1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #if 0 44 #ifndef lint 45 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 46 #endif /* not lint */ 47 #endif 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include <err.h> 52 #include <grp.h> 53 #include <limits.h> 54 #include <signal.h> 55 #include <stdlib.h> 56 #include <string.h> 57 #include <stdint.h> 58 #include <stdio.h> 59 #include <unistd.h> 60 #include <sys/param.h> 61 #include <sys/time.h> 62 #include <sys/types.h> 63 #include <sys/wait.h> 64 #include <sys/resource.h> 65 #include <sys/stat.h> 66 #include <ufs/ufs/dinode.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ffs/fs.h> 69 #include <sys/disklabel.h> 70 #include <sys/file.h> 71 #include <sys/mman.h> 72 #include <sys/ioctl.h> 73 #include "newfs.h" 74 75 /* 76 * make file system for cylinder-group style file systems 77 */ 78 #define UMASK 0755 79 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 80 81 static struct csum *fscs; 82 #define sblock disk.d_fs 83 #define acg disk.d_cg 84 85 union dinode { 86 struct ufs1_dinode dp1; 87 struct ufs2_dinode dp2; 88 }; 89 #define DIP(dp, field) \ 90 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 91 (dp)->dp1.field : (dp)->dp2.field) 92 93 static caddr_t iobuf; 94 static long iobufsize; 95 static ufs2_daddr_t alloc(int size, int mode); 96 static int charsperline(void); 97 static void clrblock(struct fs *, unsigned char *, int); 98 static void fsinit(time_t); 99 static int ilog2(int); 100 static void initcg(int, time_t); 101 static int isblock(struct fs *, unsigned char *, int); 102 static void iput(union dinode *, ino_t); 103 static int makedir(struct direct *, int); 104 static void setblock(struct fs *, unsigned char *, int); 105 static void wtfs(ufs2_daddr_t, int, char *); 106 static u_int32_t newfs_random(void); 107 108 void 109 mkfs(struct partition *pp, char *fsys) 110 { 111 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 112 long i, j, cylno, csfrags; 113 time_t utime; 114 quad_t sizepb; 115 int width; 116 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 117 union { 118 struct fs fdummy; 119 char cdummy[SBLOCKSIZE]; 120 } dummy; 121 #define fsdummy dummy.fdummy 122 #define chdummy dummy.cdummy 123 124 /* 125 * Our blocks == sector size, and the version of UFS we are using is 126 * specified by Oflag. 127 */ 128 disk.d_bsize = sectorsize; 129 disk.d_ufs = Oflag; 130 if (Rflag) { 131 utime = 1000000000; 132 } else { 133 time(&utime); 134 arc4random_stir(); 135 } 136 sblock.fs_old_flags = FS_FLAGS_UPDATED; 137 sblock.fs_flags = 0; 138 if (Uflag) 139 sblock.fs_flags |= FS_DOSOFTDEP; 140 if (Lflag) 141 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 142 if (lflag) 143 sblock.fs_flags |= FS_MULTILABEL; 144 /* 145 * Validate the given file system size. 146 * Verify that its last block can actually be accessed. 147 * Convert to file system fragment sized units. 148 */ 149 if (fssize <= 0) { 150 printf("preposterous size %jd\n", (intmax_t)fssize); 151 exit(13); 152 } 153 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 154 (char *)&sblock); 155 /* 156 * collect and verify the file system density info 157 */ 158 sblock.fs_avgfilesize = avgfilesize; 159 sblock.fs_avgfpdir = avgfilesperdir; 160 if (sblock.fs_avgfilesize <= 0) 161 printf("illegal expected average file size %d\n", 162 sblock.fs_avgfilesize), exit(14); 163 if (sblock.fs_avgfpdir <= 0) 164 printf("illegal expected number of files per directory %d\n", 165 sblock.fs_avgfpdir), exit(15); 166 /* 167 * collect and verify the block and fragment sizes 168 */ 169 sblock.fs_bsize = bsize; 170 sblock.fs_fsize = fsize; 171 if (!POWEROF2(sblock.fs_bsize)) { 172 printf("block size must be a power of 2, not %d\n", 173 