xref: /freebsd/sbin/newfs/mkfs.c (revision da3086df1863e9aed45eb14e265c306f8bb27d80)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
69 
70 /*
71  * make file system for cylinder-group style file systems
72  */
73 #define UMASK		0755
74 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75 
76 static struct	csum *fscs;
77 #define	sblock	disk.d_fs
78 #define	acg	disk.d_cg
79 
80 union dinode {
81 	struct ufs1_dinode dp1;
82 	struct ufs2_dinode dp2;
83 };
84 #define DIP(dp, field) \
85 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86 	(dp)->dp1.field : (dp)->dp2.field)
87 
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static u_int32_t newfs_random(void);
102 
103 static int
104 do_sbwrite(struct uufsd *disk)
105 {
106 	if (!disk->d_sblock)
107 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109 	    disk->d_sblock) * disk->d_bsize)));
110 }
111 
112 void
113 mkfs(struct partition *pp, char *fsys)
114 {
115 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116 	long i, j, csfrags;
117 	uint cg;
118 	time_t utime;
119 	quad_t sizepb;
120 	int width;
121 	ino_t maxinum;
122 	int minfragsperinode;	/* minimum ratio of frags to inodes */
123 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124 	struct fsrecovery *fsr;
125 	char *fsrbuf;
126 	union {
127 		struct fs fdummy;
128 		char cdummy[SBLOCKSIZE];
129 	} dummy;
130 #define fsdummy dummy.fdummy
131 #define chdummy dummy.cdummy
132 
133 	/*
134 	 * Our blocks == sector size, and the version of UFS we are using is
135 	 * specified by Oflag.
136 	 */
137 	disk.d_bsize = sectorsize;
138 	disk.d_ufs = Oflag;
139 	if (Rflag)
140 		utime = 1000000000;
141 	else
142 		time(&utime);
143 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
144 	sblock.fs_flags = 0;
145 	if (Uflag)
146 		sblock.fs_flags |= FS_DOSOFTDEP;
147 	if (Lflag)
148 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
149 	if (Jflag)
150 		sblock.fs_flags |= FS_GJOURNAL;
151 	if (lflag)
152 		sblock.fs_flags |= FS_MULTILABEL;
153 	if (tflag)
154 		sblock.fs_flags |= FS_TRIM;
155 	/*
156 	 * Validate the given file system size.
157 	 * Verify that its last block can actually be accessed.
158 	 * Convert to file system fragment sized units.
159 	 */
160 	if (fssize <= 0) {
161 		printf("preposterous size %jd\n", (intmax_t)fssize);
162 		exit(13);
163 	}
164 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
165 	    (char *)&sblock);
166 	/*
167 	 * collect and verify the file system density info
168 	 */
169 	sblock.fs_avgfilesize = avgfilesize;
170 	sblock.fs_avgfpdir = avgfilesperdir;
171 	if (sblock.fs_avgfilesize <= 0)
172 		printf("illegal expected average file size %d\n",
173 		    sblock.fs_avgfilesize), exit(14);
174 	if (sblock.fs_avgfpdir <= 0)
175 		printf("illegal expected number of files per directory %d\n",
176 		    sblock.fs_avgfpdir), exit(15);
177 
178 restart:
179 	/*
180 	 * collect and verify the block and fragment sizes
181 	 */
182 	sblock.fs_bsize = bsize;
183 	sblock.fs_fsize = fsize;
184 	if (!POWEROF2(sblock.fs_bsize)) {
185 		printf("block size must be a power of 2, not %d\n",
186 		    sblock.fs_bsize);
187 		exit(16);
188 	}
189 	if (!POWEROF2(sblock.fs_fsize)) {
190 		printf("fragment size must be a power of 2, not %d\n",
191 		    sblock.fs_fsize);
192 		exit(17);
193 	}
194 	if (sblock.fs_fsize < sectorsize) {
195 		printf("increasing fragment size from %d to sector size (%d)\n",
196 		    sblock.fs_fsize, sectorsize);
197 		sblock.fs_fsize = sectorsize;
198 	}
199 	if (sblock.fs_bsize > MAXBSIZE) {
200 		printf("decreasing block size from %d to maximum (%d)\n",
201 		    sblock.fs_bsize, MAXBSIZE);
202 		sblock.fs_bsize = MAXBSIZE;
203 	}
204 	if (sblock.fs_bsize < MINBSIZE) {
205 		printf("increasing block size from %d to minimum (%d)\n",
206 		    sblock.fs_bsize, MINBSIZE);
207 		sblock.fs_bsize = MINBSIZE;
208 	}
209 	if (sblock.fs_fsize > MAXBSIZE) {
210 		printf("decreasing fragment size from %d to maximum (%d)\n",
211 		    sblock.fs_fsize, MAXBSIZE);
212 		sblock.fs_fsize = MAXBSIZE;
213 	}
214 	if (sblock.fs_bsize < sblock.fs_fsize) {
215 		printf("increasing block size from %d to fragment size (%d)\n",
216 		    sblock.fs_bsize, sblock.fs_fsize);
217 		sblock.fs_bsize = sblock.fs_fsize;
218 	}
219 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
220 		printf(
221 		"increasing fragment size from %d to block size / %d (%d)\n",
222 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
223 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
224 	}
225 	if (maxbsize == 0)
226 		maxbsize = bsize;
227 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
228 		sblock.fs_maxbsize = sblock.fs_bsize;
229 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
230 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
231 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
232 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
233 	} else {
234 		sblock.fs_maxbsize = maxbsize;
235 	}
236 	/*
237 	 * Maxcontig sets the default for the maximum number of blocks
238 	 * that may be allocated sequentially. With file system clustering
239 	 * it is possible to allocate contiguous blocks up to the maximum
240 	 * transfer size permitted by the controller or buffering.
