1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 struct fsrecovery *fsr; 125 char *fsrbuf; 126 union { 127 struct fs fdummy; 128 char cdummy[SBLOCKSIZE]; 129 } dummy; 130 #define fsdummy dummy.fdummy 131 #define chdummy dummy.cdummy 132 133 /* 134 * Our blocks == sector size, and the version of UFS we are using is 135 * specified by Oflag. 136 */ 137 disk.d_bsize = sectorsize; 138 disk.d_ufs = Oflag; 139 if (Rflag) 140 utime = 1000000000; 141 else 142 time(&utime); 143 sblock.fs_old_flags = FS_FLAGS_UPDATED; 144 sblock.fs_flags = 0; 145 if (Uflag) 146 sblock.fs_flags |= FS_DOSOFTDEP; 147 if (Lflag) 148 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 149 if (Jflag) 150 sblock.fs_flags |= FS_GJOURNAL; 151 if (lflag) 152 sblock.fs_flags |= FS_MULTILABEL; 153 if (tflag) 154 sblock.fs_flags |= FS_TRIM; 155 /* 156 * Validate the given file system size. 157 * Verify that its last block can actually be accessed. 158 * Convert to file system fragment sized units. 159 */ 160 if (fssize <= 0) { 161 printf("preposterous size %jd\n", (intmax_t)fssize); 162 exit(13); 163 } 164 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 165 (char *)&sblock); 166 /* 167 * collect and verify the file system density info 168 */ 169 sblock.fs_avgfilesize = avgfilesize; 170 sblock.fs_avgfpdir = avgfilesperdir; 171 if (sblock.fs_avgfilesize <= 0) 172 printf("illegal expected average file size %d\n", 173 sblock.fs_avgfilesize), exit(14); 174 if (sblock.fs_avgfpdir <= 0) 175 printf("illegal expected number of files per directory %d\n", 176 sblock.fs_avgfpdir), exit(15); 177 178 restart: 179 /* 180 * collect and verify the block and fragment sizes 181 */ 182 sblock.fs_bsize = bsize; 183 sblock.fs_fsize = fsize; 184 if (!POWEROF2(sblock.fs_bsize)) { 185 printf("block size must be a power of 2, not %d\n", 186 sblock.fs_bsize); 187 exit(16); 188 } 189 if (!POWEROF2(sblock.fs_fsize)) { 190 printf("fragment size must be a power of 2, not %d\n", 191 sblock.fs_fsize); 192 exit(17); 193 } 194 if (sblock.fs_fsize < sectorsize) { 195 printf("increasing fragment size from %d to sector size (%d)\n", 196 sblock.fs_fsize, sectorsize); 197 sblock.fs_fsize = sectorsize; 198 } 199 if (sblock.fs_bsize > MAXBSIZE) { 200 printf("decreasing block size from %d to maximum (%d)\n", 201 sblock.fs_bsize, MAXBSIZE); 202 sblock.fs_bsize = MAXBSIZE; 203 } 204 if (sblock.fs_bsize < MINBSIZE) { 205 printf("increasing block size from %d to minimum (%d)\n", 206 sblock.fs_bsize, MINBSIZE); 207 sblock.fs_bsize = MINBSIZE; 208 } 209 if (sblock.fs_fsize > MAXBSIZE) { 210 printf("decreasing fragment size from %d to maximum (%d)\n", 211 sblock.fs_fsize, MAXBSIZE); 212 sblock.fs_fsize = MAXBSIZE; 213 } 214 if (sblock.fs_bsize < sblock.fs_fsize) { 215 printf("increasing block size from %d to fragment size (%d)\n", 216 sblock.fs_bsize, sblock.fs_fsize); 217 sblock.fs_bsize = sblock.fs_fsize; 218 } 219 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 220 printf( 221 "increasing fragment size from %d to block size / %d (%d)\n", 222 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 223 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 224 } 225 if (maxbsize == 0) 226 maxbsize = bsize; 227 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 228 sblock.fs_maxbsize = sblock.fs_bsize; 229 printf("Extent size set to %d\n", sblock.fs_maxbsize); 230 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 231 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 232 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 233 } else { 234 sblock.fs_maxbsize = maxbsize; 235 } 236 /* 237 * Maxcontig sets the default for the maximum number of blocks 238 * that may be allocated sequentially. With file system clustering 239 * it is possible to allocate contiguous blocks up to the maximum 240 * transfer size permitted by the controller or buffering. 