sblock.fs_bsize); 174 exit(16); 175 } 176 if (!POWEROF2(sblock.fs_fsize)) { 177 printf("fragment size must be a power of 2, not %d\n", 178 sblock.fs_fsize); 179 exit(17); 180 } 181 if (sblock.fs_fsize < sectorsize) { 182 printf("increasing fragment size from %d to sector size (%d)\n", 183 sblock.fs_fsize, sectorsize); 184 sblock.fs_fsize = sectorsize; 185 } 186 if (sblock.fs_bsize > MAXBSIZE) { 187 printf("decreasing block size from %d to maximum (%d)\n", 188 sblock.fs_bsize, MAXBSIZE); 189 sblock.fs_bsize = MAXBSIZE; 190 } 191 if (sblock.fs_bsize < MINBSIZE) { 192 printf("increasing block size from %d to minimum (%d)\n", 193 sblock.fs_bsize, MINBSIZE); 194 sblock.fs_bsize = MINBSIZE; 195 } 196 if (sblock.fs_fsize > MAXBSIZE) { 197 printf("decreasing fragment size from %d to maximum (%d)\n", 198 sblock.fs_fsize, MAXBSIZE); 199 sblock.fs_fsize = MAXBSIZE; 200 } 201 if (sblock.fs_bsize < sblock.fs_fsize) { 202 printf("increasing block size from %d to fragment size (%d)\n", 203 sblock.fs_bsize, sblock.fs_fsize); 204 sblock.fs_bsize = sblock.fs_fsize; 205 } 206 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 207 printf( 208 "increasing fragment size from %d to block size / %d (%d)\n", 209 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 210 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 211 } 212 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 213 sblock.fs_maxbsize = sblock.fs_bsize; 214 printf("Extent size set to %d\n", sblock.fs_maxbsize); 215 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 216 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 217 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 218 } else { 219 sblock.fs_maxbsize = maxbsize; 220 } 221 sblock.fs_maxcontig = maxcontig; 222 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 223 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 224 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 225 } 226 if (sblock.fs_maxcontig > 1) 227 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 228 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 229 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 230 sblock.fs_qbmask = ~sblock.fs_bmask; 231 sblock.fs_qfmask = ~sblock.fs_fmask; 232 sblock.fs_bshift = ilog2(sblock.fs_bsize); 233 sblock.fs_fshift = ilog2(sblock.fs_fsize); 234 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 235 sblock.fs_fragshift = ilog2(sblock.fs_frag); 236 if (sblock.fs_frag > MAXFRAG) { 237 printf("fragment size %d is still too small (can't happen)\n", 238 sblock.fs_bsize / MAXFRAG); 239 exit(21); 240 } 241 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 242 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 243 if (Oflag == 1) { 244 sblock.fs_magic = FS_UFS1_MAGIC; 245 sblock.fs_sblockloc = SBLOCK_UFS1; 246 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 247 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 248 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 249 sizeof(ufs1_daddr_t)); 250 sblock.fs_old_inodefmt = FS_44INODEFMT; 251 sblock.fs_old_cgoffset = 0; 252 sblock.fs_old_cgmask = 0xffffffff; 253 sblock.fs_old_size = sblock.fs_size; 254 sblock.fs_old_rotdelay = 0; 255 sblock.fs_old_rps = 60; 256 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 257 sblock.fs_old_cpg = 1; 258 sblock.fs_old_interleave = 1; 259 sblock.fs_old_trackskew = 0; 260 sblock.fs_old_cpc = 0; 261 sblock.fs_old_postblformat = 1; 262 sblock.fs_old_nrpos = 1; 263 } else { 264 sblock.fs_magic = FS_BAD2_MAGIC; 265 sblock.fs_sblockloc = SBLOCK_UFS2; 266 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 267 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 268 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 269 sizeof(ufs2_daddr_t)); 270 } 271 sblock.fs_sblkno = 272 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 273 sblock.fs_frag); 274 sblock.fs_cblkno = sblock.fs_sblkno + 275 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 276 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 277 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 278 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 279 sizepb *= NINDIR(&sblock); 280 sblock.fs_maxfilesize += sizepb; 281 } 282 /* 283 * Calculate the number of blocks to put into each cylinder group. 