1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define IN_RTLD /* So we pickup the P_OSREL defines */ 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 static struct csum *fscs; 80 #define sblock disk.d_fs 81 #define acg disk.d_cg 82 83 union dinode { 84 struct ufs1_dinode dp1; 85 struct ufs2_dinode dp2; 86 }; 87 #define DIP(dp, field) \ 88 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 89 (dp)->dp1.field : (dp)->dp2.field) 90 91 static caddr_t iobuf; 92 static long iobufsize; 93 static ufs2_daddr_t alloc(int size, int mode); 94 static int charsperline(void); 95 static void clrblock(struct fs *, unsigned char *, int); 96 static void fsinit(time_t); 97 static int ilog2(int); 98 static void initcg(int, time_t); 99 static int isblock(struct fs *, unsigned char *, int); 100 static void iput(union dinode *, ino_t); 101 static int makedir(struct direct *, int); 102 static void setblock(struct fs *, unsigned char *, int); 103 static void wtfs(ufs2_daddr_t, int, char *); 104 static void cgckhash(struct cg *); 105 static u_int32_t newfs_random(void); 106 107 void 108 mkfs(struct partition *pp, char *fsys) 109 { 110 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 111 long i, j, csfrags; 112 uint cg; 113 time_t utime; 114 quad_t sizepb; 115 int width; 116 ino_t maxinum; 117 int minfragsperinode; /* minimum ratio of frags to inodes */ 118 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 119 struct fsrecovery *fsr; 120 char *fsrbuf; 121 union { 122 struct fs fdummy; 123 char cdummy[SBLOCKSIZE]; 124 } dummy; 125 #define fsdummy dummy.fdummy 126 #define chdummy dummy.cdummy 127 128 /* 129 * Our blocks == sector size, and the version of UFS we are using is 130 * specified by Oflag. 131 */ 132 disk.d_bsize = sectorsize; 133 disk.d_ufs = Oflag; 134 if (Rflag) 135 utime = 1000000000; 136 else 137 time(&utime); 138 sblock.fs_old_flags = FS_FLAGS_UPDATED; 139 sblock.fs_flags = 0; 140 if (Uflag) 141 sblock.fs_flags |= FS_DOSOFTDEP; 142 if (Lflag) 143 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 144 if (Jflag) 145 sblock.fs_flags |= FS_GJOURNAL; 146 if (lflag) 147 sblock.fs_flags |= FS_MULTILABEL; 148 if (tflag) 149 sblock.fs_flags |= FS_TRIM; 150 /* 151 * Validate the given file system size. 152 * Verify that its last block can actually be accessed. 153 * Convert to file system fragment sized units. 154 */ 155 if (fssize <= 0) { 156 printf("preposterous size %jd\n", (intmax_t)fssize); 157 exit(13); 158 } 159 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 160 (char *)&sblock); 161 /* 162 * collect and verify the file system density info 163 */ 164 sblock.fs_avgfilesize = avgfilesize; 165 sblock.fs_avgfpdir = avgfilesperdir; 166 if (sblock.fs_avgfilesize <= 0) 167 printf("illegal expected average file size %d\n", 168 sblock.fs_avgfilesize), exit(14); 169 if (sblock.fs_avgfpdir <= 0) 170 printf("illegal expected number of files per directory %d\n", 171 sblock.fs_avgfpdir), exit(15); 172 173 restart: 174 /* 175 * collect and verify the block and fragment sizes 176 */ 177 sblock.fs_bsize = bsize; 178 sblock.fs_fsize = fsize; 179 if (!POWEROF2(sblock.fs_bsize)) { 180 printf("block size must be a power of 2, not %d\n", 181 sblock.fs_bsize); 182 exit(16); 183 } 184 if (!POWEROF2(sblock.fs_fsize)) { 185 printf("fragment size must be a power of 2, not %d\n", 186 sblock.fs_fsize); 187 exit(17); 188 } 189 if (sblock.fs_fsize < sectorsize) { 190 printf("increasing fragment size from %d to sector size (%d)\n", 191 sblock.fs_fsize, sectorsize); 192 sblock.fs_fsize = sectorsize; 193 } 194 if (sblock.fs_bsize > MAXBSIZE) { 195 printf("decreasing block size from %d to maximum (%d)\n", 196 sblock.fs_bsize, MAXBSIZE); 197 sblock.fs_bsize = MAXBSIZE; 198 } 199 if (sblock.fs_bsize < MINBSIZE) { 200 printf("increasing block size from %d to minimum (%d)\n", 201 sblock.fs_bsize, MINBSIZE); 202 sblock.fs_bsize = MINBSIZE; 203 } 204 if (sblock.fs_fsize > MAXBSIZE) { 205 printf("decreasing fragment size from %d to maximum (%d)\n", 206 sblock.fs_fsize, MAXBSIZE); 207 sblock.fs_fsize = MAXBSIZE; 208 } 209 if (sblock.fs_bsize < sblock.fs_fsize) { 210 printf("increasing block size from %d to fragment size (%d)\n", 211 sblock.fs_bsize, sblock.fs_fsize); 212 sblock.fs_bsize = sblock.fs_fsize; 213 } 214 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 215 printf( 216 "increasing fragment size from %d to block size / %d (%d)\n", 217 