241 */ 242 if (maxcontig == 0) 243 maxcontig = MAX(1, MAXPHYS / bsize); 244 sblock.fs_maxcontig = maxcontig; 245 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 246 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 247 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 248 } 249 if (sblock.fs_maxcontig > 1) 250 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 251 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 252 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 253 sblock.fs_qbmask = ~sblock.fs_bmask; 254 sblock.fs_qfmask = ~sblock.fs_fmask; 255 sblock.fs_bshift = ilog2(sblock.fs_bsize); 256 sblock.fs_fshift = ilog2(sblock.fs_fsize); 257 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 258 sblock.fs_fragshift = ilog2(sblock.fs_frag); 259 if (sblock.fs_frag > MAXFRAG) { 260 printf("fragment size %d is still too small (can't happen)\n", 261 sblock.fs_bsize / MAXFRAG); 262 exit(21); 263 } 264 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 265 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 266 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 267 268 /* 269 * Before the filesystem is finally initialized, mark it 270 * as incompletely initialized. 271 */ 272 sblock.fs_magic = FS_BAD_MAGIC; 273 274 if (Oflag == 1) { 275 sblock.fs_sblockloc = SBLOCK_UFS1; 276 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 277 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 278 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 279 sizeof(ufs1_daddr_t)); 280 sblock.fs_old_inodefmt = FS_44INODEFMT; 281 sblock.fs_old_cgoffset = 0; 282 sblock.fs_old_cgmask = 0xffffffff; 283 sblock.fs_old_size = sblock.fs_size; 284 sblock.fs_old_rotdelay = 0; 285 sblock.fs_old_rps = 60; 286 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 287 sblock.fs_old_cpg = 1; 288 sblock.fs_old_interleave = 1; 289 sblock.fs_old_trackskew = 0; 290 sblock.fs_old_cpc = 0; 291 sblock.fs_old_postblformat = 1; 292 sblock.fs_old_nrpos = 1; 293 } else { 294 sblock.fs_sblockloc = SBLOCK_UFS2; 295 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 296 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 297 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 298 sizeof(ufs2_daddr_t)); 299 } 300 sblock.fs_sblkno = 301 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 302 sblock.fs_frag); 303 sblock.fs_cblkno = sblock.fs_sblkno + 304 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 305 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 306 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 307 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 308 sizepb *= NINDIR(&sblock); 309 sblock.fs_maxfilesize += sizepb; 310 } 311 312 /* 313 * It's impossible to create a snapshot in case that fs_maxfilesize 314 * is smaller than the fssize. 315 */ 316 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 317 warnx("WARNING: You will be unable to create snapshots on this " 318 "file system. Correct by using a larger blocksize."); 319 } 320 321 /* 322 * Calculate the number of blocks to put into each cylinder group. 323 * 324 * This algorithm selects the number of blocks per cylinder 325 * group. The first goal is to have at least enough data blocks 326 * in each cylinder group to meet the density requirement. Once 327 * this goal is achieved we try to expand to have at least 328 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 329 * pack as many blocks into each cylinder group map as will fit. 330 * 331 * We start by calculating the smallest number of blocks that we 332 * can put into each cylinder group. If this is too big, we reduce 333 * the density until it fits. 334 */ 335 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 336 minfragsperinode = 1 + fssize / maxinum; 337 if (density == 0) { 338 density = MAX(NFPI, minfragsperinode) * fsize; 339 } else if (density < minfragsperinode * fsize) { 340 origdensity = density; 341 density = minfragsperinode * fsize; 342 fprintf(stderr, "density increased from %d to %d\n", 343 origdensity, density); 344 } 345 origdensity = density; 346 for (;;) { 347 fragsperinode = MAX(numfrags(&sblock, density), 1); 348 if (fragsperinode < minfragsperinode) { 349 bsize <<= 1; 350 fsize <<= 1; 351 printf("Block size too small for a file system %s %d\n", 352 "of this size. Increasing blocksize to", bsize); 353 goto restart; 354 } 355 minfpg = fragsperinode * INOPB(&sblock); 356 if (minfpg > sblock.fs_size) 357 minfpg = sblock.fs_size; 358 