284 * 285 * This algorithm selects the number of blocks per cylinder 286 * group. The first goal is to have at least enough data blocks 287 * in each cylinder group to meet the density requirement. Once 288 * this goal is achieved we try to expand to have at least 289 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 290 * pack as many blocks into each cylinder group map as will fit. 291 * 292 * We start by calculating the smallest number of blocks that we 293 * can put into each cylinder group. If this is too big, we reduce 294 * the density until it fits. 295 */ 296 origdensity = density; 297 for (;;) { 298 fragsperinode = MAX(numfrags(&sblock, density), 1); 299 minfpg = fragsperinode * INOPB(&sblock); 300 if (minfpg > sblock.fs_size) 301 minfpg = sblock.fs_size; 302 sblock.fs_ipg = INOPB(&sblock); 303 sblock.fs_fpg = roundup(sblock.fs_iblkno + 304 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 305 if (sblock.fs_fpg < minfpg) 306 sblock.fs_fpg = minfpg; 307 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 308 INOPB(&sblock)); 309 sblock.fs_fpg = roundup(sblock.fs_iblkno + 310 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 311 if (sblock.fs_fpg < minfpg) 312 sblock.fs_fpg = minfpg; 313 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 314 INOPB(&sblock)); 315 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 316 break; 317 density -= sblock.fs_fsize; 318 } 319 if (density != origdensity) 320 printf("density reduced from %d to %d\n", origdensity, density); 321 /* 322 * Start packing more blocks into the cylinder group until 323 * it cannot grow any larger, the number of cylinder groups 324 * drops below MINCYLGRPS, or we reach the size requested. 325 */ 326 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 327 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 328 INOPB(&sblock)); 329 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 330 break; 331 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 332 continue; 333 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 334 break; 335 sblock.fs_fpg -= sblock.fs_frag; 336 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 337 INOPB(&sblock)); 338 break; 339 } 340 /* 341 * Check to be sure that the last cylinder group has enough blocks 342 * to be viable. If it is too small, reduce the number of blocks 343 * per cylinder group which will have the effect of moving more 344 * blocks into the last cylinder group. 345 */ 346 optimalfpg = sblock.fs_fpg; 347 for (;;) { 348 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 349 lastminfpg = roundup(sblock.fs_iblkno + 350 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 351 if (sblock.fs_size < lastminfpg) { 352 printf("Filesystem size %jd < minimum size of %d\n", 353 (intmax_t)sblock.fs_size, lastminfpg); 354 exit(28); 355 } 356 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 357 sblock.fs_size % sblock.fs_fpg == 0) 358 break; 359 sblock.fs_fpg -= sblock.fs_frag; 360 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 361 INOPB(&sblock)); 362 } 363 if (optimalfpg != sblock.fs_fpg) 364 printf("Reduced frags per cylinder group from %d to %d %s\n", 365 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 