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 218 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 219 } 220 if (maxbsize == 0) 221 maxbsize = bsize; 222 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 223 sblock.fs_maxbsize = sblock.fs_bsize; 224 printf("Extent size set to %d\n", sblock.fs_maxbsize); 225 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 226 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 227 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 228 } else { 229 sblock.fs_maxbsize = maxbsize; 230 } 231 /* 232 * Maxcontig sets the default for the maximum number of blocks 233 * that may be allocated sequentially. With file system clustering 234 * it is possible to allocate contiguous blocks up to the maximum 235 * transfer size permitted by the controller or buffering. 236 */ 237 if (maxcontig == 0) 238 maxcontig = MAX(1, MAXPHYS / bsize); 239 sblock.fs_maxcontig = maxcontig; 240 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 241 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 242 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 243 } 244 if (sblock.fs_maxcontig > 1) 245 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 246 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 247 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 248 sblock.fs_qbmask = ~sblock.fs_bmask; 249 sblock.fs_qfmask = ~sblock.fs_fmask; 250 sblock.fs_bshift = ilog2(sblock.fs_bsize); 251 sblock.fs_fshift = ilog2(sblock.fs_fsize); 252 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 253 sblock.fs_fragshift = ilog2(sblock.fs_frag); 254 if (sblock.fs_frag > MAXFRAG) { 255 printf("fragment size %d is still too small (can't happen)\n", 256 sblock.fs_bsize / MAXFRAG); 257 exit(21); 258 } 259 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 260 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 261 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 262 263 /* 264 * Before the filesystem is finally initialized, mark it 265 * as incompletely initialized. 266 */ 267 sblock.fs_magic = FS_BAD_MAGIC; 268 269 if (Oflag == 1) { 270 sblock.fs_sblockloc = SBLOCK_UFS1; 271 sblock.fs_sblockactualloc = SBLOCK_UFS1; 272 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 273 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 274 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 275 sizeof(ufs1_daddr_t)); 276 sblock.fs_old_inodefmt = FS_44INODEFMT; 277 sblock.fs_old_cgoffset = 0; 278 sblock.fs_old_cgmask = 0xffffffff; 279 sblock.fs_old_size = sblock.fs_size; 280 sblock.fs_old_rotdelay = 0; 281 sblock.fs_old_rps = 60; 282 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 283 sblock.fs_old_cpg = 1; 284 sblock.fs_old_interleave = 1; 285 sblock.fs_old_trackskew = 0; 286 sblock.fs_old_cpc = 0; 287 sblock.fs_old_postblformat = 1; 288 sblock.fs_old_nrpos = 1; 289 } else { 290 sblock.fs_sblockloc = SBLOCK_UFS2; 291 sblock.fs_sblockactualloc = SBLOCK_UFS2; 292 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 293 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 294 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 295 sizeof(ufs2_daddr_t)); 296 } 297 sblock.fs_sblkno = 298 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 299 sblock.fs_frag); 300 sblock.fs_cblkno = sblock.fs_sblkno + 301 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 302 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 303 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 304 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 305 sizepb *= NINDIR(&sblock); 306 sblock.fs_maxfilesize += sizepb; 307 } 308 309 /* 310 * It's impossible to create a snapshot in case that fs_maxfilesize 311 * is smaller than the fssize. 312 */ 313 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 314 warnx("WARNING: You will be unable to create snapshots on this " 315 "file system. Correct by using a larger blocksize."); 316 } 317 318 /* 319 * Calculate the number of blocks to put into each cylinder group. 