (sblock.fs_bsize < sblock.fs_fsize) { 299 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 300 sblock.fs_bsize, sblock.fs_fsize); 301 exit(20); 302 } 303 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 304 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 305 sblock.fs_qbmask = ~sblock.fs_bmask; 306 sblock.fs_qfmask = ~sblock.fs_fmask; 307 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 308 sblock.fs_bshift++; 309 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 310 sblock.fs_fshift++; 311 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 312 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 313 sblock.fs_fragshift++; 314 if (sblock.fs_frag > MAXFRAG) { 315 printf("fragment size %d is too small, minimum with block size %d is %d\n", 316 sblock.fs_fsize, sblock.fs_bsize, 317 sblock.fs_bsize / MAXFRAG); 318 exit(21); 319 } 320 sblock.fs_nrpos = nrpos; 321 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 322 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 323 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 324 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 325 sblock.fs_fsbtodb++; 326 sblock.fs_sblkno = 327 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 328 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 329 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 330 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 331 sblock.fs_cgoffset = roundup( 332 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 333 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 334 sblock.fs_cgmask <<= 1; 335 if (!POWEROF2(sblock.fs_ntrak)) 336 sblock.fs_cgmask <<= 1; 337 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 338 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 339 sizepb *= NINDIR(&sblock); 340 sblock.fs_maxfilesize += sizepb; 341 } 342 /* 343 * Validate specified/determined secpercyl 344 * and calculate minimum cylinders per group. 345 */ 346 sblock.fs_spc = secpercyl; 347 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 348 sblock.fs_cpc > 1 && (i & 1) == 0; 349 sblock.fs_cpc >>= 1, i >>= 1) 350 /* void */; 351 mincpc = sblock.fs_cpc; 352 bpcg = sblock.fs_spc * sectorsize; 353 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 354 if (inospercg > MAXIPG(&sblock)) 355 inospercg = MAXIPG(&sblock); 356 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 357 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 358 sblock.fs_spc); 359 mincpg = roundup(mincpgcnt, mincpc); 360 /* 361 * Ensure that cylinder group with mincpg has enough space 362 * for block maps. 363 */ 364 sblock.fs_cpg = mincpg; 365 sblock.fs_ipg = inospercg; 366 if (maxcontig > 1) 367 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 368 mapcramped = 0; 369 while (CGSIZE(&sblock) > sblock.fs_bsize) { 370 mapcramped = 1; 371 if (sblock.fs_bsize < MAXBSIZE) { 372 sblock.fs_bsize <<= 1; 373 if ((i & 1) == 0) { 374 i >>= 1; 375 } else { 376 sblock.fs_cpc <<= 1; 377 mincpc <<= 1; 378 mincpg = roundup(mincpgcnt, mincpc); 379 sblock.fs_cpg = mincpg; 380 } 381 sblock.fs_frag <<= 1; 382 sblock.fs_fragshift += 1; 383 if (sblock.fs_frag <= MAXFRAG) 384 continue; 385 } 386 if (sblock.fs_fsize == sblock.fs_bsize) { 387 printf("There is no block size that"); 388 printf(" can support this disk\n"); 389 exit(22); 390 } 391 sblock.fs_frag >>= 1; 392 sblock.fs_fragshift -= 1; 393 sblock.fs_fsize <<= 1; 394 sblock.fs_nspf <<= 1; 395 } 396 /* 397 * Ensure that cylinder group with mincpg has enough space for inodes. 398 */ 399 inodecramped = 0; 400 inospercg = calcipg(mincpg, bpcg, &usedb); 401 sblock.fs_ipg = inospercg; 402 while (inospercg > MAXIPG(&sblock)) { 403 inodecramped = 1; 404 if (mincpc == 1 || sblock.fs_frag == 1 || 405 sblock.fs_bsize == MINBSIZE) 406 break; 407 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 408 "minimum bytes per inode is", 409 (int)((mincpg * (off_t)bpcg - usedb) 410 / MAXIPG(&sblock) + 1)); 411 sblock.fs_bsize >>= 1; 412 sblock.fs_frag >>= 1; 413 sblock.fs_fragshift -= 1; 414 mincpc >>= 1; 415 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 416 if (CGSIZE(&sblock) > sblock.fs_bsize) { 417 sblock.fs_bsize <<= 1; 418 break; 419 } 420 mincpg = sblock.fs_cpg; 421 inospercg = calcipg(mincpg, bpcg, &usedb); 422 sblock.fs_ipg = inospercg; 423 } 424 if (inodecramped) { 425 if (inospercg > MAXIPG(&sblock)) { 426 printf("Minimum