241 	 */
242 	if (maxcontig == 0)
243 		maxcontig = MAX(1, MAXPHYS / bsize);
244 	sblock.fs_maxcontig = maxcontig;
245 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
246 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
247 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
248 	}
249 	if (sblock.fs_maxcontig > 1)
250 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
251 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
252 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
253 	sblock.fs_qbmask = ~sblock.fs_bmask;
254 	sblock.fs_qfmask = ~sblock.fs_fmask;
255 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
256 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
257 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
258 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
259 	if (sblock.fs_frag > MAXFRAG) {
260 		printf("fragment size %d is still too small (can't happen)\n",
261 		    sblock.fs_bsize / MAXFRAG);
262 		exit(21);
263 	}
264 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
265 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
266 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
267 
268 	/*
269 	 * Before the filesystem is finally initialized, mark it
270 	 * as incompletely initialized.
271 	 */
272 	sblock.fs_magic = FS_BAD_MAGIC;
273 
274 	if (Oflag == 1) {
275 		sblock.fs_sblockloc = SBLOCK_UFS1;
276 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
277 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
278 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
279 		    sizeof(ufs1_daddr_t));
280 		sblock.fs_old_inodefmt = FS_44INODEFMT;
281 		sblock.fs_old_cgoffset = 0;
282 		sblock.fs_old_cgmask = 0xffffffff;
283 		sblock.fs_old_size = sblock.fs_size;
284 		sblock.fs_old_rotdelay = 0;
285 		sblock.fs_old_rps = 60;
286 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
287 		sblock.fs_old_cpg = 1;
288 		sblock.fs_old_interleave = 1;
289 		sblock.fs_old_trackskew = 0;
290 		sblock.fs_old_cpc = 0;
291 		sblock.fs_old_postblformat = 1;
292 		sblock.fs_old_nrpos = 1;
293 	} else {
294 		sblock.fs_sblockloc = SBLOCK_UFS2;
295 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
298 		    sizeof(ufs2_daddr_t));
299 	}
300 	sblock.fs_sblkno =
301 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302 		sblock.fs_frag);
303 	sblock.fs_cblkno = sblock.fs_sblkno +
304 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
307 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
308 		sizepb *= NINDIR(&sblock);
309 		sblock.fs_maxfilesize += sizepb;
310 	}
311 
312 	/*
313 	 * It's impossible to create a snapshot in case that fs_maxfilesize
314 	 * is smaller than the fssize.
315 	 */
316 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317 		warnx("WARNING: You will be unable to create snapshots on this "
318 		      "file system.  Correct by using a larger blocksize.");
319 	}
320 
321 	/*
322 	 * Calculate the number of blocks to put into each cylinder group.
323 	 *
324 	 * This algorithm selects the number of blocks per cylinder
325 	 * group. The first goal is to have at least enough data blocks
326 	 * in each cylinder group to meet the density requirement. Once
327 	 * this goal is achieved we try to expand to have at least
328 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329 	 * pack as many blocks into each cylinder group map as will fit.
330 	 *
331 	 * We start by calculating the smallest number of blocks that we
332 	 * can put into each cylinder group. If this is too big, we reduce
333 	 * the density until it fits.