320 * 321 * This algorithm selects the number of blocks per cylinder 322 * group. The first goal is to have at least enough data blocks 323 * in each cylinder group to meet the density requirement. Once 324 * this goal is achieved we try to expand to have at least 325 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 326 * pack as many blocks into each cylinder group map as will fit. 327 * 328 * We start by calculating the smallest number of blocks that we 329 * can put into each cylinder group. If this is too big, we reduce 330 * the density until it fits. 331 */ 332 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 333 minfragsperinode = 1 + fssize / maxinum; 334 if (density == 0) { 335 density = MAX(NFPI, minfragsperinode) * fsize; 336 } else if (density < minfragsperinode * fsize) { 337 origdensity = density; 338 density = minfragsperinode * fsize; 339 fprintf(stderr, "density increased from %d to %d\n", 340 origdensity, density); 341 } 342 origdensity = density; 343 for (;;) { 344 fragsperinode = MAX(numfrags(&sblock, density), 1); 345 if (fragsperinode < minfragsperinode) { 346 bsize <<= 1; 347 fsize <<= 1; 348 printf("Block size too small for a file system %s %d\n", 349 "of this size. Increasing blocksize to", bsize); 350 goto restart; 351 } 352 minfpg = fragsperinode * INOPB(&sblock); 353 if (minfpg > sblock.fs_size) 354 minfpg = sblock.fs_size; 355 sblock.fs_ipg = INOPB(&sblock); 356 sblock.fs_fpg = roundup(sblock.fs_iblkno + 357 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 358 if (sblock.fs_fpg < minfpg) 359 sblock.fs_fpg = minfpg; 360 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 361 INOPB(&sblock)); 362 sblock.fs_fpg = roundup(sblock.fs_iblkno + 363 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 364 if (sblock.fs_fpg < minfpg) 365 sblock.fs_fpg = minfpg; 366 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 367 INOPB(&sblock)); 368 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 369 break; 370 density -= sblock.fs_fsize; 371 } 372 if (density != origdensity) 373 printf("density reduced from %d to %d\n", origdensity, density); 374 /* 375 * Start packing more blocks into the cylinder group until 376 * it cannot grow any larger, the number of cylinder groups 377 * drops below MINCYLGRPS, or we reach the size requested. 378 * For UFS1 inodes per cylinder group are stored in an int16_t 379 * so fs_ipg is limited to 2^15 - 1. 380 */ 381 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 382 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 383 INOPB(&sblock)); 384 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 385 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 386 break; 387 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 388 continue; 389 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 390 break; 391 } 392 sblock.fs_fpg -= sblock.fs_frag; 393 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 394 INOPB(&sblock)); 395 break; 396 } 397 /* 398 * Check to be sure that the last cylinder group has enough blocks 399 * to be viable. If it is too small, reduce the number of blocks 400 * per cylinder group which will have the effect of moving more 401 * blocks into the last cylinder group. 402 */ 403 optimalfpg = sblock.fs_fpg; 404 for (;;) { 405 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 406 lastminfpg = roundup(sblock.fs_iblkno + 407 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 408 if (sblock.fs_size < lastminfpg) { 409 printf("Filesystem size %jd < minimum size of %d\n", 410 (intmax_t)sblock.fs_size, lastminfpg); 411 exit(28); 412 } 413 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 414 sblock.fs_size % sblock.fs_fpg == 0) 415 break; 416 sblock.fs_fpg -= sblock.fs_frag; 417 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 418 INOPB(&sblock)); 419 } 420 if (optimalfpg != sblock.fs_fpg) 421 printf("Reduced frags per cylinder group from %d to %d %s\n", 422 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 423 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 424 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 425 if (Oflag == 1) { 426 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 427 sblock.fs_old_nsect = sblock.fs_old_spc; 428 sblock.fs_old_npsect = sblock.fs_old_spc; 429 sblock.fs_old_ncyl = sblock.fs_ncg; 430 } 431 /* 432 * fill in remaining fields of the super block 433 */ 434 sblock.fs_csaddr = cgdmin(&sblock, 0); 435 sblock.fs_cssize = 436 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 437 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 438 if (fscs == NULL) 439 errx(31, "calloc failed"); 440 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 441 if (sblock.fs_sbsize > SBLOCKSIZE) 442 sblock.fs_sbsize = SBLOCKSIZE; 443 if (sblock.fs_sbsize < realsectorsize) 444 sblock.fs_sbsize = realsectorsize; 445 