bytes per inode is %d\n", 427 (int)((mincpg * (off_t)bpcg - usedb) 428 / MAXIPG(&sblock) + 1)); 429 } else if (!mapcramped) { 430 printf("With %d bytes per inode, ", density); 431 printf("minimum cylinders per group is %ld\n", mincpg); 432 } 433 } 434 if (mapcramped) { 435 printf("With %d sectors per cylinder, ", sblock.fs_spc); 436 printf("minimum cylinders per group is %ld\n", mincpg); 437 } 438 if (inodecramped || mapcramped) { 439 if (sblock.fs_bsize != bsize) 440 printf("%s to be changed from %d to %d\n", 441 "This requires the block size", 442 bsize, sblock.fs_bsize); 443 if (sblock.fs_fsize != fsize) 444 printf("\t%s to be changed from %d to %d\n", 445 "and the fragment size", 446 fsize, sblock.fs_fsize); 447 exit(23); 448 } 449 /* 450 * Calculate the number of cylinders per group 451 */ 452 sblock.fs_cpg = cpg; 453 if (sblock.fs_cpg % mincpc != 0) { 454 printf("%s groups must have a multiple of %ld cylinders\n", 455 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 456 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 457 if (!cpgflg) 458 cpg = sblock.fs_cpg; 459 } 460 /* 461 * Must ensure there is enough space for inodes. 462 */ 463 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 464 while (sblock.fs_ipg > MAXIPG(&sblock)) { 465 inodecramped = 1; 466 sblock.fs_cpg -= mincpc; 467 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 468 } 469 /* 470 * Must ensure there is enough space to hold block map. 471 */ 472 while (CGSIZE(&sblock) > sblock.fs_bsize) { 473 mapcramped = 1; 474 sblock.fs_cpg -= mincpc; 475 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 476 } 477 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 478 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 479 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 480 exit(24); 481 } 482 if (sblock.fs_cpg < mincpg) { 483 printf("cylinder groups must have at least %ld cylinders\n", 484 mincpg); 485 exit(25); 486 } else if (sblock.fs_cpg != cpg) { 487 if (!cpgflg) 488 printf("Warning: "); 489 else if (!mapcramped && !inodecramped) 490 exit(26); 491 if (mapcramped && inodecramped) 492 printf("Block size and bytes per inode restrict"); 493 else if (mapcramped) 494 printf("Block size restricts"); 495 else 496 printf("Bytes per inode restrict"); 497 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 498 if (cpgflg) 499 exit(27); 500 } 501 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 502 /* 503 * Now have size for file system and nsect and ntrak. 504 * Determine number of cylinders and blocks in the file system. 505 */ 506 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 507 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 508 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 509 sblock.fs_ncyl++; 510 warn = 1; 511 } 512 if (sblock.fs_ncyl < 1) { 513 printf("file systems must have at least one cylinder\n"); 514 exit(28); 515 } 516 /* 517 * Determine feasability/values of rotational layout tables. 518 * 519 * The size of the rotational layout tables is limited by the 520 * size of the superblock, SBSIZE. The amount of space available 521 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 522 * The size of these tables is inversely proportional to the block 523 * size of the file system. The size increases if sectors per track 524 * are not powers of two, because more cylinders must be described 525 * by the tables before the rotational pattern repeats (fs_cpc). 526 */ 527 sblock.fs_interleave = interleave; 528 sblock.fs_trackskew = trackskew; 529 sblock.fs_npsect = nphyssectors; 530 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 531 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 532 if (sblock.fs_sbsize > SBSIZE) 533 sblock.fs_sbsize = SBSIZE; 534 if (sblock.fs_ntrak == 1) { 535 sblock.fs_cpc = 0; 536 goto next; 537 } 538 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 539 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 540 totalsbsize = sizeof(struct fs) + rotblsize; 541 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 542 /* use old static table space */ 543 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 544 (char *)(&sblock.fs_firstfield); 545 sblock.fs_rotbloff = &sblock.fs_space[0] - 546 (u_char *)(&sblock.fs_firstfield); 547 } else { 548 /* use dynamic table space */ 549 sblock.fs_postbloff = &sblock.fs_space[0] - 550 (u_char *)(&sblock.fs_firstfield); 551 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 552 totalsbsize += postblsize; 553 } 554 if (totalsbsize > SBSIZE || 555 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 556 printf("%s %s %d %s %d.