334 	 */
335 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
336 	minfragsperinode = 1 + fssize / maxinum;
337 	if (density == 0) {
338 		density = MAX(NFPI, minfragsperinode) * fsize;
339 	} else if (density < minfragsperinode * fsize) {
340 		origdensity = density;
341 		density = minfragsperinode * fsize;
342 		fprintf(stderr, "density increased from %d to %d\n",
343 		    origdensity, density);
344 	}
345 	origdensity = density;
346 	for (;;) {
347 		fragsperinode = MAX(numfrags(&sblock, density), 1);
348 		if (fragsperinode < minfragsperinode) {
349 			bsize <<= 1;
350 			fsize <<= 1;
351 			printf("Block size too small for a file system %s %d\n",
352 			     "of this size. Increasing blocksize to", bsize);
353 			goto restart;
354 		}
355 		minfpg = fragsperinode * INOPB(&sblock);
356 		if (minfpg > sblock.fs_size)
357 			minfpg = sblock.fs_size;
358 		sblock.fs_ipg = INOPB(&sblock);
359 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
360 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
361 		if (sblock.fs_fpg < minfpg)
362 			sblock.fs_fpg = minfpg;
363 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
364 		    INOPB(&sblock));
365 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
366 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
367 		if (sblock.fs_fpg < minfpg)
368 			sblock.fs_fpg = minfpg;
369 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370 		    INOPB(&sblock));
371 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
372 			break;
373 		density -= sblock.fs_fsize;
374 	}
375 	if (density != origdensity)
376 		printf("density reduced from %d to %d\n", origdensity, density);
377 	/*
378 	 * Start packing more blocks into the cylinder group until
379 	 * it cannot grow any larger, the number of cylinder groups
380 	 * drops below MINCYLGRPS, or we reach the size requested.
381 	 * For UFS1 inodes per cylinder group are stored in an int16_t
382 	 * so fs_ipg is limited to 2^15 - 1.
383 	 */
384 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
385 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386 		    INOPB(&sblock));
387 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
388 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
389 				break;
390 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
391 				continue;
392 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
393 				break;
394 		}
395 		sblock.fs_fpg -= sblock.fs_frag;
396 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
397 		    INOPB(&sblock));
398 		break;
399 	}
400 	/*
401 	 * Check to be sure that the last cylinder group has enough blocks
402 	 * to be viable. If it is too small, reduce the number of blocks
403 	 * per cylinder group which will have the effect of moving more
404 	 * blocks into the last cylinder group.
405 	 */
406 	optimalfpg = sblock.fs_fpg;
407 	for (;;) {
408 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
409 		lastminfpg = roundup(sblock.fs_iblkno +
410 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
411 		if (sblock.fs_size < lastminfpg) {
412 			printf("Filesystem size %jd < minimum size of %d\n",
413 			    (intmax_t)sblock.fs_size, lastminfpg);
414 			exit(28);
415 		}
416 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
417 		    sblock.fs_size % sblock.fs_fpg == 0)
418 			break;
419 		sblock.fs_fpg -= sblock.fs_frag;
420 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
421 		    INOPB(&sblock));
422 	}
423 	if (optimalfpg != sblock.fs_fpg)
424 		printf("Reduced frags per cylinder group from %d to %d %s\n",
425 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
426 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
428 	if (Oflag == 1) {
429 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
430 		sblock.fs_old_nsect = sblock.fs_old_spc;
431 		sblock.fs_old_npsect = sblock.fs_old_spc;
432 		sblock.fs_old_ncyl = sblock.fs_ncg;
433 	}
434 	/*
435 	 * fill in remaining fields of the super block
436 	 */
437 	sblock.fs_csaddr = cgdmin(&sblock, 0);
438 	sblock.fs_cssize =
439 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
440 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
441 	if (fscs == NULL)
442 		errx(31, "calloc failed");
443 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
444 	if (sblock.fs_sbsize > SBLOCKSIZE)
445 		sblock.fs_sbsize = SBLOCKSIZE;
446 	if (sblock.fs_sbsize < realsectorsize)
447 		sblock.fs_sbsize = realsectorsize;
448 	sblock.fs_minfree = minfree;
449 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
450 		sblock.fs_metaspace = blknum(&sblock, metaspace);
451 	else if (metaspace != -1)
452 		/* reserve half of minfree for metadata blocks */
453 		sblock.fs_metaspace = blknum(&sblock,
454 		    (sblock.fs_fpg * minfree) / 200);
455 	if (maxbpg == 0)
456 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
457 	else
458 		sblock.fs_maxbpg = maxbpg;
459 	sblock.fs_optim = opt;
460 	sblock.fs_cgrotor = 0;
461 	sblock.fs_pendingblocks = 0;
462 	sblock.fs_pendinginodes = 0;
463 	sblock.fs_fmod = 0;
464 	sblock.fs_ronly = 0;
465 	sblock.fs_state = 0;
466 	sblock.fs_clean = 1;
467 	sblock.fs_id[0] = (long)utime;
468 	sblock.fs_id[1] = newfs_random();
469 	sblock.fs_fsmnt[0] = '\0';
470 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
471 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
472 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
473 	sblock.fs_cstotal.cs_nbfree =
474 	    fragstoblks(&sblock, sblock.fs_dsize) -
475 	    howmany(csfrags, sblock.fs_frag);
476 	sblock.fs_cstotal.cs_nffree =
477 	    fragnum(&sblock, sblock.fs_size) +
478 	    (fragnum(&sblock, csfrags) > 0 ?