366 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 367 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 368 if (Oflag == 1) { 369 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 370 sblock.fs_old_nsect = sblock.fs_old_spc; 371 sblock.fs_old_npsect = sblock.fs_old_spc; 372 sblock.fs_old_ncyl = sblock.fs_ncg; 373 } 374 /* 375 * fill in remaining fields of the super block 376 */ 377 sblock.fs_csaddr = cgdmin(&sblock, 0); 378 sblock.fs_cssize = 379 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 380 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 381 if (fscs == NULL) 382 errx(31, "calloc failed"); 383 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 384 if (sblock.fs_sbsize > SBLOCKSIZE) 385 sblock.fs_sbsize = SBLOCKSIZE; 386 sblock.fs_minfree = minfree; 387 sblock.fs_maxbpg = maxbpg; 388 sblock.fs_optim = opt; 389 sblock.fs_cgrotor = 0; 390 sblock.fs_pendingblocks = 0; 391 sblock.fs_pendinginodes = 0; 392 sblock.fs_fmod = 0; 393 sblock.fs_ronly = 0; 394 sblock.fs_state = 0; 395 sblock.fs_clean = 1; 396 sblock.fs_id[0] = (long)utime; 397 sblock.fs_id[1] = newfs_random(); 398 sblock.fs_fsmnt[0] = '\0'; 399 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 400 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 401 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 402 sblock.fs_cstotal.cs_nbfree = 403 fragstoblks(&sblock, sblock.fs_dsize) - 404 howmany(csfrags, sblock.fs_frag); 405 sblock.fs_cstotal.cs_nffree = 406 fragnum(&sblock, sblock.fs_size) + 407 (fragnum(&sblock, csfrags) > 0 ? 408 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 409 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 410 sblock.fs_cstotal.cs_ndir = 0; 411 sblock.fs_dsize -= csfrags; 412 sblock.fs_time = utime; 413 if (Oflag == 1) { 414 sblock.fs_old_time = utime; 415 sblock.fs_old_dsize = sblock.fs_dsize; 416 sblock.fs_old_csaddr = sblock.fs_csaddr; 417 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 418 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 419 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 420 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 421 } 422 423 /* 424 * Dump out summary information about file system. 425 */ 426 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 427 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 428 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 429 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 430 sblock.fs_fsize); 431 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 432 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 433 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 434 if (sblock.fs_flags & FS_DOSOFTDEP) 435 printf("\twith soft updates\n"); 436 # undef B2MBFACTOR 437 438 /* 439 * Wipe out old UFS1 superblock(s) if necessary. 440 */ 441 if (!Nflag && Oflag != 1) { 442 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 443 if (i == -1) 444 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 445 446 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 447 fsdummy.fs_magic = 0; 448 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 449 for (i = 0; i < fsdummy.fs_ncg; i++) 450 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 451 chdummy, SBLOCKSIZE); 452 } 453 } 454 if (!Nflag) 455 sbwrite(&disk, 0); 456 if (Eflag == 1) { 457 printf("** Exiting on Eflag 1\n"); 458 exit(0); 459 } 460 if (Eflag == 2) 461 printf("** Leaving BAD MAGIC on Eflag 2\n"); 462 else if (Oflag != 1) 463 sblock.fs_magic = FS_UFS2_MAGIC; 464 465 /* 466 * Now build the cylinders group blocks and 467 * then print out indices of cylinder groups. 468 */ 469 printf("super-block backups (for fsck -b #) at:\n"); 470 i = 0; 471 width = charsperline(); 472 /* 473 * allocate space for superblock, cylinder group map, and 474 * two sets of inode blocks. 