sblock.fs_ipg = INOPB(&sblock); 359 sblock.fs_fpg = roundup(sblock.fs_iblkno + 360 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 361 if (sblock.fs_fpg < minfpg) 362 sblock.fs_fpg = minfpg; 363 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 364 INOPB(&sblock)); 365 sblock.fs_fpg = roundup(sblock.fs_iblkno + 366 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 367 if (sblock.fs_fpg < minfpg) 368 sblock.fs_fpg = minfpg; 369 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 370 INOPB(&sblock)); 371 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 372 break; 373 density -= sblock.fs_fsize; 374 } 375 if (density != origdensity) 376 printf("density reduced from %d to %d\n", origdensity, density); 377 /* 378 * Start packing more blocks into the cylinder group until 379 * it cannot grow any larger, the number of cylinder groups 380 * drops below MINCYLGRPS, or we reach the size requested. 381 * For UFS1 inodes per cylinder group are stored in an int16_t 382 * so fs_ipg is limited to 2^15 - 1. 383 */ 384 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 385 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 386 INOPB(&sblock)); 387 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 388 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 389 break; 390 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 391 continue; 392 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 393 break; 394 } 395 sblock.fs_fpg -= sblock.fs_frag; 396 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 397 INOPB(&sblock)); 398 break; 399 } 400 /* 401 * Check to be sure that the last cylinder group has enough blocks 402 * to be viable. If it is too small, reduce the number of blocks 403 * per cylinder group which will have the effect of moving more 404 * blocks into the last cylinder group. 405 */ 406 optimalfpg = sblock.fs_fpg; 407 for (;;) { 408 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 409 lastminfpg = roundup(sblock.fs_iblkno + 410 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 411 if (sblock.fs_size < lastminfpg) { 412 printf("Filesystem size %jd < minimum size of %d\n", 413 (intmax_t)sblock.fs_size, lastminfpg); 414 exit(28); 415 } 416 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 417 sblock.fs_size % sblock.fs_fpg == 0) 418 break; 419 sblock.fs_fpg -= sblock.fs_frag; 420 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 421 INOPB(&sblock)); 422 } 423 if (optimalfpg != sblock.fs_fpg) 424 printf("Reduced frags per cylinder group from %d to %d %s\n", 425 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 427 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 428 if (Oflag == 1) { 429 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 430 sblock.fs_old_nsect = sblock.fs_old_spc; 431 sblock.fs_old_npsect = sblock.fs_old_spc; 432 sblock.fs_old_ncyl = sblock.fs_ncg; 433 } 434 /* 435 * fill in remaining fields of the super block 436 */ 437 sblock.fs_csaddr = cgdmin(&sblock, 0); 438 sblock.fs_cssize = 439 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 440 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 441 if (fscs == NULL) 442 errx(31, "calloc failed"); 443 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 444 if (sblock.fs_sbsize > SBLOCKSIZE) 445 sblock.fs_sbsize = SBLOCKSIZE; 446 if (sblock.fs_sbsize < realsectorsize) 447 sblock.fs_sbsize = realsectorsize; 448 sblock.fs_minfree = minfree; 449 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 450 sblock.fs_metaspace = blknum(&sblock, metaspace); 451 else if (metaspace != -1) 452 /* reserve half of minfree for metadata blocks */ 453 sblock.fs_metaspace = blknum(&sblock, 454 (sblock.fs_fpg * minfree) / 200); 455 if (maxbpg == 0) 456 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 457 else 458 sblock.fs_maxbpg = maxbpg; 459 sblock.fs_optim = opt; 460 sblock.fs_cgrotor = 0; 461 sblock.fs_pendingblocks = 0; 462 sblock.fs_pendinginodes = 0; 463 sblock.fs_fmod = 0; 464 sblock.fs_ronly = 0; 465 sblock.fs_state = 0; 466 sblock.fs_clean = 1; 467 sblock.fs_id[0] = (long)utime; 468 sblock.fs_id[1] = newfs_random(); 469 sblock.fs_fsmnt[0] = '\0'; 470 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 471 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 472 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 473 sblock.fs_cstotal.cs_nbfree = 474 fragstoblks(&sblock, sblock.fs_dsize) - 475 howmany(csfrags, sblock.fs_frag); 476 sblock.fs_cstotal.cs_nffree = 477 fragnum(&sblock, sblock.fs_size) + 478 (fragnum(&sblock, csfrags) > 0 ? 