479 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
480 	sblock.fs_cstotal.cs_nifree =
481 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
482 	sblock.fs_cstotal.cs_ndir = 0;
483 	sblock.fs_dsize -= csfrags;
484 	sblock.fs_time = utime;
485 	if (Oflag == 1) {
486 		sblock.fs_old_time = utime;
487 		sblock.fs_old_dsize = sblock.fs_dsize;
488 		sblock.fs_old_csaddr = sblock.fs_csaddr;
489 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
490 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
491 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
492 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
493 	}
494 
495 	/*
496 	 * Dump out summary information about file system.
497 	 */
498 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
499 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
500 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
501 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
502 	    sblock.fs_fsize);
503 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
504 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
505 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
506 	if (sblock.fs_flags & FS_DOSOFTDEP)
507 		printf("\twith soft updates\n");
508 #	undef B2MBFACTOR
509 
510 	if (Eflag && !Nflag) {
511 		printf("Erasing sectors [%jd...%jd]\n",
512 		    sblock.fs_sblockloc / disk.d_bsize,
513 		    fsbtodb(&sblock, sblock.fs_size) - 1);
514 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
515 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
516 	}
517 	/*
518 	 * Wipe out old UFS1 superblock(s) if necessary.
519 	 */
520 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
521 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
522 		if (i == -1)
523 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
524 
525 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
526 			fsdummy.fs_magic = 0;
527 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
528 			    chdummy, SBLOCKSIZE);
529 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
530 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
531 					break;
532 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
533 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
534 			}
535 		}
536 	}
537 	if (!Nflag)
538 		do_sbwrite(&disk);
539 	if (Xflag == 1) {
540 		printf("** Exiting on Xflag 1\n");
541 		exit(0);
542 	}
543 	if (Xflag == 2)
544 		printf("** Leaving BAD MAGIC on Xflag 2\n");
545 	else
546 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
547 
548 	/*
549 	 * Now build the cylinders group blocks and
550 	 * then print out indices of cylinder groups.
551 	 */
552 	printf("super-block backups (for fsck_ffs -b #) at:\n");
553 	i = 0;
554 	width = charsperline();
555 	/*
556 	 * allocate space for superblock, cylinder group map, and
557 	 * two sets of inode blocks.
558 	 */
559 	if (sblock.fs_bsize < SBLOCKSIZE)
560 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
561 	else
562 		iobufsize = 4 * sblock.fs_bsize;
563 	if ((iobuf = calloc(1, iobufsize)) == 0) {
564 		printf("Cannot allocate I/O buffer\n");
565 		exit(38);
566 	}
567 	/*
568 	 * Make a copy of the superblock into the buffer that we will be
569 	 * writing out in each cylinder group.
570 	 */
571 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
572 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
573 		initcg(cg, utime);
574 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
575 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
576 		    cg < (sblock.fs_ncg-1) ? "," : "");
577 		if (j < 0)
578 			tmpbuf[j = 0] = '\0';
579 		if (i + j >= width) {
580 			printf("\n");
581 			i = 0;
582 		}
583 		i += j;
584 		printf("%s", tmpbuf);
585 		fflush(stdout);
586 	}
587 	printf("\n");
588 	if (Nflag)
589 		exit(0);
590 	/*
591 	 * Now construct the initial file system,
592 	 * then write out the super-block.
593 	 */
594 	fsinit(utime);
595 	if (Oflag == 1) {
596 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
597 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
598 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
599 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
600 	}
601 	if (Xflag == 3) {
602 		printf("** Exiting on Xflag 3\n");
603 		exit(0);
604 	}
605 	if (!Nflag) {
606 		do_sbwrite(&disk);
607 		/*
608 		 * For UFS1 filesystems with a blocksize of 64K, the first
609 		 * alternate superblock resides at the location used for
610 		 * the default UFS2 superblock. As there is a valid
611 		 * superblock at this location, the boot code will use
612 		 * it as its first choice. Thus we have to ensure that
613 		 * all of its statistcs on usage are correct.
