xref: /freebsd/sbin/newfs/mkfs.c (revision dd4f32ae62426a10a84b4322756d82c06c202c4e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program.
12  *
13  * Copyright (c) 1980, 1989, 1993
14  *	The Regents of the University of California.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if 0
42 #ifndef lint
43 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
44 #endif /* not lint */
45 #endif
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #define _WANT_P_OSREL
50 #include <sys/param.h>
51 #include <sys/disklabel.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/mman.h>
55 #include <sys/resource.h>
56 #include <sys/stat.h>
57 #include <sys/wait.h>
58 #include <err.h>
59 #include <grp.h>
60 #include <limits.h>
61 #include <signal.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <stdint.h>
65 #include <stdio.h>
66 #include <time.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ufs/dir.h>
70 #include <ufs/ffs/fs.h>
71 #include "newfs.h"
72 
73 /*
74  * make file system for cylinder-group style file systems
75  */
76 #define UMASK		0755
77 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
78 
79 static struct	csum *fscs;
80 #define	sblock	disk.d_fs
81 #define	acg	disk.d_cg
82 
83 union dinode {
84 	struct ufs1_dinode dp1;
85 	struct ufs2_dinode dp2;
86 };
87 #define DIP(dp, field) \
88 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
89 	(dp)->dp1.field : (dp)->dp2.field)
90 
91 static caddr_t iobuf;
92 static long iobufsize;
93 static ufs2_daddr_t alloc(int size, int mode);
94 static int charsperline(void);
95 static void clrblock(struct fs *, unsigned char *, int);
96 static void fsinit(time_t);
97 static int ilog2(int);
98 static void initcg(int, time_t);
99 static int isblock(struct fs *, unsigned char *, int);
100 static void iput(union dinode *, ino_t);
101 static int makedir(struct direct *, int);
102 static void setblock(struct fs *, unsigned char *, int);
103 static void wtfs(ufs2_daddr_t, int, char *);
104 static u_int32_t newfs_random(void);
105 
106 void
107 mkfs(struct partition *pp, char *fsys)
108 {
109 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
110 	long i, j, csfrags;
111 	uint cg;
112 	time_t utime;
113 	quad_t sizepb;
114 	int width;
115 	ino_t maxinum;
116 	int minfragsperinode;	/* minimum ratio of frags to inodes */
117 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
118 	struct fsrecovery *fsr;
119 	char *fsrbuf;
120 	union {
121 		struct fs fdummy;
122 		char cdummy[SBLOCKSIZE];
123 	} dummy;
124 #define fsdummy dummy.fdummy
125 #define chdummy dummy.cdummy
126 
127 	/*
128 	 * Our blocks == sector size, and the version of UFS we are using is
129 	 * specified by Oflag.
130 	 */
131 	disk.d_bsize = sectorsize;
132 	disk.d_ufs = Oflag;
133 	if (Rflag)
134 		utime = 1000000000;
135 	else
136 		time(&utime);
137 	if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) {
138 		printf("Superblock summary info allocation failed.\n");
139 		exit(18);
140 	}
141 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
142 	sblock.fs_flags = 0;
143 	if (Uflag)
144 		sblock.fs_flags |= FS_DOSOFTDEP;
145 	if (Lflag)
146 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
147 	if (Jflag)
148 		sblock.fs_flags |= FS_GJOURNAL;
149 	if (lflag)
150 		sblock.fs_flags |= FS_MULTILABEL;
151 	if (tflag)
152 		sblock.fs_flags |= FS_TRIM;
153 	/*
154 	 * Validate the given file system size.
155 	 * Verify that its last block can actually be accessed.
156 	 * Convert to file system fragment sized units.