sblock.fs_minfree = minfree; 446 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 447 sblock.fs_metaspace = blknum(&sblock, metaspace); 448 else if (metaspace != -1) 449 /* reserve half of minfree for metadata blocks */ 450 sblock.fs_metaspace = blknum(&sblock, 451 (sblock.fs_fpg * minfree) / 200); 452 if (maxbpg == 0) 453 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 454 else 455 sblock.fs_maxbpg = maxbpg; 456 sblock.fs_optim = opt; 457 sblock.fs_cgrotor = 0; 458 sblock.fs_pendingblocks = 0; 459 sblock.fs_pendinginodes = 0; 460 sblock.fs_fmod = 0; 461 sblock.fs_ronly = 0; 462 sblock.fs_state = 0; 463 sblock.fs_clean = 1; 464 sblock.fs_id[0] = (long)utime; 465 sblock.fs_id[1] = newfs_random(); 466 sblock.fs_fsmnt[0] = '\0'; 467 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 468 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 469 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 470 sblock.fs_cstotal.cs_nbfree = 471 fragstoblks(&sblock, sblock.fs_dsize) - 472 howmany(csfrags, sblock.fs_frag); 473 sblock.fs_cstotal.cs_nffree = 474 fragnum(&sblock, sblock.fs_size) + 475 (fragnum(&sblock, csfrags) > 0 ? 476 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 477 sblock.fs_cstotal.cs_nifree = 478 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 479 sblock.fs_cstotal.cs_ndir = 0; 480 sblock.fs_dsize -= csfrags; 481 sblock.fs_time = utime; 482 if (Oflag == 1) { 483 sblock.fs_old_time = utime; 484 sblock.fs_old_dsize = sblock.fs_dsize; 485 sblock.fs_old_csaddr = sblock.fs_csaddr; 486 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 487 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 488 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 489 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 490 } 491 /* 492 * Set flags for metadata that is being check-hashed. 493 */ 494 if (Oflag > 1 && getosreldate() >= P_OSREL_CK_CYLGRP) 495 sblock.fs_metackhash = CK_CYLGRP; 496 497 /* 498 * Dump out summary information about file system. 499 */ 500 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 501 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 502 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 503 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 504 sblock.fs_fsize); 505 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 506 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 507 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 508 if (sblock.fs_flags & FS_DOSOFTDEP) 509 printf("\twith soft updates\n"); 510 # undef B2MBFACTOR 511 512 if (Eflag && !Nflag) { 513 printf("Erasing sectors [%jd...%jd]\n", 514 sblock.fs_sblockloc / disk.d_bsize, 515 fsbtodb(&sblock, sblock.fs_size) - 1); 516 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 517 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 518 } 519 /* 520 * Wipe out old UFS1 superblock(s) if necessary. 521 */ 522 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 523 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 524 if (i == -1) 525 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 526 527 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 528 fsdummy.fs_magic = 0; 529 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 530 chdummy, SBLOCKSIZE); 531 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 532 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 533 break; 534 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 535 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 536 } 537 } 538 } 539 if (!Nflag) 540 sbput(disk.d_fd, &disk.d_fs, 0); 541 if (Xflag == 1) { 542 printf("** Exiting on Xflag 1\n"); 543 exit(0); 544 } 545 if (Xflag == 2) 546 printf("** Leaving BAD MAGIC on Xflag 2\n"); 547 else 548 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 549 550 /* 551 * Now build the cylinders group blocks and 552 * then print out indices of cylinder groups. 553 */ 554 printf("super-block backups (for fsck_ffs -b #) at:\n"); 555 i = 0; 556 width = charsperline(); 557 /* 558 * Allocate space for cylinder group map and 559 * two sets of inode blocks. 560 */ 561 iobufsize = 3 * sblock.fs_bsize; 562 if ((iobuf = calloc(1, iobufsize)) == 0) { 563 printf("Cannot allocate I/O buffer\n"); 564 exit(38); 565 } 566 /* 567 * Write out all the cylinder groups and backup superblocks. 