614 		 */
615 		if (Oflag == 1 && sblock.fs_bsize == 65536)
616 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
617 			    sblock.fs_bsize, (char *)&sblock);
618 	}
619 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
620 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
621 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
622 			((char *)fscs) + i);
623 	/*
624 	 * Read the last sector of the boot block, replace the last
625 	 * 20 bytes with the recovery information, then write it back.
626 	 * The recovery information only works for UFS2 filesystems.
627 	 */
628 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
629 		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
630 		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
631 		    fsrbuf, realsectorsize) == -1)
632 			err(1, "can't read recovery area: %s", disk.d_error);
633 		fsr =
634 		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
635 		fsr->fsr_magic = sblock.fs_magic;
636 		fsr->fsr_fpg = sblock.fs_fpg;
637 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
638 		fsr->fsr_sblkno = sblock.fs_sblkno;
639 		fsr->fsr_ncg = sblock.fs_ncg;
640 		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
641 		    realsectorsize, fsrbuf);
642 		free(fsrbuf);
643 	}
644 	/*
645 	 * Update information about this partition in pack
646 	 * label, to that it may be updated on disk.
647 	 */
648 	if (pp != NULL) {
649 		pp->p_fstype = FS_BSDFFS;
650 		pp->p_fsize = sblock.fs_fsize;
651 		pp->p_frag = sblock.fs_frag;
652 		pp->p_cpg = sblock.fs_fpg;
653 	}
654 }
655 
656 /*
657  * Initialize a cylinder group.
658  */
659 void
660 initcg(int cylno, time_t utime)
661 {
662 	long blkno, start;
663 	uint i, j, d, dlower, dupper;
664 	ufs2_daddr_t cbase, dmax;
665 	struct ufs1_dinode *dp1;
666 	struct ufs2_dinode *dp2;
667 	struct csum *cs;
668 
669 	/*
670 	 * Determine block bounds for cylinder group.
671 	 * Allow space for super block summary information in first
672 	 * cylinder group.
673 	 */
674 	cbase = cgbase(&sblock, cylno);
675 	dmax = cbase + sblock.fs_fpg;
676 	if (dmax > sblock.fs_size)
677 		dmax = sblock.fs_size;
678 	dlower = cgsblock(&sblock, cylno) - cbase;
679 	dupper = cgdmin(&sblock, cylno) - cbase;
680 	if (cylno == 0)
681 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
682 	cs = &fscs[cylno];
683 	memset(&acg, 0, sblock.fs_cgsize);
684 	acg.cg_time = utime;
685 	acg.cg_magic = CG_MAGIC;
686 	acg.cg_cgx = cylno;
687 	acg.cg_niblk = sblock.fs_ipg;
688 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
689 	acg.cg_ndblk = dmax - cbase;
690 	if (sblock.fs_contigsumsize > 0)
691 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
692 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
693 	if (Oflag == 2) {
694 		acg.cg_iusedoff = start;
695 	} else {
696 		acg.cg_old_ncyl = sblock.fs_old_cpg;
697 		acg.cg_old_time = acg.cg_time;
698 		acg.cg_time = 0;
699 		acg.cg_old_niblk = acg.cg_niblk;
700 		acg.cg_niblk = 0;
701 		acg.cg_initediblk = 0;
702 		acg.cg_old_btotoff = start;
703 		acg.cg_old_boff = acg.cg_old_btotoff +
704 		    sblock.fs_old_cpg * sizeof(int32_t);
705 		acg.cg_iusedoff = acg.cg_old_boff +
706 		    sblock.fs_old_cpg * sizeof(u_int16_t);
707 	}
708 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
709 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
710 	if (sblock.fs_contigsumsize > 0) {
711 		acg.cg_clustersumoff =
712 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
713 		acg.cg_clustersumoff -= sizeof(u_int32_t);
714 		acg.cg_clusteroff = acg.cg_clustersumoff +
715 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
716 		acg.cg_nextfreeoff = acg.cg_clusteroff +
717 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
718 	}
719 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
720 		printf("Panic: cylinder group too big\n");
721 		exit(37);
722 	}
723 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
724 	if (cylno == 0)
725 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
726 			setbit(cg_inosused(&acg), i);
727 			acg.cg_cs.cs_nifree--;
728 		}
729 	if (cylno > 0) {
730 		/*
731 		 * In cylno 0, beginning space is reserved
732 		 * for boot and super blocks.