475 */ 476 if (sblock.fs_bsize < SBLOCKSIZE) 477 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 478 else 479 iobufsize = 4 * sblock.fs_bsize; 480 if ((iobuf = malloc(iobufsize)) == 0) { 481 printf("Cannot allocate I/O buffer\n"); 482 exit(38); 483 } 484 bzero(iobuf, iobufsize); 485 /* 486 * Make a copy of the superblock into the buffer that we will be 487 * writing out in each cylinder group. 488 */ 489 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 490 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 491 initcg(cylno, utime); 492 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 493 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 494 cylno < (sblock.fs_ncg-1) ? "," : ""); 495 if (j < 0) 496 tmpbuf[j = 0] = '\0'; 497 if (i + j >= width) { 498 printf("\n"); 499 i = 0; 500 } 501 i += j; 502 printf("%s", tmpbuf); 503 fflush(stdout); 504 } 505 printf("\n"); 506 if (Nflag) 507 exit(0); 508 /* 509 * Now construct the initial file system, 510 * then write out the super-block. 511 */ 512 fsinit(utime); 513 if (Oflag == 1) { 514 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 515 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 516 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 517 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 518 } 519 if (Eflag == 3) { 520 printf("** Exiting on Eflag 3\n"); 521 exit(0); 522 } 523 if (!Nflag) 524 sbwrite(&disk, 0); 525 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 526 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 527 sblock.fs_cssize - i < sblock.fs_bsize ? 528 sblock.fs_cssize - i : sblock.fs_bsize, 529 ((char *)fscs) + i); 530 /* 531 * Update information about this partion in pack 532 * label, to that it may be updated on disk. 533 */ 534 if (pp != NULL) { 535 pp->p_fstype = FS_BSDFFS; 536 pp->p_fsize = sblock.fs_fsize; 537 pp->p_frag = sblock.fs_frag; 538 pp->p_cpg = sblock.fs_fpg; 539 } 540 } 541 542 /* 543 * Initialize a cylinder group. 544 */ 545 void 546 initcg(int cylno, time_t utime) 547 { 548 long i, j, d, dlower, dupper, blkno, start; 549 ufs2_daddr_t cbase, dmax; 550 struct ufs1_dinode *dp1; 551 struct ufs2_dinode *dp2; 552 struct csum *cs; 553 554 /* 555 * Determine block bounds for cylinder group. 556 * Allow space for super block summary information in first 557 * cylinder group. 558 */ 559 cbase = cgbase(&sblock, cylno); 560 dmax = cbase + sblock.fs_fpg; 561 if (dmax > sblock.fs_size) 562 dmax = sblock.fs_size; 563 dlower = cgsblock(&sblock, cylno) - cbase; 564 dupper = cgdmin(&sblock, cylno) - cbase; 565 if (cylno == 0) 566 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 567 cs = &fscs[cylno]; 568 memset(&acg, 0, sblock.fs_cgsize); 569 acg.cg_time = utime; 570 acg.cg_magic = CG_MAGIC; 571 acg.cg_cgx = cylno; 572 acg.cg_niblk = sblock.fs_ipg; 573 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 574 sblock.fs_ipg : 2 * INOPB(&sblock); 575 acg.cg_ndblk = dmax - cbase; 576 if (sblock.fs_contigsumsize > 0) 577 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 578 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 579 if (Oflag == 2) { 580 acg.cg_iusedoff = start; 581 } else { 582 acg.cg_old_ncyl = sblock.fs_old_cpg; 583 acg.cg_old_time = acg.cg_time; 584 acg.cg_time = 0; 585 acg.cg_old_niblk = acg.cg_niblk; 586 acg.cg_niblk = 0; 587 acg.cg_initediblk = 0; 588 acg.cg_old_btotoff = start; 589 acg.cg_old_boff = acg.cg_old_btotoff + 590 sblock.fs_old_cpg * sizeof(int32_t); 591 acg.cg_iusedoff = acg.cg_old_boff + 592 sblock.fs_old_cpg * sizeof(u_int16_t); 593 } 594 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 595 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 