479 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 480 sblock.fs_cstotal.cs_nifree = 481 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 482 sblock.fs_cstotal.cs_ndir = 0; 483 sblock.fs_dsize -= csfrags; 484 sblock.fs_time = utime; 485 if (Oflag == 1) { 486 sblock.fs_old_time = utime; 487 sblock.fs_old_dsize = sblock.fs_dsize; 488 sblock.fs_old_csaddr = sblock.fs_csaddr; 489 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 490 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 491 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 492 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 493 } 494 495 /* 496 * Dump out summary information about file system. 497 */ 498 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 499 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 500 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 501 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 502 sblock.fs_fsize); 503 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 504 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 505 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 506 if (sblock.fs_flags & FS_DOSOFTDEP) 507 printf("\twith soft updates\n"); 508 # undef B2MBFACTOR 509 510 if (Eflag && !Nflag) { 511 printf("Erasing sectors [%jd...%jd]\n", 512 sblock.fs_sblockloc / disk.d_bsize, 513 fsbtodb(&sblock, sblock.fs_size) - 1); 514 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 515 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 516 } 517 /* 518 * Wipe out old UFS1 superblock(s) if necessary. 519 */ 520 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 521 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 522 if (i == -1) 523 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 524 525 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 526 fsdummy.fs_magic = 0; 527 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 528 chdummy, SBLOCKSIZE); 529 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 530 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 531 break; 532 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 533 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 534 } 535 } 536 } 537 if (!Nflag) 538 do_sbwrite(&disk); 539 if (Xflag == 1) { 540 printf("** Exiting on Xflag 1\n"); 541 exit(0); 542 } 543 if (Xflag == 2) 544 printf("** Leaving BAD MAGIC on Xflag 2\n"); 545 else 546 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 547 548 /* 549 * Now build the cylinders group blocks and 550 * then print out indices of cylinder groups. 551 */ 552 printf("super-block backups (for fsck_ffs -b #) at:\n"); 553 i = 0; 554 width = charsperline(); 555 /* 556 * allocate space for superblock, cylinder group map, and 557 * two sets of inode blocks. 558 */ 559 if (sblock.fs_bsize < SBLOCKSIZE) 560 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 561 else 562 iobufsize = 4 * sblock.fs_bsize; 563 if ((iobuf = calloc(1, iobufsize)) == 0) { 564 printf("Cannot allocate I/O buffer\n"); 565 exit(38); 566 } 567 /* 568 * Make a copy of the superblock into the buffer that we will be 569 * writing out in each cylinder group. 570 */ 571 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 572 for (cg = 0; cg < sblock.fs_ncg; cg++) { 573 initcg(cg, utime); 574 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 575 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 576 cg < (sblock.fs_ncg-1) ? "," : ""); 577 if (j < 0) 578 tmpbuf[j = 0] = '\0'; 579 if (i + j >= width) { 580 printf("\n"); 581 i = 0; 582 } 583 i += j; 584 printf("%s", tmpbuf); 585 fflush(stdout); 586 } 587 printf("\n"); 588 if (Nflag) 589 exit(0); 590 /* 591 * Now construct the initial file system, 592 * then write out the super-block. 