568 */ 569 for (cg = 0; cg < sblock.fs_ncg; cg++) { 570 if (!Nflag) 571 initcg(cg, utime); 572 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 573 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 574 cg < (sblock.fs_ncg-1) ? "," : ""); 575 if (j < 0) 576 tmpbuf[j = 0] = '\0'; 577 if (i + j >= width) { 578 printf("\n"); 579 i = 0; 580 } 581 i += j; 582 printf("%s", tmpbuf); 583 fflush(stdout); 584 } 585 printf("\n"); 586 if (Nflag) 587 exit(0); 588 /* 589 * Now construct the initial file system, 590 * then write out the super-block. 591 */ 592 fsinit(utime); 593 if (Oflag == 1) { 594 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 595 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 596 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 597 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 598 } 599 if (Xflag == 3) { 600 printf("** Exiting on Xflag 3\n"); 601 exit(0); 602 } 603 /* 604 * Reference the summary information so it will also be written. 605 */ 606 sblock.fs_csp = fscs; 607 sbput(disk.d_fd, &disk.d_fs, 0); 608 /* 609 * For UFS1 filesystems with a blocksize of 64K, the first 610 * alternate superblock resides at the location used for 611 * the default UFS2 superblock. As there is a valid 612 * superblock at this location, the boot code will use 613 * it as its first choice. Thus we have to ensure that 614 * all of its statistcs on usage are correct. 615 */ 616 if (Oflag == 1 && sblock.fs_bsize == 65536) 617 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 618 sblock.fs_bsize, (char *)&sblock); 619 /* 620 * Read the last sector of the boot block, replace the last 621 * 20 bytes with the recovery information, then write it back. 622 * The recovery information only works for UFS2 filesystems. 623 */ 624 if (sblock.fs_magic == FS_UFS2_MAGIC) { 625 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 626 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 627 fsrbuf, realsectorsize) == -1) 628 err(1, "can't read recovery area: %s", disk.d_error); 629 fsr = 630 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 631 fsr->fsr_magic = sblock.fs_magic; 632 fsr->fsr_fpg = sblock.fs_fpg; 633 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 634 fsr->fsr_sblkno = sblock.fs_sblkno; 635 fsr->fsr_ncg = sblock.fs_ncg; 636 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 637 realsectorsize, fsrbuf); 638 free(fsrbuf); 639 } 640 /* 641 * Update information about this partition in pack 642 * label, to that it may be updated on disk. 643 */ 644 if (pp != NULL) { 645 pp->p_fstype = FS_BSDFFS; 646 pp->p_fsize = sblock.fs_fsize; 647 pp->p_frag = sblock.fs_frag; 648 pp->p_cpg = sblock.fs_fpg; 649 } 650 } 651 652 /* 653 * Initialize a cylinder group. 654 */ 655 void 656 initcg(int cylno, time_t utime) 657 { 658 long blkno, start; 659 off_t savedactualloc; 660 uint i, j, d, dlower, dupper; 661 ufs2_daddr_t cbase, dmax; 662 struct ufs1_dinode *dp1; 663 struct ufs2_dinode *dp2; 664 struct csum *cs; 665 666 /* 667 * Determine block bounds for cylinder group. 668 * Allow space for super block summary information in first 669 * cylinder group. 670 */ 671 cbase = cgbase(&sblock, cylno); 672 dmax = cbase + sblock.fs_fpg; 673 if (dmax > sblock.fs_size) 674 dmax = sblock.fs_size; 675 dlower = cgsblock(&sblock, cylno) - cbase; 676 dupper = cgdmin(&sblock, cylno) - cbase; 677 if (cylno == 0) 678 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 679 cs = &fscs[cylno]; 680 memset(&acg, 0, sblock.fs_cgsize); 681 acg.cg_time = utime; 682 acg.cg_magic = CG_MAGIC; 683 acg.cg_cgx = cylno; 684 acg.cg_niblk = sblock.fs_ipg; 685 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 686 acg.cg_ndblk = dmax - cbase; 687 if (sblock.fs_contigsumsize > 0) 688 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 689 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 690 if (Oflag == 2) { 691 acg.cg_iusedoff = start; 692 } else { 693 acg.cg_old_ncyl = sblock.fs_old_cpg; 694 acg.cg_old_time = acg.cg_time; 695 acg.cg_time = 0; 696 acg.cg_old_niblk = acg.cg_niblk; 697 acg.cg_niblk = 0; 698 acg.cg_initediblk = 0; 699 acg.cg_old_btotoff = start; 700 acg.cg_old_boff = acg.cg_old_btotoff + 701 sblock.fs_old_cpg * sizeof(int32_t); 702 acg.cg_iusedoff = acg.cg_old_boff + 703 sblock.fs_old_cpg * sizeof(u_int16_t); 704 } 705 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 706 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 707 if (sblock.fs_contigsumsize > 0) { 708 acg.cg_clustersumoff = 709 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 