596 if (sblock.fs_contigsumsize > 0) { 597 acg.cg_clustersumoff = 598 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 599 acg.cg_clustersumoff -= sizeof(u_int32_t); 600 acg.cg_clusteroff = acg.cg_clustersumoff + 601 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 602 acg.cg_nextfreeoff = acg.cg_clusteroff + 603 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 604 } 605 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 606 printf("Panic: cylinder group too big\n"); 607 exit(37); 608 } 609 acg.cg_cs.cs_nifree += sblock.fs_ipg; 610 if (cylno == 0) 611 for (i = 0; i < (long)ROOTINO; i++) { 612 setbit(cg_inosused(&acg), i); 613 acg.cg_cs.cs_nifree--; 614 } 615 if (cylno > 0) { 616 /* 617 * In cylno 0, beginning space is reserved 618 * for boot and super blocks. 619 */ 620 for (d = 0; d < dlower; d += sblock.fs_frag) { 621 blkno = d / sblock.fs_frag; 622 setblock(&sblock, cg_blksfree(&acg), blkno); 623 if (sblock.fs_contigsumsize > 0) 624 setbit(cg_clustersfree(&acg), blkno); 625 acg.cg_cs.cs_nbfree++; 626 } 627 } 628 if ((i = dupper % sblock.fs_frag)) { 629 acg.cg_frsum[sblock.fs_frag - i]++; 630 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 631 setbit(cg_blksfree(&acg), dupper); 632 acg.cg_cs.cs_nffree++; 633 } 634 } 635 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 636 d += sblock.fs_frag) { 637 blkno = d / sblock.fs_frag; 638 setblock(&sblock, cg_blksfree(&acg), blkno); 639 if (sblock.fs_contigsumsize > 0) 640 setbit(cg_clustersfree(&acg), blkno); 641 acg.cg_cs.cs_nbfree++; 642 } 643 if (d < acg.cg_ndblk) { 644 acg.cg_frsum[acg.cg_ndblk - d]++; 645 for (; d < acg.cg_ndblk; d++) { 646 setbit(cg_blksfree(&acg), d); 647 acg.cg_cs.cs_nffree++; 648 } 649 } 650 if (sblock.fs_contigsumsize > 0) { 651 int32_t *sump = cg_clustersum(&acg); 652 u_char *mapp = cg_clustersfree(&acg); 653 int map = *mapp++; 654 int bit = 1; 655 int run = 0; 656 657 for (i = 0; i < acg.cg_nclusterblks; i++) { 658 if ((map & bit) != 0) 659 run++; 660 else if (run != 0) { 661 if (run > sblock.fs_contigsumsize) 662 run = sblock.fs_contigsumsize; 663 sump[run]++; 664 run = 0; 665 } 666 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 667 bit <<= 1; 668 else { 669 map = *mapp++; 670 bit = 1; 671 } 672 } 673 if (run != 0) { 674 if (run > sblock.fs_contigsumsize) 675 run = sblock.fs_contigsumsize; 676 sump[run]++; 677 } 678 } 679 *cs = acg.cg_cs; 680 /* 681 * Write out the duplicate super block, the cylinder group map 682 * and two blocks worth of inodes in a single write. 683 */ 684 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 685 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 686 start += sblock.fs_bsize; 687 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 688 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 689 for (i = 0; i < acg.cg_initediblk; i++) { 690 if (sblock.fs_magic == FS_UFS1_MAGIC) { 691 dp1->di_gen = newfs_random(); 692 dp1++; 693 } else { 694 dp2->di_gen = newfs_random(); 695 dp2++; 696 } 697 } 698 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 699 /* 700 * For the old file system, we have to initialize all the inodes. 701 */ 702 if (Oflag == 1) { 703 for (i = 2 * sblock.fs_frag; 704 i < sblock.fs_ipg / INOPF(&sblock); 705 i += sblock.fs_frag) { 706 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 707 for (j = 0; j < INOPB(&sblock); j++) { 708 dp1->di_gen = newfs_random(); 709 dp1++; 710 } 711 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 712 sblock.fs_bsize, &iobuf[start]); 713 } 714 } 715 } 716 717 /* 718 * initialize the file system 719 */ 720 #define ROOTLINKCNT 3 721 722 struct direct root_dir[] = { 723 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 724 