593 */ 594 fsinit(utime); 595 if (Oflag == 1) { 596 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 597 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 598 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 599 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 600 } 601 if (Xflag == 3) { 602 printf("** Exiting on Xflag 3\n"); 603 exit(0); 604 } 605 if (!Nflag) { 606 do_sbwrite(&disk); 607 /* 608 * For UFS1 filesystems with a blocksize of 64K, the first 609 * alternate superblock resides at the location used for 610 * the default UFS2 superblock. As there is a valid 611 * superblock at this location, the boot code will use 612 * it as its first choice. Thus we have to ensure that 613 * all of its statistcs on usage are correct. 614 */ 615 if (Oflag == 1 && sblock.fs_bsize == 65536) 616 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 617 sblock.fs_bsize, (char *)&sblock); 618 } 619 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 620 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 621 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 622 ((char *)fscs) + i); 623 /* 624 * Read the last sector of the boot block, replace the last 625 * 20 bytes with the recovery information, then write it back. 626 * The recovery information only works for UFS2 filesystems. 627 */ 628 if (sblock.fs_magic == FS_UFS2_MAGIC) { 629 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 630 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 631 fsrbuf, realsectorsize) == -1) 632 err(1, "can't read recovery area: %s", disk.d_error); 633 fsr = 634 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 635 fsr->fsr_magic = sblock.fs_magic; 636 fsr->fsr_fpg = sblock.fs_fpg; 637 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 638 fsr->fsr_sblkno = sblock.fs_sblkno; 639 fsr->fsr_ncg = sblock.fs_ncg; 640 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 641 realsectorsize, fsrbuf); 642 free(fsrbuf); 643 } 644 /* 645 * Update information about this partition in pack 646 * label, to that it may be updated on disk. 647 */ 648 if (pp != NULL) { 649 pp->p_fstype = FS_BSDFFS; 650 pp->p_fsize = sblock.fs_fsize; 651 pp->p_frag = sblock.fs_frag; 652 pp->p_cpg = sblock.fs_fpg; 653 } 654 } 655 656 /* 657 * Initialize a cylinder group. 658 */ 659 void 660 initcg(int cylno, time_t utime) 661 { 662 long blkno, start; 663 uint i, j, d, dlower, dupper; 664 ufs2_daddr_t cbase, dmax; 665 struct ufs1_dinode *dp1; 666 struct ufs2_dinode *dp2; 667 struct csum *cs; 668 669 /* 670 * Determine block bounds for cylinder group. 671 * Allow space for super block summary information in first 672 * cylinder group. 673 */ 674 cbase = cgbase(&sblock, cylno); 675 dmax = cbase + sblock.fs_fpg; 676 if (dmax > sblock.fs_size) 677 dmax = sblock.fs_size; 678 dlower = cgsblock(&sblock, cylno) - cbase; 679 dupper = cgdmin(&sblock, cylno) - cbase; 680 if (cylno == 0) 681 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 682 cs = &fscs[cylno]; 683 memset(&acg, 0, sblock.fs_cgsize); 684 acg.cg_time = utime; 685 acg.cg_magic = CG_MAGIC; 686 acg.cg_cgx = cylno; 687 acg.cg_niblk = sblock.fs_ipg; 688 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 689 acg.cg_ndblk = dmax - cbase; 690 if (sblock.fs_contigsumsize > 0) 691 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 692 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 693 if (Oflag == 2) { 694 acg.cg_iusedoff = start; 695 } else { 696 acg.cg_old_ncyl = sblock.fs_old_cpg; 697 acg.cg_old_time = acg.cg_time; 698 acg.cg_time = 0; 699 acg.cg_old_niblk = acg.cg_niblk; 700 acg.cg_niblk = 0; 701 acg.cg_initediblk = 0; 702 acg.cg_old_btotoff = start; 703 acg.cg_old_boff = acg.cg_old_btotoff + 704 sblock.fs_old_cpg * sizeof(int32_t); 705 acg.cg_iusedoff = acg.cg_old_boff + 706 sblock.fs_old_cpg * sizeof(u_int16_t); 707 } 708 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 709 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 710 if (sblock.fs_contigsumsize > 0) { 711 acg.cg_clustersumoff = 712 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 713 acg.cg_clustersumoff -= sizeof(u_int32_t); 714 acg.cg_clusteroff = acg.cg_clustersumoff + 715 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 716 acg.cg_nextfreeoff = acg.cg_clusteroff + 717 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 718 } 719 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 720 printf("Panic: cylinder group too big\n"); 721 exit(37); 722 } 723 acg.cg_cs.cs_nifree += sblock.fs_ipg; 724 if (cylno == 0) 725 for (i = 0; i < (long)UFS_ROOTINO; i++) { 726 setbit(cg_inosused(&acg), i); 727 acg.cg_cs.cs_nifree--; 728 } 729 if (cylno > 0) { 730 /* 731 * In cylno 0, beginning space is reserved 732 * for boot and super blocks. 