157 	 */
158 	if (fssize <= 0) {
159 		printf("preposterous size %jd\n", (intmax_t)fssize);
160 		exit(13);
161 	}
162 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
163 	    (char *)&sblock);
164 	/*
165 	 * collect and verify the file system density info
166 	 */
167 	sblock.fs_avgfilesize = avgfilesize;
168 	sblock.fs_avgfpdir = avgfilesperdir;
169 	if (sblock.fs_avgfilesize <= 0)
170 		printf("illegal expected average file size %d\n",
171 		    sblock.fs_avgfilesize), exit(14);
172 	if (sblock.fs_avgfpdir <= 0)
173 		printf("illegal expected number of files per directory %d\n",
174 		    sblock.fs_avgfpdir), exit(15);
175 
176 restart:
177 	/*
178 	 * collect and verify the block and fragment sizes
179 	 */
180 	sblock.fs_bsize = bsize;
181 	sblock.fs_fsize = fsize;
182 	if (!POWEROF2(sblock.fs_bsize)) {
183 		printf("block size must be a power of 2, not %d\n",
184 		    sblock.fs_bsize);
185 		exit(16);
186 	}
187 	if (!POWEROF2(sblock.fs_fsize)) {
188 		printf("fragment size must be a power of 2, not %d\n",
189 		    sblock.fs_fsize);
190 		exit(17);
191 	}
192 	if (sblock.fs_fsize < sectorsize) {
193 		printf("increasing fragment size from %d to sector size (%d)\n",
194 		    sblock.fs_fsize, sectorsize);
195 		sblock.fs_fsize = sectorsize;
196 	}
197 	if (sblock.fs_bsize > MAXBSIZE) {
198 		printf("decreasing block size from %d to maximum (%d)\n",
199 		    sblock.fs_bsize, MAXBSIZE);
200 		sblock.fs_bsize = MAXBSIZE;
201 	}
202 	if (sblock.fs_bsize < MINBSIZE) {
203 		printf("increasing block size from %d to minimum (%d)\n",
204 		    sblock.fs_bsize, MINBSIZE);
205 		sblock.fs_bsize = MINBSIZE;
206 	}
207 	if (sblock.fs_fsize > MAXBSIZE) {
208 		printf("decreasing fragment size from %d to maximum (%d)\n",
209 		    sblock.fs_fsize, MAXBSIZE);
210 		sblock.fs_fsize = MAXBSIZE;
211 	}
212 	if (sblock.fs_bsize < sblock.fs_fsize) {
213 		printf("increasing block size from %d to fragment size (%d)\n",
214 		    sblock.fs_bsize, sblock.fs_fsize);
215 		sblock.fs_bsize = sblock.fs_fsize;
216 	}
217 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
218 		printf(
219 		"increasing fragment size from %d to block size / %d (%d)\n",
220 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
221 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
222 	}
223 	if (maxbsize == 0)
224 		maxbsize = bsize;
225 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
226 		sblock.fs_maxbsize = sblock.fs_bsize;
227 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
228 	} else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
229 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
230 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
231 	} else {
232 		sblock.fs_maxbsize = maxbsize;
233 	}
234 	/*
235 	 * Maxcontig sets the default for the maximum number of blocks
236 	 * that may be allocated sequentially. With file system clustering
237 	 * it is possible to allocate contiguous blocks up to the maximum
238 	 * transfer size permitted by the controller or buffering.
239 	 */
240 	if (maxcontig == 0)
241 		maxcontig = MAX(1, MAXPHYS / bsize);
242 	sblock.fs_maxcontig = maxcontig;
243 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
244 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
245 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
246 	}
247 	if (sblock.fs_maxcontig > 1)
248 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
249 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
250 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
251 	sblock.fs_qbmask = ~sblock.fs_bmask;
252 	sblock.fs_qfmask = ~sblock.fs_fmask;
253 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
254 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
255 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
256 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
257 	if (sblock.fs_frag > MAXFRAG) {
258 		printf("fragment size %d is still too small (can't happen)\n",
259 		    sblock.fs_bsize / MAXFRAG);
260 		exit(21);
261 	}
262 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
263 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
264 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
265 
266 	/*
267 	 * Before the filesystem is finally initialized, mark it
268 	 * as incompletely initialized.
269 	 */
270 	sblock.fs_magic = FS_BAD_MAGIC;
271 
272 	if (Oflag == 1) {
273 		sblock.fs_sblockloc = SBLOCK_UFS1;
274 		sblock.fs_sblockactualloc = SBLOCK_UFS1;
275 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
276 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
277 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
278 		    sizeof(ufs1_daddr_t));
279 		sblock.fs_old_inodefmt = FS_44INODEFMT;
280 		sblock.fs_old_cgoffset = 0;
281 		sblock.fs_old_cgmask = 0xffffffff;
282 		sblock.fs_old_size = sblock.fs_size;
283 		sblock.fs_old_rotdelay = 0;
284 		sblock.fs_old_rps = 60;
285 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
286 		sblock.fs_old_cpg = 1;
287 		sblock.fs_old_interleave = 1;
288 		sblock.fs_old_trackskew = 0;
289 		sblock.fs_old_cpc = 0;
290 		sblock.fs_old_postblformat = 1;
291 		sblock.fs_old_nrpos = 1;
292 	} else {
293 		sblock.fs_sblockloc = SBLOCK_UFS2;
294 		sblock.fs_sblockactualloc = SBLOCK_UFS2;
295 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
298 		    sizeof(ufs2_daddr_t));
299 	}
300 	sblock.fs_sblkno =
301 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302 		sblock.fs_frag);
303 	sblock.fs_cblkno = sblock.fs_sblkno +
304 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
307 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
308 		sizepb *= NINDIR(&sblock);
309 		sblock.fs_maxfilesize += sizepb;
310 	}
311 
312 	/*
313 	 * It's impossible to create a snapshot in case that fs_maxfilesize
314 	 * is smaller than the fssize.
315 	 */
316 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317 		warnx("WARNING: You will be unable to create snapshots on this "
318 		      "file system.  Correct by using a larger blocksize.");
319 	}
320 
321 	/*
322 	 * Calculate the number of blocks to put into each cylinder group.
323 	 *
324 	 * This algorithm selects the number of blocks per cylinder
325 	 * group. The first goal is to have at least enough data blocks
326 	 * in each cylinder group to meet the density requirement. Once
327 	 * this goal is achieved we try to expand to have at least
328 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329 	 * pack as many blocks into each cylinder group map as will fit.