%s", 557 "Warning: insufficient space in super block for\n", 558 "rotational layout tables with nsect", sblock.fs_nsect, 559 "and ntrak", sblock.fs_ntrak, 560 "\nFile system performance may be impaired.\n"); 561 sblock.fs_cpc = 0; 562 goto next; 563 } 564 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 565 if (sblock.fs_sbsize > SBSIZE) 566 sblock.fs_sbsize = SBSIZE; 567 /* 568 * calculate the available blocks for each rotational position 569 */ 570 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 571 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 572 fs_postbl(&sblock, cylno)[rpos] = -1; 573 for (i = (rotblsize - 1) * sblock.fs_frag; 574 i >= 0; i -= sblock.fs_frag) { 575 cylno = cbtocylno(&sblock, i); 576 rpos = cbtorpos(&sblock, i); 577 blk = fragstoblks(&sblock, i); 578 if (fs_postbl(&sblock, cylno)[rpos] == -1) 579 fs_rotbl(&sblock)[blk] = 0; 580 else 581 fs_rotbl(&sblock)[blk] = 582 fs_postbl(&sblock, cylno)[rpos] - blk; 583 fs_postbl(&sblock, cylno)[rpos] = blk; 584 } 585 next: 586 /* 587 * Compute/validate number of cylinder groups. 588 */ 589 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 590 if (sblock.fs_ncyl % sblock.fs_cpg) 591 sblock.fs_ncg++; 592 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 593 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 594 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 595 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 596 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 597 (long)(sblock.fs_fpg / sblock.fs_frag)); 598 printf("number of cylinders per cylinder group (%d) %s.\n", 599 sblock.fs_cpg, "must be increased"); 600 exit(29); 601 } 602 j = sblock.fs_ncg - 1; 603 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 604 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 605 if (j == 0) { 606 printf("Filesystem must have at least %d sectors\n", 607 NSPF(&sblock) * 608 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 609 exit(30); 610 } 611 printf( 612 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 613 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 614 i / sblock.fs_frag); 615 printf( 616 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 617 i * NSPF(&sblock)); 618 sblock.fs_ncg--; 619 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 620 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 621 NSPF(&sblock); 622 warn = 0; 623 } 624 if (warn && !mfs) { 625 printf("Warning: %d sector(s) in last cylinder unallocated\n", 626 sblock.fs_spc - 627 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 628 * sblock.fs_spc)); 629 } 630 /* 631 * fill in remaining fields of the super block 632 */ 633 sblock.fs_csaddr = cgdmin(&sblock, 0); 634 sblock.fs_cssize = 635 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 636 /* 637 * The superblock fields 'fs_csmask' and 'fs_csshift' are no 638 * longer used. However, we still initialise them so that the 639 * filesystem remains compatible with old kernels. 640 */ 641 i = sblock.fs_bsize / sizeof(struct csum); 642 sblock.fs_csmask = ~(i - 1); 643 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 644 sblock.fs_csshift++; 645 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 646 if (fscs == NULL) 647 errx(31, "calloc failed"); 648 sblock.fs_magic = FS_MAGIC; 649 sblock.fs_rotdelay = rotdelay; 650 sblock.fs_minfree = minfree; 651 sblock.fs_maxcontig = maxcontig; 652 sblock.fs_maxbpg = maxbpg; 653 sblock.fs_rps = rpm / 60; 654 sblock.fs_optim = opt; 655 sblock.fs_cgrotor = 0; 656 sblock.fs_cstotal.cs_ndir = 0; 657 sblock.fs_cstotal.cs_nbfree = 0; 658 sblock.fs_cstotal.cs_nifree = 0; 659 sblock.fs_cstotal.cs_nffree = 0; 660 sblock.fs_fmod = 0; 661 sblock.fs_ronly = 0; 662 sblock.fs_clean = 1; 663 #ifdef FSIRAND 664 sblock.fs_id[0] = (long)utime; 665 sblock.fs_id[1] = random(); 666 #endif 667 668 /* 669 * Dump out summary information about file system. 