733 		 */
734 		for (d = 0; d < dlower; d += sblock.fs_frag) {
735 			blkno = d / sblock.fs_frag;
736 			setblock(&sblock, cg_blksfree(&acg), blkno);
737 			if (sblock.fs_contigsumsize > 0)
738 				setbit(cg_clustersfree(&acg), blkno);
739 			acg.cg_cs.cs_nbfree++;
740 		}
741 	}
742 	if ((i = dupper % sblock.fs_frag)) {
743 		acg.cg_frsum[sblock.fs_frag - i]++;
744 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
745 			setbit(cg_blksfree(&acg), dupper);
746 			acg.cg_cs.cs_nffree++;
747 		}
748 	}
749 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
750 	     d += sblock.fs_frag) {
751 		blkno = d / sblock.fs_frag;
752 		setblock(&sblock, cg_blksfree(&acg), blkno);
753 		if (sblock.fs_contigsumsize > 0)
754 			setbit(cg_clustersfree(&acg), blkno);
755 		acg.cg_cs.cs_nbfree++;
756 	}
757 	if (d < acg.cg_ndblk) {
758 		acg.cg_frsum[acg.cg_ndblk - d]++;
759 		for (; d < acg.cg_ndblk; d++) {
760 			setbit(cg_blksfree(&acg), d);
761 			acg.cg_cs.cs_nffree++;
762 		}
763 	}
764 	if (sblock.fs_contigsumsize > 0) {
765 		int32_t *sump = cg_clustersum(&acg);
766 		u_char *mapp = cg_clustersfree(&acg);
767 		int map = *mapp++;
768 		int bit = 1;
769 		int run = 0;
770 
771 		for (i = 0; i < acg.cg_nclusterblks; i++) {
772 			if ((map & bit) != 0)
773 				run++;
774 			else if (run != 0) {
775 				if (run > sblock.fs_contigsumsize)
776 					run = sblock.fs_contigsumsize;
777 				sump[run]++;
778 				run = 0;
779 			}
780 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
781 				bit <<= 1;
782 			else {
783 				map = *mapp++;
784 				bit = 1;
785 			}
786 		}
787 		if (run != 0) {
788 			if (run > sblock.fs_contigsumsize)
789 				run = sblock.fs_contigsumsize;
790 			sump[run]++;
791 		}
792 	}
793 	*cs = acg.cg_cs;
794 	/*
795 	 * Write out the duplicate super block, the cylinder group map
796 	 * and two blocks worth of inodes in a single write.
797 	 */
798 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
799 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
800 	start += sblock.fs_bsize;
801 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
802 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
803 	for (i = 0; i < acg.cg_initediblk; i++) {
804 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
805 			dp1->di_gen = newfs_random();
806 			dp1++;
807 		} else {
808 			dp2->di_gen = newfs_random();
809 			dp2++;
810 		}
811 	}
812 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
813 	/*
814 	 * For the old file system, we have to initialize all the inodes.
815 	 */
816 	if (Oflag == 1) {
817 		for (i = 2 * sblock.fs_frag;
818 		     i < sblock.fs_ipg / INOPF(&sblock);
819 		     i += sblock.fs_frag) {
820 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
821 			for (j = 0; j < INOPB(&sblock); j++) {
822 				dp1->di_gen = newfs_random();
823 				dp1++;
824 			}
825 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
826 			    sblock.fs_bsize, &iobuf[start]);
827 		}
828 	}
829 }
830 
831 /*
832  * initialize the file system
833  */
834 #define ROOTLINKCNT 3
835 
836 static struct direct root_dir[] = {
837 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
838 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
839 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
840 };
841 
842 #define SNAPLINKCNT 2
843 
844 static struct direct snap_dir[] = {
845 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
846 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
847 };
848 
849 void
850 fsinit(time_t utime)
851 {
852 	union dinode node;
853 	struct group *grp;
854 	gid_t gid;
855 	int entries;
856 
857 	memset(&node, 0, sizeof node);
858 	if ((grp = getgrnam("operator")) != NULL) {
859 		gid = grp->gr_gid;
860 	} else {
861 		warnx("Cannot retrieve operator gid, using gid 0.");
862 		gid = 0;
863 	}
864 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
865 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
866 		/*
867 		 * initialize the node
868 		 */
869 		node.dp1.di_atime = utime;
870 		node.dp1.di_mtime = utime;
871 		node.dp1.di_ctime = utime;
872 		/*
873 		 * create the root directory
874 		 */
875 		node.dp1.di_mode = IFDIR | UMASK;
876 		node.dp1.di_nlink = entries;
877 		node.dp1.di_size = makedir(root_dir, entries);