330 	 *
331 	 * We start by calculating the smallest number of blocks that we
332 	 * can put into each cylinder group. If this is too big, we reduce
333 	 * the density until it fits.
334 	 */
335 retry:
336 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
337 	minfragsperinode = 1 + fssize / maxinum;
338 	if (density == 0) {
339 		density = MAX(NFPI, minfragsperinode) * fsize;
340 	} else if (density < minfragsperinode * fsize) {
341 		origdensity = density;
342 		density = minfragsperinode * fsize;
343 		fprintf(stderr, "density increased from %d to %d\n",
344 		    origdensity, density);
345 	}
346 	origdensity = density;
347 	for (;;) {
348 		fragsperinode = MAX(numfrags(&sblock, density), 1);
349 		if (fragsperinode < minfragsperinode) {
350 			bsize <<= 1;
351 			fsize <<= 1;
352 			printf("Block size too small for a file system %s %d\n",
353 			     "of this size. Increasing blocksize to", bsize);
354 			goto restart;
355 		}
356 		minfpg = fragsperinode * INOPB(&sblock);
357 		if (minfpg > sblock.fs_size)
358 			minfpg = sblock.fs_size;
359 		sblock.fs_ipg = INOPB(&sblock);
360 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
361 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
362 		if (sblock.fs_fpg < minfpg)
363 			sblock.fs_fpg = minfpg;
364 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
365 		    INOPB(&sblock));
366 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
367 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
368 		if (sblock.fs_fpg < minfpg)
369 			sblock.fs_fpg = minfpg;
370 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
371 		    INOPB(&sblock));
372 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
373 			break;
374 		density -= sblock.fs_fsize;
375 	}
376 	if (density != origdensity)
377 		printf("density reduced from %d to %d\n", origdensity, density);
378 	/*
379 	 * Start packing more blocks into the cylinder group until
380 	 * it cannot grow any larger, the number of cylinder groups
381 	 * drops below MINCYLGRPS, or we reach the size requested.
382 	 * For UFS1 inodes per cylinder group are stored in an int16_t
383 	 * so fs_ipg is limited to 2^15 - 1.
384 	 */
385 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
386 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
387 		    INOPB(&sblock));
388 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
389 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
390 				break;
391 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
392 				continue;
393 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
394 				break;
395 		}
396 		sblock.fs_fpg -= sblock.fs_frag;
397 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
398 		    INOPB(&sblock));
399 		break;
400 	}
401 	/*
402 	 * Check to be sure that the last cylinder group has enough blocks
403 	 * to be viable. If it is too small, reduce the number of blocks
404 	 * per cylinder group which will have the effect of moving more
405 	 * blocks into the last cylinder group.
406 	 */
407 	optimalfpg = sblock.fs_fpg;
408 	for (;;) {
409 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
410 		lastminfpg = roundup(sblock.fs_iblkno +
411 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
412 		if (sblock.fs_size < lastminfpg) {
413 			printf("Filesystem size %jd < minimum size of %d\n",
414 			    (intmax_t)sblock.fs_size, lastminfpg);
415 			exit(28);
416 		}
417 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
418 		    sblock.fs_size % sblock.fs_fpg == 0)
419 			break;
420 		sblock.fs_fpg -= sblock.fs_frag;
421 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
422 		    INOPB(&sblock));
423 	}
424 	if (optimalfpg != sblock.fs_fpg)
425 		printf("Reduced frags per cylinder group from %d to %d %s\n",
426 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
427 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
428 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
429 	if (Oflag == 1) {
430 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
431 		sblock.fs_old_nsect = sblock.fs_old_spc;
432 		sblock.fs_old_npsect = sblock.fs_old_spc;
433 		sblock.fs_old_ncyl = sblock.fs_ncg;
434 	}
435 	/*
436 	 * fill in remaining fields of the super block
437 	 */
438 	sblock.fs_csaddr = cgdmin(&sblock, 0);
439 	sblock.fs_cssize =
440 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
441 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
442 	if (fscs == NULL)
443 		errx(31, "calloc failed");
444 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
445 	if (sblock.fs_sbsize > SBLOCKSIZE)
446 		sblock.fs_sbsize = SBLOCKSIZE;
447 	if (sblock.fs_sbsize < realsectorsize)
448 		sblock.fs_sbsize = realsectorsize;
449 	sblock.fs_minfree = minfree;
450 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
451 		sblock.fs_metaspace = blknum(&sblock, metaspace);
452 	else if (metaspace != -1)
453 		/* reserve half of minfree for metadata blocks */
454 		sblock.fs_metaspace = blknum(&sblock,
455 		    (sblock.fs_fpg * minfree) / 200);
456 	if (maxbpg == 0)
457 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
458 	else
459 		sblock.fs_maxbpg = maxbpg;
460 	sblock.fs_optim = opt;
461 	sblock.fs_cgrotor = 0;
462 	sblock.fs_pendingblocks = 0;
463 	sblock.fs_pendinginodes = 0;
464 	sblock.fs_fmod = 0;
465 	sblock.fs_ronly = 0;
466 	sblock.fs_state = 0;
467 	sblock.fs_clean = 1;
468 	sblock.fs_id[0] = (long)utime;
469 	sblock.fs_id[1] = newfs_random();
470 	sblock.fs_fsmnt[0] = '\0';
471 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
472 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
473 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
474 	sblock.fs_cstotal.cs_nbfree =
475 	    fragstoblks(&sblock, sblock.fs_dsize) -
476 	    howmany(csfrags, sblock.fs_frag);
477 	sblock.fs_cstotal.cs_nffree =
478 	    fragnum(&sblock, sblock.fs_size) +
479 	    (fragnum(&sblock, csfrags) > 0 ?