670 */ 671 if (!mfs) { 672 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 673 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 674 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 675 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 676 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 677 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 678 sblock.fs_ncg, sblock.fs_cpg, 679 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 680 sblock.fs_ipg); 681 #undef B2MBFACTOR 682 } 683 /* 684 * Now build the cylinders group blocks and 685 * then print out indices of cylinder groups. 686 */ 687 if (!mfs) 688 printf("super-block backups (for fsck -b #) at:\n"); 689 i = 0; 690 width = charsperline(); 691 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 692 initcg(cylno, utime); 693 if (mfs) 694 continue; 695 j = sprintf(tmpbuf, " %ld%s", 696 fsbtodb(&sblock, cgsblock(&sblock, cylno)), 697 cylno < (sblock.fs_ncg-1) ? "," : "" ); 698 if (i + j >= width) { 699 printf("\n"); 700 i = 0; 701 } 702 i += j; 703 printf("%s", tmpbuf); 704 fflush(stdout); 705 } 706 if (!mfs) 707 printf("\n"); 708 if (Nflag && !mfs) 709 exit(0); 710 /* 711 * Now construct the initial file system, 712 * then write out the super-block. 713 */ 714 fsinit(utime); 715 sblock.fs_time = utime; 716 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 717 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 718 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 719 sblock.fs_cssize - i < sblock.fs_bsize ? 720 sblock.fs_cssize - i : sblock.fs_bsize, 721 ((char *)fscs) + i); 722 /* 723 * Write out the duplicate super blocks 724 */ 725 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 726 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 727 sbsize, (char *)&sblock); 728 wtfsflush(); 729 /* 730 * Update information about this partion in pack 731 * label, to that it may be updated on disk. 732 */ 733 pp->p_fstype = FS_BSDFFS; 734 pp->p_fsize = sblock.fs_fsize; 735 pp->p_frag = sblock.fs_frag; 736 pp->p_cpg = sblock.fs_cpg; 737 /* 738 * Notify parent process of success. 739 * Dissociate from session and tty. 740 */ 741 if (mfs) { 742 kill(mfs_ppid, SIGUSR1); 743 (void) setsid(); 744 (void) close(0); 745 (void) close(1); 746 (void) close(2); 747 (void) chdir("/"); 748 } 749 } 750 751 /* 752 * Initialize a cylinder group. 753 */ 754 void 755 initcg(cylno, utime) 756 int cylno; 757 time_t utime; 758 { 759 daddr_t cbase, d, dlower, dupper, dmax, blkno; 760 long i; 761 register struct csum *cs; 762 #ifdef FSIRAND 763 long j; 764 #endif 765 766 /* 767 * Determine block bounds for cylinder group. 768 * Allow space for super block summary information in first 769 * cylinder group. 770 */ 771 cbase = cgbase(&sblock, cylno); 772 dmax = cbase + sblock.fs_fpg; 773 if (dmax > sblock.fs_size) 774 dmax = sblock.fs_size; 775 dlower = cgsblock(&sblock, cylno) - cbase; 776 dupper = cgdmin(&sblock, cylno) - cbase; 777 if (cylno == 0) 778 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 779 cs = fscs + cylno; 780 memset(&acg, 0, sblock.fs_cgsize); 781 acg.cg_time = utime; 782 acg.cg_magic = CG_MAGIC; 783 acg.cg_cgx = cylno; 784 if (cylno == sblock.fs_ncg - 1) 785 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 786 else 787 acg.cg_ncyl = sblock.fs_cpg; 788 acg.cg_niblk = sblock.fs_ipg; 789 acg.cg_ndblk = dmax - cbase; 790 if (sblock.fs_contigsumsize > 0) 791 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 792 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 793 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 794 acg.cg_iusedoff = acg.cg_boff + 795 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 796 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 797 if (sblock.fs_contigsumsize <= 0) { 798 acg.cg_nextfreeoff = acg.cg_freeoff + 799 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 800 } else { 801 acg.cg_clustersumoff = acg.cg_freeoff + howmany 802 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 803 sizeof(u_int32_t); 804 acg.cg_clustersumoff = 805 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 806 acg.cg_clusteroff = acg.cg_clustersumoff + 807 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 808 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 809 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 810 } 811 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 812 printf("Panic: cylinder group too big\n"); 813 exit(37); 814 } 815 acg.cg_cs.cs_nifree += sblock.fs_ipg; 816 if (cylno == 0) 817 for (i = 0; i < ROOTINO; i++) { 818 setbit(cg_inosused(&acg), i); 819 acg.cg_cs.cs_nifree--; 820 } 821 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 822 #ifdef FSIRAND 823 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) 824 zino[j].di_gen = random(); 825 #endif 826 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 827 sblock.fs_bsize, (char *)zino); 828 } 829 if (cylno > 0) { 830 /* 831 * In cylno 0, beginning space is reserved 832 * for boot and super blocks. 