733 */ 734 for (d = 0; d < dlower; d += sblock.fs_frag) { 735 blkno = d / sblock.fs_frag; 736 setblock(&sblock, cg_blksfree(&acg), blkno); 737 if (sblock.fs_contigsumsize > 0) 738 setbit(cg_clustersfree(&acg), blkno); 739 acg.cg_cs.cs_nbfree++; 740 } 741 } 742 if ((i = dupper % sblock.fs_frag)) { 743 acg.cg_frsum[sblock.fs_frag - i]++; 744 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 745 setbit(cg_blksfree(&acg), dupper); 746 acg.cg_cs.cs_nffree++; 747 } 748 } 749 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 750 d += sblock.fs_frag) { 751 blkno = d / sblock.fs_frag; 752 setblock(&sblock, cg_blksfree(&acg), blkno); 753 if (sblock.fs_contigsumsize > 0) 754 setbit(cg_clustersfree(&acg), blkno); 755 acg.cg_cs.cs_nbfree++; 756 } 757 if (d < acg.cg_ndblk) { 758 acg.cg_frsum[acg.cg_ndblk - d]++; 759 for (; d < acg.cg_ndblk; d++) { 760 setbit(cg_blksfree(&acg), d); 761 acg.cg_cs.cs_nffree++; 762 } 763 } 764 if (sblock.fs_contigsumsize > 0) { 765 int32_t *sump = cg_clustersum(&acg); 766 u_char *mapp = cg_clustersfree(&acg); 767 int map = *mapp++; 768 int bit = 1; 769 int run = 0; 770 771 for (i = 0; i < acg.cg_nclusterblks; i++) { 772 if ((map & bit) != 0) 773 run++; 774 else if (run != 0) { 775 if (run > sblock.fs_contigsumsize) 776 run = sblock.fs_contigsumsize; 777 sump[run]++; 778 run = 0; 779 } 780 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 781 bit <<= 1; 782 else { 783 map = *mapp++; 784 bit = 1; 785 } 786 } 787 if (run != 0) { 788 if (run > sblock.fs_contigsumsize) 789 run = sblock.fs_contigsumsize; 790 sump[run]++; 791 } 792 } 793 *cs = acg.cg_cs; 794 /* 795 * Write out the duplicate super block, the cylinder group map 796 * and two blocks worth of inodes in a single write. 797 */ 798 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 799 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 800 start += sblock.fs_bsize; 801 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 802 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 803 for (i = 0; i < acg.cg_initediblk; i++) { 804 if (sblock.fs_magic == FS_UFS1_MAGIC) { 805 dp1->di_gen = newfs_random(); 806 dp1++; 807 } else { 808 dp2->di_gen = newfs_random(); 809 dp2++; 810 } 811 } 812 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 813 /* 814 * For the old file system, we have to initialize all the inodes. 815 */ 816 if (Oflag == 1) { 817 for (i = 2 * sblock.fs_frag; 818 i < sblock.fs_ipg / INOPF(&sblock); 819 i += sblock.fs_frag) { 820 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 821 for (j = 0; j < INOPB(&sblock); j++) { 822 dp1->di_gen = newfs_random(); 823 dp1++; 824 } 825 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 826 sblock.fs_bsize, &iobuf[start]); 827 } 828 } 829 } 830 831 /* 832 * initialize the file system 833 */ 834 #define ROOTLINKCNT 3 835 836 static struct direct root_dir[] = { 837 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 838 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 839 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 840 }; 841 842 #define SNAPLINKCNT 2 843 844 static struct direct snap_dir[] = { 845 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 846 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 847 }; 848 849 void 850 fsinit(time_t utime) 851 { 852 union dinode node; 853 struct group *grp; 854 gid_t gid; 855 int entries; 856 857 memset(&node, 0, sizeof node); 858 if ((grp = getgrnam("operator")) != NULL) { 859 gid = grp->gr_gid; 860 } else { 861 warnx("Cannot retrieve operator gid, using gid 0."); 862 gid = 0; 863 } 864 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 865 if (sblock.fs_magic == FS_UFS1_MAGIC) { 