480 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
481 	sblock.fs_cstotal.cs_nifree =
482 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
483 	sblock.fs_cstotal.cs_ndir = 0;
484 	sblock.fs_dsize -= csfrags;
485 	sblock.fs_time = utime;
486 	if (Oflag == 1) {
487 		sblock.fs_old_time = utime;
488 		sblock.fs_old_dsize = sblock.fs_dsize;
489 		sblock.fs_old_csaddr = sblock.fs_csaddr;
490 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
491 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
492 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
493 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
494 	}
495 	/*
496 	 * Set flags for metadata that is being check-hashed.
497 	 *
498 	 * Metadata check hashes are not supported in the UFS version 1
499 	 * filesystem to keep it as small and simple as possible.
500 	 */
501 	if (Oflag > 1) {
502 		sblock.fs_flags |= FS_METACKHASH;
503 		if (getosreldate() >= P_OSREL_CK_CYLGRP)
504 			sblock.fs_metackhash |= CK_CYLGRP;
505 		if (getosreldate() >= P_OSREL_CK_SUPERBLOCK)
506 			sblock.fs_metackhash |= CK_SUPERBLOCK;
507 		if (getosreldate() >= P_OSREL_CK_INODE)
508 			sblock.fs_metackhash |= CK_INODE;
509 	}
510 
511 	/*
512 	 * Dump out summary information about file system.
513 	 */
514 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
515 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
516 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
517 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
518 	    sblock.fs_fsize);
519 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
520 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
521 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
522 	if (sblock.fs_flags & FS_DOSOFTDEP)
523 		printf("\twith soft updates\n");
524 #	undef B2MBFACTOR
525 
526 	if (Eflag && !Nflag) {
527 		printf("Erasing sectors [%jd...%jd]\n",
528 		    sblock.fs_sblockloc / disk.d_bsize,
529 		    fsbtodb(&sblock, sblock.fs_size) - 1);
530 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
531 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
532 	}
533 	/*
534 	 * Wipe out old UFS1 superblock(s) if necessary.
535 	 */
536 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
537 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy,
538 		    SBLOCKSIZE);
539 		if (i == -1)
540 			err(1, "can't read old UFS1 superblock: %s",
541 			    disk.d_error);
542 
543 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
544 			fsdummy.fs_magic = 0;
545 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
546 			    chdummy, SBLOCKSIZE);
547 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
548 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) >
549 				    fssize)
550 					break;
551 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
552 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
553 			}
554 		}
555 	}
556 	/*
557 	 * Reference the summary information so it will also be written.
558 	 */
559 	sblock.fs_csp = fscs;
560 	if (!Nflag && sbwrite(&disk, 0) != 0)
561 		err(1, "sbwrite: %s", disk.d_error);
562 	if (Xflag == 1) {
563 		printf("** Exiting on Xflag 1\n");
564 		exit(0);
565 	}
566 	if (Xflag == 2)
567 		printf("** Leaving BAD MAGIC on Xflag 2\n");
568 	else
569 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
570 
571 	/*
572 	 * Now build the cylinders group blocks and
573 	 * then print out indices of cylinder groups.
574 	 */
575 	printf("super-block backups (for fsck_ffs -b #) at:\n");
576 	i = 0;
577 	width = charsperline();
578 	/*
579 	 * Allocate space for two sets of inode blocks.
580 	 */
581 	iobufsize = 2 * sblock.fs_bsize;
582 	if ((iobuf = calloc(1, iobufsize)) == 0) {
583 		printf("Cannot allocate I/O buffer\n");
584 		exit(38);
585 	}
586 	/*
587 	 * Write out all the cylinder groups and backup superblocks.
588 	 */
589 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
590 		if (!Nflag)
591 			initcg(cg, utime);
592 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
593 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
594 		    cg < (sblock.fs_ncg-1) ? "," : "");
595 		if (j < 0)
596 			tmpbuf[j = 0] = '\0';
597 		if (i + j >= width) {
598 			printf("\n");
599 			i = 0;
600 		}
601 		i += j;
602 		printf("%s", tmpbuf);
603 		fflush(stdout);
604 	}
605 	printf("\n");
606 	if (Nflag)
607 		exit(0);
608 	/*
609 	 * Now construct the initial file system,
610 	 * then write out the super-block.