710 acg.cg_clustersumoff -= sizeof(u_int32_t); 711 acg.cg_clusteroff = acg.cg_clustersumoff + 712 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 713 acg.cg_nextfreeoff = acg.cg_clusteroff + 714 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 715 } 716 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 717 printf("Panic: cylinder group too big\n"); 718 exit(37); 719 } 720 acg.cg_cs.cs_nifree += sblock.fs_ipg; 721 if (cylno == 0) 722 for (i = 0; i < (long)UFS_ROOTINO; i++) { 723 setbit(cg_inosused(&acg), i); 724 acg.cg_cs.cs_nifree--; 725 } 726 if (cylno > 0) { 727 /* 728 * In cylno 0, beginning space is reserved 729 * for boot and super blocks. 730 */ 731 for (d = 0; d < dlower; d += sblock.fs_frag) { 732 blkno = d / sblock.fs_frag; 733 setblock(&sblock, cg_blksfree(&acg), blkno); 734 if (sblock.fs_contigsumsize > 0) 735 setbit(cg_clustersfree(&acg), blkno); 736 acg.cg_cs.cs_nbfree++; 737 } 738 } 739 if ((i = dupper % sblock.fs_frag)) { 740 acg.cg_frsum[sblock.fs_frag - i]++; 741 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 742 setbit(cg_blksfree(&acg), dupper); 743 acg.cg_cs.cs_nffree++; 744 } 745 } 746 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 747 d += sblock.fs_frag) { 748 blkno = d / sblock.fs_frag; 749 setblock(&sblock, cg_blksfree(&acg), blkno); 750 if (sblock.fs_contigsumsize > 0) 751 setbit(cg_clustersfree(&acg), blkno); 752 acg.cg_cs.cs_nbfree++; 753 } 754 if (d < acg.cg_ndblk) { 755 acg.cg_frsum[acg.cg_ndblk - d]++; 756 for (; d < acg.cg_ndblk; d++) { 757 setbit(cg_blksfree(&acg), d); 758 acg.cg_cs.cs_nffree++; 759 } 760 } 761 if (sblock.fs_contigsumsize > 0) { 762 int32_t *sump = cg_clustersum(&acg); 763 u_char *mapp = cg_clustersfree(&acg); 764 int map = *mapp++; 765 int bit = 1; 766 int run = 0; 767 768 for (i = 0; i < acg.cg_nclusterblks; i++) { 769 if ((map & bit) != 0) 770 run++; 771 else if (run != 0) { 772 if (run > sblock.fs_contigsumsize) 773 run = sblock.fs_contigsumsize; 774 sump[run]++; 775 run = 0; 776 } 777 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 778 bit <<= 1; 779 else { 780 map = *mapp++; 781 bit = 1; 782 } 783 } 784 if (run != 0) { 785 if (run > sblock.fs_contigsumsize) 786 run = sblock.fs_contigsumsize; 787 sump[run]++; 788 } 789 } 790 *cs = acg.cg_cs; 791 cgckhash(&acg); 792 /* 793 * Write out the duplicate super block. Then write the cylinder 794 * group map and two blocks worth of inodes in a single write. 795 */ 796 savedactualloc = sblock.fs_sblockactualloc; 797 sblock.fs_sblockactualloc = 798 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 799 sbput(disk.d_fd, &disk.d_fs, 0); 800 sblock.fs_sblockactualloc = savedactualloc; 801 start = 0; 802 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 803 start += sblock.fs_bsize; 804 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 805 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 806 for (i = 0; i < acg.cg_initediblk; i++) { 807 if (sblock.fs_magic == FS_UFS1_MAGIC) { 808 dp1->di_gen = newfs_random(); 809 dp1++; 810 } else { 811 dp2->di_gen = newfs_random(); 812 dp2++; 813 } 814 } 815 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), iobufsize, iobuf); 816 /* 817 * For the old file system, we have to initialize all the inodes. 818 */ 819 if (Oflag == 1) { 820 for (i = 2 * sblock.fs_frag; 821 i < sblock.fs_ipg / INOPF(&sblock); 822 i += sblock.fs_frag) { 823 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 824 for (j = 0; j < INOPB(&sblock); j++) { 825 dp1->di_gen = newfs_random(); 826 dp1++; 827 } 828 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 829 sblock.fs_bsize, &iobuf[start]); 830 } 831 } 832 } 833 834 /* 835 * initialize the file system 836 */ 837 #define ROOTLINKCNT 3 838 839 static struct direct root_dir[] = { 840 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 841 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 842 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 843 }; 844 845 #define SNAPLINKCNT 2 846 847 static struct direct snap_dir[] = { 848 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 849 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 850 }; 851 852 void 853 fsinit(time_t utime) 854 { 855 union dinode node; 856 struct group *grp; 857 gid_t gid; 858 int entries; 859 860 memset(&node, 0, sizeof node); 861 if ((grp = getgrnam("operator")) != NULL) { 862 gid = grp->gr_gid; 863 } else { 864 warnx("Cannot