833 */ 834 for (d = 0; d < dlower; d += sblock.fs_frag) { 835 blkno = d / sblock.fs_frag; 836 setblock(&sblock, cg_blksfree(&acg), blkno); 837 if (sblock.fs_contigsumsize > 0) 838 setbit(cg_clustersfree(&acg), blkno); 839 acg.cg_cs.cs_nbfree++; 840 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 841 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 842 [cbtorpos(&sblock, d)]++; 843 } 844 sblock.fs_dsize += dlower; 845 } 846 sblock.fs_dsize += acg.cg_ndblk - dupper; 847 if ((i = dupper % sblock.fs_frag)) { 848 acg.cg_frsum[sblock.fs_frag - i]++; 849 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 850 setbit(cg_blksfree(&acg), dupper); 851 acg.cg_cs.cs_nffree++; 852 } 853 } 854 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 855 blkno = d / sblock.fs_frag; 856 setblock(&sblock, cg_blksfree(&acg), blkno); 857 if (sblock.fs_contigsumsize > 0) 858 setbit(cg_clustersfree(&acg), blkno); 859 acg.cg_cs.cs_nbfree++; 860 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 861 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 862 [cbtorpos(&sblock, d)]++; 863 d += sblock.fs_frag; 864 } 865 if (d < dmax - cbase) { 866 acg.cg_frsum[dmax - cbase - d]++; 867 for (; d < dmax - cbase; d++) { 868 setbit(cg_blksfree(&acg), d); 869 acg.cg_cs.cs_nffree++; 870 } 871 } 872 if (sblock.fs_contigsumsize > 0) { 873 int32_t *sump = cg_clustersum(&acg); 874 u_char *mapp = cg_clustersfree(&acg); 875 int map = *mapp++; 876 int bit = 1; 877 int run = 0; 878 879 for (i = 0; i < acg.cg_nclusterblks; i++) { 880 if ((map & bit) != 0) { 881 run++; 882 } else if (run != 0) { 883 if (run > sblock.fs_contigsumsize) 884 run = sblock.fs_contigsumsize; 885 sump[run]++; 886 run = 0; 887 } 888 if ((i & (NBBY - 1)) != (NBBY - 1)) { 889 bit <<= 1; 890 } else { 891 map = *mapp++; 892 bit = 1; 893 } 894 } 895 if (run != 0) { 896 if (run > sblock.fs_contigsumsize) 897 run = sblock.fs_contigsumsize; 898 sump[run]++; 899 } 900 } 901 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 902 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 903 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 904 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 905 *cs = acg.cg_cs; 906 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 907 sblock.fs_bsize, (char *)&acg); 908 } 909 910 /* 911 * initialize the file system 912 */ 913 struct dinode node; 914 915 #ifdef LOSTDIR 916 #define PREDEFDIR 3 917 #else 918 #define PREDEFDIR 2 919 #endif 920 921 struct direct root_dir[] = { 922 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 923 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 924 #ifdef LOSTDIR 925 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 926 #endif 927 }; 928 struct odirect { 929 u_long d_ino; 930 u_short d_reclen; 931 u_short d_namlen; 932 u_char d_name[MAXNAMLEN + 1]; 933 } oroot_dir[] = { 934 { ROOTINO, sizeof(struct direct), 1, "." }, 935 { ROOTINO, sizeof(struct direct), 2, ".." }, 936 #ifdef LOSTDIR 937 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 938 #endif 939 }; 940 #ifdef LOSTDIR 941 struct direct lost_found_dir[] = { 942 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 943 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 944 { 0, DIRBLKSIZ, 0, 0, 0 }, 945 }; 946 struct odirect olost_found_dir[] = { 947 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 948 { ROOTINO, sizeof(struct direct), 2, ".." }, 949 { 0, DIRBLKSIZ, 0, 0 }, 950 }; 951 #endif 952 char buf[MAXBSIZE]; 953 954 void 955 fsinit(utime) 956 time_t utime; 957 { 958 #ifdef LOSTDIR 959 int i; 960 #endif 961 962 /* 963 * initialize the node 964 */ 965 node.di_atime = utime; 966 node.di_mtime = utime; 967 node.di_ctime = utime; 968 #ifdef LOSTDIR 969 /* 970 * create the lost+found directory 971 */ 972 if (Oflag) { 973 (void)makedir((struct direct *)olost_found_dir, 2); 974 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 975 memmove(&buf[i], &olost_found_dir[2], 976 DIRSIZ(0, &olost_found_dir[2])); 977 } else { 978 (void)makedir(lost_found_dir, 2); 979 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 980 memmove(&buf[i], &lost_found_dir[2], 981 DIRSIZ(0, &lost_found_dir[2])); 982 } 983 node.di_mode = IFDIR | UMASK; 984 node.di_nlink = 2; 985 node.di_size = sblock.fs_bsize; 986 node.di_db[0] = alloc(node.di_size, node.di_mode); 987 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 988 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 989 iput(&node, LOSTFOUNDINO); 990 #endif 991 /* 992 * create the root directory 993 */ 994 if (mfs) 995 node.di_mode = IFDIR | 01777; 996 else 997 node.di_mode = IFDIR | UMASK; 998 node.di_nlink = PREDEFDIR; 999 if (Oflag) 1000 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 1001 else 1002 node.di_size = makedir(root_dir, PREDEFDIR); 1003 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 1004 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1005 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 1006 iput(&node, ROOTINO); 1007 } 1008 1009 /* 1010 * construct a set of directory entries in "buf". 1011 * return size of directory. 1012 */ 1013 int 1014 makedir(protodir, entries) 1015 register struct direct *protodir; 1016 int entries; 1017 { 1018 char *cp; 1019 int i, spcleft; 1020 1021 spcleft = DIRBLKSIZ; 1022 for (cp = buf, i = 0; i < entries - 1; i++) { 1023 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1024 memmove(cp, &protodir[i], protodir[i].d_reclen); 1025 cp += protodir[i].d_reclen; 1026 spcleft -= protodir[i].d_reclen; 1027 } 1028 protodir[i].d_reclen = spcleft; 1029 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1030 return (DIRBLKSIZ); 1031 } 1032 1033 /* 1034 * allocate a block or frag 1035 */ 1036 daddr_t 1037 alloc(size, mode) 1038 int size; 1039 int mode; 1040 { 1041 int i, frag; 1042 daddr_t d, blkno; 1043 1044 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1045 (char *)&acg); 1046 if (acg.cg_magic != CG_MAGIC) { 1047 printf("cg 0: bad magic number\n"); 1048 return (0); 1049 } 1050 if (acg.cg_cs.cs_nbfree == 0) { 1051 printf("first cylinder group ran out of space\n"); 1052 return (0); 1053 } 1054 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1055 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1056 goto goth; 1057 printf("internal error: can't find block in cyl 0\n"); 1058 return (0); 1059 goth: 1060 blkno = fragstoblks(&sblock, d); 1061 clrblock(&sblock, cg_blksfree(&acg), blkno); 1062 if (sblock.fs_contigsumsize > 0) 1063 clrbit(cg_clustersfree(&acg), blkno); 1064 acg.cg_cs.cs_nbfree--; 1065 sblock.fs_cstotal.cs_nbfree--; 1066 fscs[0].cs_nbfree--; 1067 if (mode & IFDIR) { 1068 acg.cg_cs.cs_ndir++; 1069 sblock.fs_cstotal.cs_ndir++; 1070 fscs[0].cs_ndir++; 1071 } 1072 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1073 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1074 if (size != sblock.fs_bsize) { 1075 frag = howmany(size, sblock.fs_fsize); 1076 fscs[0].cs_nffree += sblock.fs_frag - frag; 1077 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1078 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1079 acg.cg_frsum[sblock.fs_frag - frag]++; 1080 for (i = frag; i < sblock.fs_frag; i++) 1081 setbit(cg_blksfree(&acg), d + i); 1082 } 1083 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1084 (char *)&acg); 1085 return (d); 1086 } 1087 1088 /* 1089 * Calculate number of inodes per group. 1090 */ 1091 long 1092 calcipg(cpg, bpcg, usedbp) 1093 long cpg; 1094 long bpcg; 1095 off_t *usedbp; 1096 { 1097 int i; 1098 long ipg, new_ipg, ncg, ncyl; 1099 off_t usedb; 1100 1101 /* 1102 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1103 * Note that fssize is still in sectors, not filesystem blocks. 1104 */ 1105 ncyl = howmany(fssize, (u_int)secpercyl); 1106 ncg = howmany(ncyl, cpg); 1107 /* 1108 * Iterate a few times to allow for ipg depending on itself. 