878 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
879 		node.dp1.di_blocks =
880 		    btodb(fragroundup(&sblock, node.dp1.di_size));
881 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
882 		    iobuf);
883 		iput(&node, UFS_ROOTINO);
884 		if (!nflag) {
885 			/*
886 			 * create the .snap directory
887 			 */
888 			node.dp1.di_mode |= 020;
889 			node.dp1.di_gid = gid;
890 			node.dp1.di_nlink = SNAPLINKCNT;
891 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
892 				node.dp1.di_db[0] =
893 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
894 			node.dp1.di_blocks =
895 			    btodb(fragroundup(&sblock, node.dp1.di_size));
896 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
897 				    sblock.fs_fsize, iobuf);
898 			iput(&node, UFS_ROOTINO + 1);
899 		}
900 	} else {
901 		/*
902 		 * initialize the node
903 		 */
904 		node.dp2.di_atime = utime;
905 		node.dp2.di_mtime = utime;
906 		node.dp2.di_ctime = utime;
907 		node.dp2.di_birthtime = utime;
908 		/*
909 		 * create the root directory
910 		 */
911 		node.dp2.di_mode = IFDIR | UMASK;
912 		node.dp2.di_nlink = entries;
913 		node.dp2.di_size = makedir(root_dir, entries);
914 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
915 		node.dp2.di_blocks =
916 		    btodb(fragroundup(&sblock, node.dp2.di_size));
917 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
918 		    iobuf);
919 		iput(&node, UFS_ROOTINO);
920 		if (!nflag) {
921 			/*
922 			 * create the .snap directory
923 			 */
924 			node.dp2.di_mode |= 020;
925 			node.dp2.di_gid = gid;
926 			node.dp2.di_nlink = SNAPLINKCNT;
927 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
928 				node.dp2.di_db[0] =
929 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
930 			node.dp2.di_blocks =
931 			    btodb(fragroundup(&sblock, node.dp2.di_size));
932 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
933 				    sblock.fs_fsize, iobuf);
934 			iput(&node, UFS_ROOTINO + 1);
935 		}
936 	}
937 }
938 
939 /*
940  * construct a set of directory entries in "iobuf".
941  * return size of directory.
942  */
943 int
944 makedir(struct direct *protodir, int entries)
945 {
946 	char *cp;
947 	int i, spcleft;
948 
949 	spcleft = DIRBLKSIZ;
950 	memset(iobuf, 0, DIRBLKSIZ);
951 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
952 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
953 		memmove(cp, &protodir[i], protodir[i].d_reclen);
954 		cp += protodir[i].d_reclen;
955 		spcleft -= protodir[i].d_reclen;
956 	}
957 	protodir[i].d_reclen = spcleft;
958 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
959 	return (DIRBLKSIZ);
960 }
961 
962 /*
963  * allocate a block or frag
964  */
965 ufs2_daddr_t
966 alloc(int size, int mode)
967 {
968 	int i, blkno, frag;
969 	uint d;
970 
971 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
972 	    sblock.fs_cgsize);
973 	if (acg.cg_magic != CG_MAGIC) {
974 		printf("cg 0: bad magic number\n");
975 		exit(38);
976 	}
977 	if (acg.cg_cs.cs_nbfree == 0) {
978 		printf("first cylinder group ran out of space\n");
979 		exit(39);
980 	}
981 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
982 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
983 			goto goth;
984 	printf("internal error: can't find block in cyl 0\n");
985 	exit(40);
986 goth:
987 	blkno = fragstoblks(&sblock, d);
988 	clrblock(&sblock, cg_blksfree(&acg), blkno);
989 	if (sblock.fs_contigsumsize > 0)
990 		clrbit(cg_clustersfree(&acg), blkno);
991 	acg.cg_cs.cs_nbfree--;
992 	sblock.fs_cstotal.cs_nbfree--;
993 	fscs[0].cs_nbfree--;
994 	if (mode & IFDIR) {
995 		acg.cg_cs.cs_ndir++;
996 		sblock.fs_cstotal.cs_ndir++;
997 		fscs[0].cs_ndir++;
998 	}
999 	if (size != sblock.fs_bsize) {
1000 		frag = howmany(size, sblock.fs_fsize);
1001 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1002 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1003 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1004 		acg.cg_frsum[sblock.fs_frag - frag]++;
1005 		for (i = frag; i < sblock.fs_frag; i++)
1006 			setbit(cg_blksfree(&acg), d + i);
1007 	}
1008 	/* XXX cgwrite(&disk, 0)??? */
1009 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1010 	    (char *)&acg);
1011 	return ((ufs2_daddr_t)d);