retrieve operator gid, using gid 0."); 865 gid = 0; 866 } 867 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 868 if (sblock.fs_magic == FS_UFS1_MAGIC) { 869 /* 870 * initialize the node 871 */ 872 node.dp1.di_atime = utime; 873 node.dp1.di_mtime = utime; 874 node.dp1.di_ctime = utime; 875 /* 876 * create the root directory 877 */ 878 node.dp1.di_mode = IFDIR | UMASK; 879 node.dp1.di_nlink = entries; 880 node.dp1.di_size = makedir(root_dir, entries); 881 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 882 node.dp1.di_blocks = 883 btodb(fragroundup(&sblock, node.dp1.di_size)); 884 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 885 iobuf); 886 iput(&node, UFS_ROOTINO); 887 if (!nflag) { 888 /* 889 * create the .snap directory 890 */ 891 node.dp1.di_mode |= 020; 892 node.dp1.di_gid = gid; 893 node.dp1.di_nlink = SNAPLINKCNT; 894 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 895 node.dp1.di_db[0] = 896 alloc(sblock.fs_fsize, node.dp1.di_mode); 897 node.dp1.di_blocks = 898 btodb(fragroundup(&sblock, node.dp1.di_size)); 899 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 900 sblock.fs_fsize, iobuf); 901 iput(&node, UFS_ROOTINO + 1); 902 } 903 } else { 904 /* 905 * initialize the node 906 */ 907 node.dp2.di_atime = utime; 908 node.dp2.di_mtime = utime; 909 node.dp2.di_ctime = utime; 910 node.dp2.di_birthtime = utime; 911 /* 912 * create the root directory 913 */ 914 node.dp2.di_mode = IFDIR | UMASK; 915 node.dp2.di_nlink = entries; 916 node.dp2.di_size = makedir(root_dir, entries); 917 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 918 node.dp2.di_blocks = 919 btodb(fragroundup(&sblock, node.dp2.di_size)); 920 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 921 iobuf); 922 iput(&node, UFS_ROOTINO); 923 if (!nflag) { 924 /* 925 * create the .snap directory 926 */ 927 node.dp2.di_mode |= 020; 928 node.dp2.di_gid = gid; 929 node.dp2.di_nlink = SNAPLINKCNT; 930 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 931 node.dp2.di_db[0] = 932 alloc(sblock.fs_fsize, node.dp2.di_mode); 933 node.dp2.di_blocks = 934 btodb(fragroundup(&sblock, node.dp2.di_size)); 935 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 936 sblock.fs_fsize, iobuf); 937 iput(&node, UFS_ROOTINO + 1); 938 } 939 } 940 } 941 942 /* 943 * construct a set of directory entries in "iobuf". 944 * return size of directory. 945 */ 946 int 947 makedir(struct direct *protodir, int entries) 948 { 949 char *cp; 950 int i, spcleft; 951 952 spcleft = DIRBLKSIZ; 953 memset(iobuf, 0, DIRBLKSIZ); 954 for (cp = iobuf, i = 0; i < entries - 1; i++) { 955 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 956 memmove(cp, &protodir[i], protodir[i].d_reclen); 957 cp += protodir[i].d_reclen; 958 spcleft -= protodir[i].d_reclen; 959 } 960 protodir[i].d_reclen = spcleft; 961 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 962 return (DIRBLKSIZ); 963 } 964 965 /* 966 * allocate a block or frag 967 */ 968 ufs2_daddr_t 969 alloc(int size, int mode) 970 { 971 int i, blkno, frag; 972 uint d; 973 974 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 975 sblock.fs_cgsize); 976 if (acg.cg_magic != CG_MAGIC) { 977 printf("cg 0: bad magic number\n"); 978 exit(38); 979 } 980 if (acg.cg_cs.cs_nbfree == 0) { 981 printf("first cylinder group ran out of space\n"); 982 exit(39); 983 } 984 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 985 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 986 goto goth; 987 printf("internal error: can't find block in cyl 0\n"); 988 exit(40); 989 goth: 990 blkno = fragstoblks(&sblock, d); 991 clrblock(&sblock, cg_blksfree(&acg), blkno); 992 if (sblock.fs_contigsumsize > 0) 993 clrbit(cg_clustersfree(&acg), blkno); 994 acg.cg_cs.cs_nbfree--; 995 sblock.fs_cstotal.cs_nbfree--; 996 fscs[0].cs_nbfree--; 997 if (mode & IFDIR) { 998 acg.cg_cs.cs_ndir++; 999 sblock.fs_cstotal.cs_ndir++; 1000 fscs[0].cs_ndir++; 1001 } 1002 if (size != sblock.fs_bsize) { 1003 frag = howmany(size, sblock.fs_fsize); 1004 fscs[0].cs_nffree += sblock.fs_frag - frag; 1005 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1006 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1007 acg.cg_frsum[sblock.fs_frag - frag]++; 1008 for (i = frag; i < sblock.fs_frag; i++) 1009 setbit(cg_blksfree(&acg), d + i); 1010 } 1011 /* XXX cgwrite(&disk, 0)??? */ 1012 cgckhash(&acg); 1013 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1014 (char *)&acg); 