1109 */ 1110 ipg = 0; 1111 for (i = 0; i < 10; i++) { 1112 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1113 * NSPF(&sblock) * (off_t)sectorsize; 1114 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize 1115 / ncg / secpercyl / cpg; 1116 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1117 if (new_ipg == ipg) 1118 break; 1119 ipg = new_ipg; 1120 } 1121 *usedbp = usedb; 1122 return (ipg); 1123 } 1124 1125 /* 1126 * Allocate an inode on the disk 1127 */ 1128 void 1129 iput(ip, ino) 1130 register struct dinode *ip; 1131 register ino_t ino; 1132 { 1133 struct dinode buf[MAXINOPB]; 1134 daddr_t d; 1135 int c; 1136 1137 #ifdef FSIRAND 1138 ip->di_gen = random(); 1139 #endif 1140 c = ino_to_cg(&sblock, ino); 1141 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1142 (char *)&acg); 1143 if (acg.cg_magic != CG_MAGIC) { 1144 printf("cg 0: bad magic number\n"); 1145 exit(31); 1146 } 1147 acg.cg_cs.cs_nifree--; 1148 setbit(cg_inosused(&acg), ino); 1149 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1150 (char *)&acg); 1151 sblock.fs_cstotal.cs_nifree--; 1152 fscs[0].cs_nifree--; 1153 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 1154 printf("fsinit: inode value out of range (%d).\n", ino); 1155 exit(32); 1156 } 1157 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1158 rdfs(d, sblock.fs_bsize, (char *)buf); 1159 buf[ino_to_fsbo(&sblock, ino)] = *ip; 1160 wtfs(d, sblock.fs_bsize, (char *)buf); 1161 } 1162 1163 /* 1164 * Notify parent process that the filesystem has created itself successfully. 1165 * 1166 * We have to wait until the mount has actually completed! 1167 */ 1168 void 1169 started() 1170 { 1171 int retry = 100; /* 10 seconds, 100ms */ 1172 1173 while (mfs_ppid && retry) { 1174 struct stat st; 1175 1176 if ( 1177 stat(mfs_mtpt, &st) < 0 || 1178 st.st_dev != mfs_mtstat.st_dev 1179 ) { 1180 break; 1181 } 1182 usleep(100*1000); 1183 --retry; 1184 } 1185 if (retry == 0) { 1186 fatal("mfs mount failed waiting for mount to go active"); 1187 } 1188 exit(0); 1189 } 1190 1191 #ifdef STANDALONE 1192 /* 1193 * Replace libc function with one suited to our needs. 1194 */ 1195 caddr_t 1196 malloc(size) 1197 register u_long size; 1198 { 1199 char *base, *i; 1200 static u_long pgsz; 1201 struct rlimit rlp; 1202 1203 if (pgsz == 0) { 1204 base = sbrk(0); 1205 pgsz = getpagesize() - 1; 1206 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1207 base = sbrk(i - base); 1208 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1209 warn("getrlimit"); 1210 rlp.rlim_cur = rlp.rlim_max; 1211 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1212 warn("setrlimit"); 1213 memleft = rlp.rlim_max - (u_long)base; 1214 } 1215 size = (size + pgsz) &~ pgsz; 1216 if (size > memleft) 1217 size = memleft; 1218 memleft -= size; 1219 if (size == 0) 1220 return (0); 1221 return ((caddr_t)sbrk(size)); 1222 } 1223 1224 /* 1225 * Replace libc function with one suited to our needs. 1226 */ 1227 caddr_t 1228 realloc(ptr, size) 1229 char *ptr; 1230 u_long size; 1231 { 1232 void *p; 1233 1234 if ((p = malloc(size)) == NULL) 1235 return (NULL); 1236 memmove(p, ptr, size); 1237 free(ptr); 1238 return (p); 1239 } 1240 1241 /* 1242 * Replace libc function with one suited to our needs. 1243 */ 1244 char * 1245 calloc(size, numelm) 1246 u_long size, numelm; 1247 { 1248 caddr_t base; 1249 1250 size *= numelm; 1251 if ((base = malloc(size)) == NULL) 1252 return (NULL); 1253 memset(base, 0, size); 1254 return (base); 1255 } 1256 1257 /* 1258 * Replace libc function with one suited to our needs. 1259 */ 1260 void 1261 free(ptr) 1262 char *ptr; 1263 { 1264 1265 /* do not worry about it for now */ 1266 } 1267 1268 #else /* !STANDALONE */ 1269 1270 void 1271 raise_data_limit() 1272 { 1273 struct rlimit rlp; 1274 1275 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1276 warn("getrlimit"); 1277 rlp.rlim_cur = rlp.rlim_max; 1278 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1279 warn("setrlimit"); 1280 } 1281 1282 #ifdef __ELF__ 1283 extern char *_etext; 1284 #define etext _etext 1285 #else 1286 extern char *etext; 1287 #endif 1288 1289 void 1290 get_memleft() 1291 { 1292 static u_long pgsz; 1293 struct rlimit rlp; 1294 u_long freestart; 1295 u_long dstart; 1296 u_long memused; 1297 1298 pgsz = getpagesize() - 1; 1299 dstart = ((u_long)&etext) &~ pgsz; 1300 freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz); 1301 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1302 warn("getrlimit"); 1303 memused = freestart - dstart; 1304 memleft = rlp.rlim_cur - memused; 1305 } 1306 #endif /* STANDALONE */ 1307 1308 /* 1309 * read a block from the file system 1310 */ 1311 void 1312 rdfs(bno, size, bf) 1313 daddr_t bno; 1314 int size; 1315 char *bf; 1316 { 1317 int n; 1318 1319 wtfsflush(); 1320 if (mfs) { 1321 memmove(bf, membase + bno * sectorsize, size); 1322 return; 1323 } 1324 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1325 printf("seek error: %ld\n", (long)bno); 1326 err(33, "rdfs"); 1327 } 1328 n = read(fsi, bf, size); 1329 if (n != size) { 1330 printf("read error: %ld\n", (long)bno); 1331 err(34, "rdfs"); 1332 } 1333 } 1334 1335 #define WCSIZE (128 * 1024) 1336 daddr_t wc_sect; /* units of sectorsize */ 1337 int wc_end; /* bytes */ 1338 static char wc[WCSIZE]; /* bytes */ 1339 1340 /* 1341 * Flush dirty write behind buffer. 