611 	 */
612 	fsinit(utime);
613 	if (Oflag == 1) {
614 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
615 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
616 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
617 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
618 	}
619 	if (Xflag == 3) {
620 		printf("** Exiting on Xflag 3\n");
621 		exit(0);
622 	}
623 	if (sbwrite(&disk, 0) != 0)
624 		err(1, "sbwrite: %s", disk.d_error);
625 	/*
626 	 * For UFS1 filesystems with a blocksize of 64K, the first
627 	 * alternate superblock resides at the location used for
628 	 * the default UFS2 superblock. As there is a valid
629 	 * superblock at this location, the boot code will use
630 	 * it as its first choice. Thus we have to ensure that
631 	 * all of its statistcs on usage are correct.
632 	 */
633 	if (Oflag == 1 && sblock.fs_bsize == 65536)
634 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
635 		    sblock.fs_bsize, (char *)&sblock);
636 	/*
637 	 * Read the last sector of the boot block, replace the last
638 	 * 20 bytes with the recovery information, then write it back.
639 	 * The recovery information only works for UFS2 filesystems.
640 	 * For UFS1, zero out the area to ensure that an old UFS2
641 	 * recovery block is not accidentally found.
642 	 */
643 	if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
644 	    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
645 	    fsrbuf, realsectorsize) == -1)
646 		err(1, "can't read recovery area: %s", disk.d_error);
647 	fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
648 	if (sblock.fs_magic != FS_UFS2_MAGIC) {
649 		memset(fsr, 0, sizeof *fsr);
650 	} else {
651 		fsr->fsr_magic = sblock.fs_magic;
652 		fsr->fsr_fpg = sblock.fs_fpg;
653 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
654 		fsr->fsr_sblkno = sblock.fs_sblkno;
655 		fsr->fsr_ncg = sblock.fs_ncg;
656 	}
657 	wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
658 	    realsectorsize, fsrbuf);
659 	free(fsrbuf);
660 	/*
661 	 * Update information about this partition in pack
662 	 * label, to that it may be updated on disk.
663 	 */
664 	if (pp != NULL) {
665 		pp->p_fstype = FS_BSDFFS;
666 		pp->p_fsize = sblock.fs_fsize;
667 		pp->p_frag = sblock.fs_frag;
668 		pp->p_cpg = sblock.fs_fpg;
669 	}
670 	/*
671 	 * This should NOT happen. If it does complain loudly and
672 	 * take evasive action.
673 	 */
674 	if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) {
675 		printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ",
676 		    sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize);
677 		printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n",
678 		    sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock));
679 		printf("Please file a FreeBSD bug report and include this "
680 		    "output\n");
681 		maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1;
682 		density = 0;
683 		goto retry;
684 	}
685 }
686 
687 /*
688  * Initialize a cylinder group.
689  */
690 void
691 initcg(int cylno, time_t utime)
692 {
693 	long blkno, start;
694 	off_t savedactualloc;
695 	uint i, j, d, dlower, dupper;
696 	ufs2_daddr_t cbase, dmax;
697 	struct ufs1_dinode *dp1;
698 	struct ufs2_dinode *dp2;
699 	struct csum *cs;
700 
701 	/*
702 	 * Determine block bounds for cylinder group.
703 	 * Allow space for super block summary information in first
704 	 * cylinder group.
705 	 */
706 	cbase = cgbase(&sblock, cylno);
707 	dmax = cbase + sblock.fs_fpg;
708 	if (dmax > sblock.fs_size)
709 		dmax = sblock.fs_size;
710 	dlower = cgsblock(&sblock, cylno) - cbase;
711 	dupper = cgdmin(&sblock, cylno) - cbase;
712 	if (cylno == 0)
713 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
714 	cs = &fscs[cylno];
715 	memset(&acg, 0, sblock.fs_cgsize);
716 	acg.cg_time = utime;
717 	acg.cg_magic = CG_MAGIC;
718 	acg.cg_cgx = cylno;
719 	acg.cg_niblk = sblock.fs_ipg;
720 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
721 	acg.cg_ndblk = dmax - cbase;
722 	if (sblock.fs_contigsumsize > 0)
723 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
724 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
725 	if (Oflag == 2) {
726 		acg.cg_iusedoff = start;
727 	} else {
728 		acg.cg_old_ncyl = sblock.fs_old_cpg;
729 		acg.cg_old_time = acg.cg_time;
730 		acg.cg_time = 0;
731 		acg.cg_old_niblk = acg.cg_niblk;
732 		acg.cg_niblk = 0;
733 		acg.cg_initediblk = 0;
734 		acg.cg_old_btotoff = start;
735 		acg.cg_old_boff = acg.cg_old_btotoff +
736 		    sblock.fs_old_cpg * sizeof(int32_t);
737 		acg.cg_iusedoff = acg.cg_old_boff +
738 		    sblock.fs_old_cpg * sizeof(u_int16_t);
739 	}
740 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
741 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
742 	if (sblock.fs_contigsumsize > 0) {
743 		acg.cg_clustersumoff =
744 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
745 		acg.cg_clustersumoff -= sizeof(u_int32_t);
746 		acg.cg_clusteroff = acg.cg_clustersumoff +
747 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
748 		acg.cg_nextfreeoff = acg.cg_clusteroff +
749 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
750 	}
751 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
752 		printf("Panic: cylinder group too big\n");
753 		exit(37);
754 	}
755 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
756 	if (cylno == 0)
757 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
758 			setbit(cg_inosused(&acg), i);
759 			acg.cg_cs.cs_nifree--;
760 		}
761 	if (cylno > 0) {
762 		/*
763 		 * In cylno 0, beginning space is reserved
764 		 * for boot and super blocks.