866 /* 867 * initialize the node 868 */ 869 node.dp1.di_atime = utime; 870 node.dp1.di_mtime = utime; 871 node.dp1.di_ctime = utime; 872 /* 873 * create the root directory 874 */ 875 node.dp1.di_mode = IFDIR | UMASK; 876 node.dp1.di_nlink = entries; 877 node.dp1.di_size = makedir(root_dir, entries); 878 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 879 node.dp1.di_blocks = 880 btodb(fragroundup(&sblock, node.dp1.di_size)); 881 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 882 iobuf); 883 iput(&node, UFS_ROOTINO); 884 if (!nflag) { 885 /* 886 * create the .snap directory 887 */ 888 node.dp1.di_mode |= 020; 889 node.dp1.di_gid = gid; 890 node.dp1.di_nlink = SNAPLINKCNT; 891 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 892 node.dp1.di_db[0] = 893 alloc(sblock.fs_fsize, node.dp1.di_mode); 894 node.dp1.di_blocks = 895 btodb(fragroundup(&sblock, node.dp1.di_size)); 896 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 897 sblock.fs_fsize, iobuf); 898 iput(&node, UFS_ROOTINO + 1); 899 } 900 } else { 901 /* 902 * initialize the node 903 */ 904 node.dp2.di_atime = utime; 905 node.dp2.di_mtime = utime; 906 node.dp2.di_ctime = utime; 907 node.dp2.di_birthtime = utime; 908 /* 909 * create the root directory 910 */ 911 node.dp2.di_mode = IFDIR | UMASK; 912 node.dp2.di_nlink = entries; 913 node.dp2.di_size = makedir(root_dir, entries); 914 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 915 node.dp2.di_blocks = 916 btodb(fragroundup(&sblock, node.dp2.di_size)); 917 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 918 iobuf); 919 iput(&node, UFS_ROOTINO); 920 if (!nflag) { 921 /* 922 * create the .snap directory 923 */ 924 node.dp2.di_mode |= 020; 925 node.dp2.di_gid = gid; 926 node.dp2.di_nlink = SNAPLINKCNT; 927 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 928 node.dp2.di_db[0] = 929 alloc(sblock.fs_fsize, node.dp2.di_mode); 930 node.dp2.di_blocks = 931 btodb(fragroundup(&sblock, node.dp2.di_size)); 932 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 933 sblock.fs_fsize, iobuf); 934 iput(&node, UFS_ROOTINO + 1); 935 } 936 } 937 } 938 939 /* 940 * construct a set of directory entries in "iobuf". 941 * return size of directory. 942 */ 943 int 944 makedir(struct direct *protodir, int entries) 945 { 946 char *cp; 947 int i, spcleft; 948 949 spcleft = DIRBLKSIZ; 950 memset(iobuf, 0, DIRBLKSIZ); 951 for (cp = iobuf, i = 0; i < entries - 1; i++) { 952 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 953 memmove(cp, &protodir[i], protodir[i].d_reclen); 954 cp += protodir[i].d_reclen; 955 spcleft -= protodir[i].d_reclen; 956 } 957 protodir[i].d_reclen = spcleft; 958 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 959 return (DIRBLKSIZ); 960 } 961 962 /* 963 * allocate a block or frag 964 */ 965 ufs2_daddr_t 966 alloc(int size, int mode) 967 { 968 int i, blkno, frag; 969 uint d; 970 971 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 972 sblock.fs_cgsize); 973 if (acg.cg_magic != CG_MAGIC) { 974 printf("cg 0: bad magic number\n"); 975 exit(38); 976 } 977 if (acg.cg_cs.cs_nbfree == 0) { 978 printf("first cylinder group ran out of space\n"); 979 exit(39); 980 } 981 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 982 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 983 goto goth; 984 printf("internal error: can't find block in cyl 0\n"); 985 exit(40); 986 goth: 987 blkno = fragstoblks(&sblock, d); 988 clrblock(&sblock, cg_blksfree(&acg), blkno); 989 if (sblock.fs_contigsumsize > 0) 990 clrbit(cg_clustersfree(&acg), blkno); 991 acg.cg_cs.cs_nbfree--; 992 sblock.fs_cstotal.cs_nbfree--; 993 fscs[0].cs_nbfree--; 994 if (mode & IFDIR) { 995 acg.cg_cs.cs_ndir++; 996 sblock.fs_cstotal.cs_ndir++; 997 fscs[0].cs_ndir++; 998 } 999 if (size != sblock.fs_bsize) { 1000 frag = howmany(size, sblock.fs_fsize); 1001 fscs[0].cs_nffree += sblock.fs_frag - frag; 1002 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1003 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1004 acg.cg_frsum[sblock.fs_frag - frag]++; 1005 for (i = frag; i < sblock.fs_frag; i++) 1006 setbit(cg_blksfree(&acg), d + i); 1007 } 1008 /* XXX cgwrite(&disk, 0)??? */ 1009 