1012 }
1013 
1014 /*
1015  * Allocate an inode on the disk
1016  */
1017 void
1018 iput(union dinode *ip, ino_t ino)
1019 {
1020 	ufs2_daddr_t d;
1021 
1022 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1023 	    sblock.fs_cgsize);
1024 	if (acg.cg_magic != CG_MAGIC) {
1025 		printf("cg 0: bad magic number\n");
1026 		exit(31);
1027 	}
1028 	acg.cg_cs.cs_nifree--;
1029 	setbit(cg_inosused(&acg), ino);
1030 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1031 	    (char *)&acg);
1032 	sblock.fs_cstotal.cs_nifree--;
1033 	fscs[0].cs_nifree--;
1034 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1035 		printf("fsinit: inode value out of range (%ju).\n",
1036 		    (uintmax_t)ino);
1037 		exit(32);
1038 	}
1039 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1040 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1041 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1042 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1043 		    ip->dp1;
1044 	else
1045 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1046 		    ip->dp2;
1047 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1048 }
1049 
1050 /*
1051  * possibly write to disk
1052  */
1053 static void
1054 wtfs(ufs2_daddr_t bno, int size, char *bf)
1055 {
1056 	if (Nflag)
1057 		return;
1058 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1059 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1060 }
1061 
1062 /*
1063  * check if a block is available
1064  */
1065 static int
1066 isblock(struct fs *fs, unsigned char *cp, int h)
1067 {
1068 	unsigned char mask;
1069 
1070 	switch (fs->fs_frag) {
1071 	case 8:
1072 		return (cp[h] == 0xff);
1073 	case 4:
1074 		mask = 0x0f << ((h & 0x1) << 2);
1075 		return ((cp[h >> 1] & mask) == mask);
1076 	case 2:
1077 		mask = 0x03 << ((h & 0x3) << 1);
1078 		return ((cp[h >> 2] & mask) == mask);
1079 	case 1:
1080 		mask = 0x01 << (h & 0x7);
1081 		return ((cp[h >> 3] & mask) == mask);
1082 	default:
1083 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1084 		return (0);
1085 	}
1086 }
1087 
1088 /*
1089  * take a block out of the map
1090  */
1091 static void
1092 clrblock(struct fs *fs, unsigned char *cp, int h)
1093 {
1094 	switch ((fs)->fs_frag) {
1095 	case 8:
1096 		cp[h] = 0;
1097 		return;
1098 	case 4:
1099 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1100 		return;
1101 	case 2:
1102 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1103 		return;
1104 	case 1:
1105 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1106 		return;
1107 	default:
1108 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1109 		return;
1110 	}
1111 }
1112 
1113 /*
1114  * put a block into the map
1115  */
1116 static void
1117 setblock(struct fs *fs, unsigned char *cp, int h)
1118 {
1119 	switch (fs->fs_frag) {
1120 	case 8:
1121 		cp[h] = 0xff;
1122 		return;
1123 	case 4:
1124 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1125 		return;
1126 	case 2:
1127 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1128 		return;
1129 	case 1:
1130 		cp[h >> 3] |= (0x01 << (h & 0x7));
1131 		return;
1132 	default:
1133 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1134 		return;
1135 	}
1136 }
1137 
1138 /*
1139  * Determine the number of characters in a
1140  * single line.
1141  */
1142 
1143 static int
1144 charsperline(void)
1145 {
1146 	int columns;
1147 	char *cp;
1148 	struct winsize ws;
1149 
1150 	columns = 0;
1151 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1152 		columns = ws.ws_col;
1153 	if (columns == 0 && (cp = getenv("COLUMNS")))
1154 		columns = atoi(cp);
1155 	if (columns == 0)
1156 		columns = 80;	/* last resort */
1157 	return (columns);
1158 }
1159 
1160 static int
1161 ilog2(int val)
1162 {
1163 	u_int n;
1164 
1165 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1166 		if (1 << n == val)
1167 			return (n);
1168 	errx(1, "ilog2: %d is not a power of 2\n", val);
1169 }
1170 
1171 /*
1172  * For the regression test, return predictable random values.
1173  * Otherwise use a true random number generator.
1174  */
1175 static u_int32_t
1176 newfs_random(void)
1177 {
1178 	static int nextnum = 1;
1179 
1180 	if (Rflag)
1181 		return (nextnum++);
1182 	return (arc4random());
1183 }
1184