765 		 */
766 		for (d = 0; d < dlower; d += sblock.fs_frag) {
767 			blkno = d / sblock.fs_frag;
768 			setblock(&sblock, cg_blksfree(&acg), blkno);
769 			if (sblock.fs_contigsumsize > 0)
770 				setbit(cg_clustersfree(&acg), blkno);
771 			acg.cg_cs.cs_nbfree++;
772 		}
773 	}
774 	if ((i = dupper % sblock.fs_frag)) {
775 		acg.cg_frsum[sblock.fs_frag - i]++;
776 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
777 			setbit(cg_blksfree(&acg), dupper);
778 			acg.cg_cs.cs_nffree++;
779 		}
780 	}
781 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
782 	     d += sblock.fs_frag) {
783 		blkno = d / sblock.fs_frag;
784 		setblock(&sblock, cg_blksfree(&acg), blkno);
785 		if (sblock.fs_contigsumsize > 0)
786 			setbit(cg_clustersfree(&acg), blkno);
787 		acg.cg_cs.cs_nbfree++;
788 	}
789 	if (d < acg.cg_ndblk) {
790 		acg.cg_frsum[acg.cg_ndblk - d]++;
791 		for (; d < acg.cg_ndblk; d++) {
792 			setbit(cg_blksfree(&acg), d);
793 			acg.cg_cs.cs_nffree++;
794 		}
795 	}
796 	if (sblock.fs_contigsumsize > 0) {
797 		int32_t *sump = cg_clustersum(&acg);
798 		u_char *mapp = cg_clustersfree(&acg);
799 		int map = *mapp++;
800 		int bit = 1;
801 		int run = 0;
802 
803 		for (i = 0; i < acg.cg_nclusterblks; i++) {
804 			if ((map & bit) != 0)
805 				run++;
806 			else if (run != 0) {
807 				if (run > sblock.fs_contigsumsize)
808 					run = sblock.fs_contigsumsize;
809 				sump[run]++;
810 				run = 0;
811 			}
812 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
813 				bit <<= 1;
814 			else {
815 				map = *mapp++;
816 				bit = 1;
817 			}
818 		}
819 		if (run != 0) {
820 			if (run > sblock.fs_contigsumsize)
821 				run = sblock.fs_contigsumsize;
822 			sump[run]++;
823 		}
824 	}
825 	*cs = acg.cg_cs;
826 	/*
827 	 * Write out the duplicate super block. Then write the cylinder
828 	 * group map and two blocks worth of inodes in a single write.
829 	 */
830 	savedactualloc = sblock.fs_sblockactualloc;
831 	sblock.fs_sblockactualloc =
832 	    dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno)));
833 	if (sbwrite(&disk, 0) != 0)
834 		err(1, "sbwrite: %s", disk.d_error);
835 	sblock.fs_sblockactualloc = savedactualloc;
836 	if (cgwrite(&disk) != 0)
837 		err(1, "initcg: cgwrite: %s", disk.d_error);
838 	start = 0;
839 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
840 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
841 	for (i = 0; i < acg.cg_initediblk; i++) {
842 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
843 			dp1->di_gen = newfs_random();
844 			dp1++;
845 		} else {
846 			dp2->di_gen = newfs_random();
847 			dp2++;
848 		}
849 	}
850 	wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf);
851 	/*
852 	 * For the old file system, we have to initialize all the inodes.