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1010 (char *)&acg); 1011 return ((ufs2_daddr_t)d); 1012 } 1013 1014 /* 1015 * Allocate an inode on the disk 1016 */ 1017 void 1018 iput(union dinode *ip, ino_t ino) 1019 { 1020 ufs2_daddr_t d; 1021 1022 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1023 sblock.fs_cgsize); 1024 if (acg.cg_magic != CG_MAGIC) { 1025 printf("cg 0: bad magic number\n"); 1026 exit(31); 1027 } 1028 acg.cg_cs.cs_nifree--; 1029 setbit(cg_inosused(&acg), ino); 1030 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1031 (char *)&acg); 1032 sblock.fs_cstotal.cs_nifree--; 1033 fscs[0].cs_nifree--; 1034 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1035 printf("fsinit: inode value out of range (%ju).\n", 1036 (uintmax_t)ino); 1037 exit(32); 1038 } 1039 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1040 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1041 if (sblock.fs_magic == FS_UFS1_MAGIC) 1042 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1043 ip->dp1; 1044 else 1045 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1046 ip->dp2; 1047 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1048 } 1049 1050 /* 1051 * possibly write to disk 1052 */ 1053 static void 1054 wtfs(ufs2_daddr_t bno, int size, char *bf) 1055 { 1056 if (Nflag) 1057 return; 1058 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1059 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1060 } 1061 1062 /* 1063 * check if a block is available 1064 */ 1065 static int 1066 isblock(struct fs *fs, unsigned char *cp, int h) 1067 { 1068 unsigned char mask; 1069 1070 switch (fs->fs_frag) { 1071 case 8: 1072 return (cp[h] == 0xff); 1073 case 4: 1074 mask = 0x0f << ((h & 0x1) << 2); 1075 return ((cp[h >> 1] & mask) == mask); 1076 case 2: 1077 mask = 0x03 << ((h & 0x3) << 1); 1078 return ((cp[h >> 2] & mask) == mask); 1079 case 1: 1080 mask = 0x01 << (h & 0x7); 1081 return ((cp[h >> 3] & mask) == mask); 1082 default: 1083 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1084 return (0); 1085 } 1086 } 1087 1088 /* 1089 * take a block out of the map 1090 */ 1091 static void 1092 clrblock(struct fs *fs, unsigned char *cp, int h) 1093 { 1094 switch ((fs)->fs_frag) { 1095 case 8: 1096 cp[h] = 0; 1097 return; 1098 case 4: 1099 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1100 return; 1101 case 2: 1102 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1103 return; 1104 case 1: 1105 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1106 return; 1107 default: 1108 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1109 return; 1110 } 1111 } 1112 1113 /* 1114 * put a block into the map 1115 */ 1116 static void 1117 setblock(struct fs *fs, unsigned char *cp, int h) 1118 { 1119 switch (fs->fs_frag) { 1120 case 8: 1121 cp[h] = 0xff; 1122 return; 1123 case 4: 1124 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1125 return; 1126 case 2: 1127 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1128 return; 1129 case 1: 1130 cp[h >> 3] |= (0x01 << (h & 0x7)); 1131 return; 1132 default: 1133 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1134 return; 1135 } 1136 } 1137 1138 /* 1139 * Determine the number of characters in a 1140 * single line. 1141 */ 1142 1143 static int 1144 charsperline(void) 1145 { 1146 int columns; 1147 char *cp; 1148 struct winsize ws; 1149 1150 columns = 0; 1151 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1152 columns = ws.ws_col; 1153 if (columns == 0 && (cp = getenv("COLUMNS"))) 1154 columns = atoi(cp); 1155 if (columns == 0) 1156 columns = 80; /* last resort */ 1157 return (columns); 1158 } 1159 1160 static int 1161 ilog2(int val) 1162 { 1163 u_int n; 1164 1165 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1166 if (1 << n == val) 1167 return (n); 1168 errx(1, "ilog2: %d is not a power of 2\n", val); 1169 } 1170 1171 /* 1172 * For the regression test, return predictable random values. 1173 * Otherwise use a true random number generator. 1174 */ 1175 static u_int32_t 1176 newfs_random(void) 1177 { 1178 static int nextnum = 1; 1179 1180 if (Rflag) 1181 return (nextnum++); 1182 return (arc4random()); 1183 } 1184