1015 return ((ufs2_daddr_t)d); 1016 } 1017 1018 /* 1019 * Allocate an inode on the disk 1020 */ 1021 void 1022 iput(union dinode *ip, ino_t ino) 1023 { 1024 ufs2_daddr_t d; 1025 1026 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1027 sblock.fs_cgsize); 1028 if (acg.cg_magic != CG_MAGIC) { 1029 printf("cg 0: bad magic number\n"); 1030 exit(31); 1031 } 1032 acg.cg_cs.cs_nifree--; 1033 setbit(cg_inosused(&acg), ino); 1034 cgckhash(&acg); 1035 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1036 (char *)&acg); 1037 sblock.fs_cstotal.cs_nifree--; 1038 fscs[0].cs_nifree--; 1039 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1040 printf("fsinit: inode value out of range (%ju).\n", 1041 (uintmax_t)ino); 1042 exit(32); 1043 } 1044 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1045 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1046 if (sblock.fs_magic == FS_UFS1_MAGIC) 1047 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1048 ip->dp1; 1049 else 1050 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1051 ip->dp2; 1052 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1053 } 1054 1055 /* 1056 * possibly write to disk 1057 */ 1058 static void 1059 wtfs(ufs2_daddr_t bno, int size, char *bf) 1060 { 1061 if (Nflag) 1062 return; 1063 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1064 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1065 } 1066 1067 /* 1068 * Calculate the check-hash of the cylinder group. 1069 */ 1070 static void 1071 cgckhash(cgp) 1072 struct cg *cgp; 1073 { 1074 1075 if ((sblock.fs_metackhash & CK_CYLGRP) == 0) 1076 return; 1077 cgp->cg_ckhash = 0; 1078 cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); 1079 } 1080 1081 /* 1082 * check if a block is available 1083 */ 1084 static int 1085 isblock(struct fs *fs, unsigned char *cp, int h) 1086 { 1087 unsigned char mask; 1088 1089 switch (fs->fs_frag) { 1090 case 8: 1091 return (cp[h] == 0xff); 1092 case 4: 1093 mask = 0x0f << ((h & 0x1) << 2); 1094 return ((cp[h >> 1] & mask) == mask); 1095 case 2: 1096 mask = 0x03 << ((h & 0x3) << 1); 1097 return ((cp[h >> 2] & mask) == mask); 1098 case 1: 1099 mask = 0x01 << (h & 0x7); 1100 return ((cp[h >> 3] & mask) == mask); 1101 default: 1102 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1103 return (0); 1104 } 1105 } 1106 1107 /* 1108 * take a block out of the map 1109 */ 1110 static void 1111 clrblock(struct fs *fs, unsigned char *cp, int h) 1112 { 1113 switch ((fs)->fs_frag) { 1114 case 8: 1115 cp[h] = 0; 1116 return; 1117 case 4: 1118 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1119 return; 1120 case 2: 1121 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1122 return; 1123 case 1: 1124 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1125 return; 1126 default: 1127 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1128 return; 1129 } 1130 } 1131 1132 /* 1133 * put a block into the map 1134 */ 1135 static void 1136 setblock(struct fs *fs, unsigned char *cp, int h) 1137 { 1138 switch (fs->fs_frag) { 1139 case 8: 1140 cp[h] = 0xff; 1141 return; 1142 case 4: 1143 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1144 return; 1145 case 2: 1146 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1147 return; 1148 case 1: 1149 cp[h >> 3] |= (0x01 << (h & 0x7)); 1150 return; 1151 default: 1152 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1153 return; 1154 } 1155 } 1156 1157 /* 1158 * Determine the number of characters in a 1159 * single line. 1160 */ 1161 1162 static int 1163 charsperline(void) 1164 { 1165 int columns; 1166 char *cp; 1167 struct winsize ws; 1168 1169 columns = 0; 1170 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1171 columns = ws.ws_col; 1172 if (columns == 0 && (cp = getenv("COLUMNS"))) 1173 columns = atoi(cp); 1174 if (columns == 0) 1175 columns = 80; /* last resort */ 1176 return (columns); 1177 } 1178 1179 static int 1180 ilog2(int val) 1181 { 1182 u_int n; 1183 1184 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1185 if (1 << n == val) 1186 return (n); 1187 errx(1, "ilog2: %d is not a power of 2\n", val); 1188 } 1189 1190 /* 1191 * For the regression test, return predictable random values. 1192 * Otherwise use a true random number generator. 1193 */ 1194 static u_int32_t 1195 newfs_random(void) 1196 { 1197 static int nextnum = 1; 1198 1199 if (Rflag) 1200 return (nextnum++); 1201 return (arc4random()); 1202 } 1203