853 	 */
854 	if (Oflag == 1) {
855 		for (i = 2 * sblock.fs_frag;
856 		     i < sblock.fs_ipg / INOPF(&sblock);
857 		     i += sblock.fs_frag) {
858 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
859 			for (j = 0; j < INOPB(&sblock); j++) {
860 				dp1->di_gen = newfs_random();
861 				dp1++;
862 			}
863 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
864 			    sblock.fs_bsize, &iobuf[start]);
865 		}
866 	}
867 }
868 
869 /*
870  * initialize the file system
871  */
872 #define ROOTLINKCNT 3
873 
874 static struct direct root_dir[] = {
875 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
876 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
877 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
878 };
879 
880 #define SNAPLINKCNT 2
881 
882 static struct direct snap_dir[] = {
883 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
884 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
885 };
886 
887 void
888 fsinit(time_t utime)
889 {
890 	union dinode node;
891 	struct group *grp;
892 	gid_t gid;
893 	int entries;
894 
895 	memset(&node, 0, sizeof node);
896 	if ((grp = getgrnam("operator")) != NULL) {
897 		gid = grp->gr_gid;
898 	} else {
899 		warnx("Cannot retrieve operator gid, using gid 0.");
900 		gid = 0;
901 	}
902 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
903 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
904 		/*
905 		 * initialize the node
906 		 */
907 		node.dp1.di_atime = utime;
908 		node.dp1.di_mtime = utime;
909 		node.dp1.di_ctime = utime;
910 		/*
911 		 * create the root directory
912 		 */
913 		node.dp1.di_mode = IFDIR | UMASK;
914 		node.dp1.di_nlink = entries;
915 		node.dp1.di_size = makedir(root_dir, entries);
916 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
917 		node.dp1.di_blocks =
918 		    btodb(fragroundup(&sblock, node.dp1.di_size));
919 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
920 		    iobuf);
921 		iput(&node, UFS_ROOTINO);
922 		if (!nflag) {
923 			/*
924 			 * create the .snap directory
925 			 */
926 			node.dp1.di_mode |= 020;
927 			node.dp1.di_gid = gid;
928 			node.dp1.di_nlink = SNAPLINKCNT;
929 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
930 				node.dp1.di_db[0] =
931 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
932 			node.dp1.di_blocks =
933 			    btodb(fragroundup(&sblock, node.dp1.di_size));
934 			node.dp1.di_dirdepth = 1;
935 			wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
936 			    sblock.fs_fsize, iobuf);
937 			iput(&node, UFS_ROOTINO + 1);
938 		}
939 	} else {
940 		/*
941 		 * initialize the node
942 		 */
943 		node.dp2.di_atime = utime;
944 		node.dp2.di_mtime = utime;
945 		node.dp2.di_ctime = utime;
946 		node.dp2.di_birthtime = utime;
947 		/*
948 		 * create the root directory
949 		 */
950 		node.dp2.di_mode = IFDIR | UMASK;
951 		node.dp2.di_nlink = entries;
952 		node.dp2.di_size = makedir(root_dir, entries);
953 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
954 		node.dp2.di_blocks =
955 		    btodb(fragroundup(&sblock, node.dp2.di_size));
956 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
957 		    iobuf);
958 		iput(&node, UFS_ROOTINO);
959 		if (!nflag) {
960 			/*
961 			 * create the .snap directory
962 			 */
963 			node.dp2.di_mode |= 020;
964 			node.dp2.di_gid = gid;
965 			node.dp2.di_nlink = SNAPLINKCNT;
966 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
967 				node.dp2.di_db[0] =
968 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
969 			node.dp2.di_blocks =
970 			    btodb(fragroundup(&sblock, node.dp2.di_size));
971 			node.dp2.di_dirdepth = 1;
972 			wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
973 			    sblock.fs_fsize, iobuf);
974 			iput(&node, UFS_ROOTINO + 1);
975 		}
976 	}
977 }
978 
979 /*
980  * construct a set of directory entries in "iobuf".
981  * return size of directory.
982  */
983 int
984 makedir(struct direct *protodir, int entries)
985 {
986 	char *cp;
987 	int i, spcleft;
988 
989 	spcleft = DIRBLKSIZ;
990 	memset(iobuf, 0, DIRBLKSIZ);
991 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
992 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
993 		memmove(cp, &protodir[i], protodir[i].d_reclen);
994 		cp += protodir[i].d_reclen;
995 		spcleft -= protodir[i].d_reclen;
996 	}
997 	protodir[i].d_reclen = spcleft;
998 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
999 	return (DIRBLKSIZ);
1000 }
1001 
1002 /*
1003  * allocate a block or frag
1004  */
1005 ufs2_daddr_t
1006 alloc(int size, int mode)
1007 {
1008 	int i, blkno, frag;
1009 	uint d;
1010 
1011 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1012 	    sblock.fs_cgsize);
1013 	if (acg.cg_magic != CG_MAGIC) {
1014 		printf("cg 0: bad magic number\n");
1015 		exit(38);
1016 	}
1017 	if (acg.cg_cs.cs_nbfree == 0) {
1018 		printf("first cylinder group ran out of space\n");
1019 		exit(39);
1020 	}
1021 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1022 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1023 			goto goth;