1342 */ 1343 void 1344 wtfsflush() 1345 { 1346 int n; 1347 if (wc_end) { 1348 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) { 1349 printf("seek error: %ld\n", (long)wc_sect); 1350 err(35, "wtfs - writecombine"); 1351 } 1352 n = write(fso, wc, wc_end); 1353 if (n != wc_end) { 1354 printf("write error: %ld\n", (long)wc_sect); 1355 err(36, "wtfs - writecombine"); 1356 } 1357 wc_end = 0; 1358 } 1359 } 1360 1361 /* 1362 * write a block to the file system 1363 */ 1364 void 1365 wtfs(bno, size, bf) 1366 daddr_t bno; 1367 int size; 1368 char *bf; 1369 { 1370 int n; 1371 int done; 1372 1373 if (mfs) { 1374 memmove(membase + bno * sectorsize, bf, size); 1375 return; 1376 } 1377 if (Nflag) 1378 return; 1379 done = 0; 1380 if (wc_end == 0 && size <= WCSIZE) { 1381 wc_sect = bno; 1382 bcopy(bf, wc, size); 1383 wc_end = size; 1384 if (wc_end < WCSIZE) 1385 return; 1386 done = 1; 1387 } 1388 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize && 1389 wc_end + size <= WCSIZE) { 1390 bcopy(bf, wc + wc_end, size); 1391 wc_end += size; 1392 if (wc_end < WCSIZE) 1393 return; 1394 done = 1; 1395 } 1396 wtfsflush(); 1397 if (done) 1398 return; 1399 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1400 printf("seek error: %ld\n", (long)bno); 1401 err(35, "wtfs"); 1402 } 1403 n = write(fso, bf, size); 1404 if (n != size) { 1405 printf("write error: %ld\n", (long)bno); 1406 err(36, "wtfs"); 1407 } 1408 } 1409 1410 /* 1411 * check if a block is available 1412 */ 1413 int 1414 isblock(fs, cp, h) 1415 struct fs *fs; 1416 unsigned char *cp; 1417 int h; 1418 { 1419 unsigned char mask; 1420 1421 switch (fs->fs_frag) { 1422 case 8: 1423 return (cp[h] == 0xff); 1424 case 4: 1425 mask = 0x0f << ((h & 0x1) << 2); 1426 return ((cp[h >> 1] & mask) == mask); 1427 case 2: 1428 mask = 0x03 << ((h & 0x3) << 1); 1429 return ((cp[h >> 2] & mask) == mask); 1430 case 1: 1431 mask = 0x01 << (h & 0x7); 1432 return ((cp[h >> 3] & mask) == mask); 1433 default: 1434 #ifdef STANDALONE 1435 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1436 #else 1437 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1438 #endif 1439 return (0); 1440 } 1441 } 1442 1443 /* 1444 * take a block out of the map 1445 */ 1446 void 1447 clrblock(fs, cp, h) 1448 struct fs *fs; 1449 unsigned char *cp; 1450 int h; 1451 { 1452 switch ((fs)->fs_frag) { 1453 case 8: 1454 cp[h] = 0; 1455 return; 1456 case 4: 1457 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1458 return; 1459 case 2: 1460 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1461 return; 1462 case 1: 1463 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1464 return; 1465 default: 1466 #ifdef STANDALONE 1467 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1468 #else 1469 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1470 #endif 1471 return; 1472 } 1473 } 1474 1475 /* 1476 * put a block into the map 1477 */ 1478 void 1479 setblock(fs, cp, h) 1480 struct fs *fs; 1481 unsigned char *cp; 1482 int h; 1483 { 1484 switch (fs->fs_frag) { 1485 case 8: 1486 cp[h] = 0xff; 1487 return; 1488 case 4: 1489 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1490 return; 1491 case 2: 1492 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1493 return; 1494 case 1: 1495 cp[h >> 3] |= (0x01 << (h & 0x7)); 1496 return; 1497 default: 1498 #ifdef STANDALONE 1499 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1500 #else 1501 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1502 #endif 1503 return; 1504 } 1505 } 1506 1507 /* 1508 * Determine the number of characters in a 1509 * single line. 1510 */ 1511 1512 static int 1513 charsperline() 1514 { 1515 int columns; 1516 char *cp; 1517 struct winsize ws; 1518 1519 columns = 0; 1520 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1521 columns = ws.ws_col; 1522 if (columns == 0 && (cp = getenv("COLUMNS"))) 1523 columns = atoi(cp); 1524 if (columns == 0) 1525 columns = 80; /* last resort */ 1526 return columns; 1527 } 1528