1024 	printf("internal error: can't find block in cyl 0\n");
1025 	exit(40);
1026 goth:
1027 	blkno = fragstoblks(&sblock, d);
1028 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1029 	if (sblock.fs_contigsumsize > 0)
1030 		clrbit(cg_clustersfree(&acg), blkno);
1031 	acg.cg_cs.cs_nbfree--;
1032 	sblock.fs_cstotal.cs_nbfree--;
1033 	fscs[0].cs_nbfree--;
1034 	if (mode & IFDIR) {
1035 		acg.cg_cs.cs_ndir++;
1036 		sblock.fs_cstotal.cs_ndir++;
1037 		fscs[0].cs_ndir++;
1038 	}
1039 	if (size != sblock.fs_bsize) {
1040 		frag = howmany(size, sblock.fs_fsize);
1041 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1042 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1043 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1044 		acg.cg_frsum[sblock.fs_frag - frag]++;
1045 		for (i = frag; i < sblock.fs_frag; i++)
1046 			setbit(cg_blksfree(&acg), d + i);
1047 	}
1048 	if (cgwrite(&disk) != 0)
1049 		err(1, "alloc: cgwrite: %s", disk.d_error);
1050 	return ((ufs2_daddr_t)d);
1051 }
1052 
1053 /*
1054  * Allocate an inode on the disk
1055  */
1056 void
1057 iput(union dinode *ip, ino_t ino)
1058 {
1059 	union dinodep dp;
1060 
1061 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1062 	    sblock.fs_cgsize);
1063 	if (acg.cg_magic != CG_MAGIC) {
1064 		printf("cg 0: bad magic number\n");
1065 		exit(31);
1066 	}
1067 	acg.cg_cs.cs_nifree--;
1068 	setbit(cg_inosused(&acg), ino);
1069 	if (cgwrite(&disk) != 0)
1070 		err(1, "iput: cgwrite: %s", disk.d_error);
1071 	sblock.fs_cstotal.cs_nifree--;
1072 	fscs[0].cs_nifree--;
1073 	if (getinode(&disk, &dp, ino) == -1) {
1074 		printf("iput: %s\n", disk.d_error);
1075 		exit(32);
1076 	}
1077 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1078 		*dp.dp1 = ip->dp1;
1079 	else
1080 		*dp.dp2 = ip->dp2;
1081 	putinode(&disk);
1082 }
1083 
1084 /*
1085  * possibly write to disk
1086  */
1087 static void
1088 wtfs(ufs2_daddr_t bno, int size, char *bf)
1089 {
1090 	if (Nflag)
1091 		return;
1092 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1093 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1094 }
1095 
1096 /*
1097  * check if a block is available
1098  */
1099 static int
1100 isblock(struct fs *fs, unsigned char *cp, int h)
1101 {
1102 	unsigned char mask;
1103 
1104 	switch (fs->fs_frag) {
1105 	case 8:
1106 		return (cp[h] == 0xff);
1107 	case 4:
1108 		mask = 0x0f << ((h & 0x1) << 2);
1109 		return ((cp[h >> 1] & mask) == mask);
1110 	case 2:
1111 		mask = 0x03 << ((h & 0x3) << 1);
1112 		return ((cp[h >> 2] & mask) == mask);
1113 	case 1:
1114 		mask = 0x01 << (h & 0x7);
1115 		return ((cp[h >> 3] & mask) == mask);
1116 	default:
1117 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1118 		return (0);
1119 	}
1120 }
1121 
1122 /*
1123  * take a block out of the map
1124  */
1125 static void
1126 clrblock(struct fs *fs, unsigned char *cp, int h)
1127 {
1128 	switch ((fs)->fs_frag) {
1129 	case 8:
1130 		cp[h] = 0;
1131 		return;
1132 	case 4:
1133 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1134 		return;
1135 	case 2:
1136 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1137 		return;
1138 	case 1:
1139 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1140 		return;
1141 	default:
1142 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1143 		return;
1144 	}
1145 }
1146 
1147 /*
1148  * put a block into the map
1149  */
1150 static void
1151 setblock(struct fs *fs, unsigned char *cp, int h)
1152 {
1153 	switch (fs->fs_frag) {
1154 	case 8:
1155 		cp[h] = 0xff;
1156 		return;
1157 	case 4:
1158 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1159 		return;
1160 	case 2:
1161 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1162 		return;
1163 	case 1:
1164 		cp[h >> 3] |= (0x01 << (h & 0x7));
1165 		return;
1166 	default:
1167 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1168 		return;
1169 	}
1170 }
1171 
1172 /*
1173  * Determine the number of characters in a
1174  * single line.
1175  */
1176 
1177 static int
1178 charsperline(void)
1179 {
1180 	int columns;
1181 	char *cp;
1182 	struct winsize ws;
1183 
1184 	columns = 0;
1185 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1186 		columns = ws.ws_col;
1187 	if (columns == 0 && (cp = getenv("COLUMNS")))
1188 		columns = atoi(cp);
1189 	if (columns == 0)
1190 		columns = 80;	/* last resort */
1191 	return (columns);
1192 }
1193 
1194 static int
1195 ilog2(int val)
1196 {
1197 	u_int n;
1198 
1199 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1200 		if (1 << n == val)
1201 			return (n);
1202 	errx(1, "ilog2: %d is not a power of 2\n", val);
1203 }
1204 
1205 /*
1206  * For the regression test, return predictable random values.
1207  * Otherwise use a true random number generator.
1208  */
1209 static u_int32_t
1210 newfs_random(void)
1211 {
1212 	static int nextnum = 1;
1213 
1214 	if (Rflag)
1215 		return (nextnum++);
1216 	return (arc4random());
1217 }
1218