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 725 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 726 }; 727 728 #define SNAPLINKCNT 2 729 730 struct direct snap_dir[] = { 731 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 732 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 733 }; 734 735 void 736 fsinit(time_t utime) 737 { 738 union dinode node; 739 struct group *grp; 740 741 memset(&node, 0, sizeof node); 742 if ((grp = getgrnam("operator")) == NULL) 743 errx(35, "Cannot retrieve operator gid"); 744 if (sblock.fs_magic == FS_UFS1_MAGIC) { 745 /* 746 * initialize the node 747 */ 748 node.dp1.di_atime = utime; 749 node.dp1.di_mtime = utime; 750 node.dp1.di_ctime = utime; 751 /* 752 * create the root directory 753 */ 754 node.dp1.di_mode = IFDIR | UMASK; 755 node.dp1.di_nlink = ROOTLINKCNT; 756 node.dp1.di_size = makedir(root_dir, ROOTLINKCNT); 757 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 758 node.dp1.di_blocks = 759 btodb(fragroundup(&sblock, node.dp1.di_size)); 760 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 761 iobuf); 762 iput(&node, ROOTINO); 763 /* 764 * create the .snap directory 765 */ 766 node.dp1.di_mode |= 020; 767 node.dp1.di_gid = grp->gr_gid; 768 node.dp1.di_nlink = SNAPLINKCNT; 769 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 770 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 771 node.dp1.di_blocks = 772 btodb(fragroundup(&sblock, node.dp1.di_size)); 773 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 774 iobuf); 775 iput(&node, ROOTINO + 1); 776 } else { 777 /* 778 * initialize the node 779 */ 780 node.dp2.di_atime = utime; 781 node.dp2.di_mtime = utime; 782 node.dp2.di_ctime = utime; 783 node.dp2.di_birthtime = utime; 784 /* 785 * create the root directory 786 */ 787 node.dp2.di_mode = IFDIR | UMASK; 788 node.dp2.di_nlink = ROOTLINKCNT; 789 node.dp2.di_size = makedir(root_dir, ROOTLINKCNT); 790 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 791 node.dp2.di_blocks = 792 btodb(fragroundup(&sblock, node.dp2.di_size)); 793 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 794 iobuf); 795 iput(&node, ROOTINO); 796 /* 797 * create the .snap directory 798 */ 799 node.dp2.di_mode |= 020; 800 node.dp2.di_gid = grp->gr_gid; 801 node.dp2.di_nlink = SNAPLINKCNT; 802 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 803 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 804 node.dp2.di_blocks = 805 btodb(fragroundup(&sblock, node.dp2.di_size)); 806 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 807 iobuf); 808 iput(&node, ROOTINO + 1); 809 } 810 } 811 812 /* 813 * construct a set of directory entries in "iobuf". 814 * return size of directory. 815 */ 816 int 817 makedir(struct direct *protodir, int entries) 818 { 819 char *cp; 820 int i, spcleft; 821 822 spcleft = DIRBLKSIZ; 823 memset(iobuf, 0, DIRBLKSIZ); 824 for (cp = iobuf, i = 0; i < entries - 1; i++) { 825 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 826 memmove(cp, &protodir[i], protodir[i].d_reclen); 827 cp += protodir[i].d_reclen; 828 spcleft -= protodir[i].d_reclen; 829 } 830 protodir[i].d_reclen = spcleft; 831 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 832 return (DIRBLKSIZ); 833 } 834 835 /* 836 * allocate a block or frag 837 */ 838 ufs2_daddr_t 839 alloc(int size, int mode) 840 { 841 int i, d, blkno, frag; 842 843 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 844 sblock.fs_cgsize); 845 if (acg.cg_magic != CG_MAGIC) { 846 printf("cg 0: bad magic number\n"); 847 exit(38); 848 } 849 if (acg.cg_cs.cs_nbfree == 0) { 850 printf("first cylinder group ran out of space\n"); 851 exit(39); 852 } 853 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 854 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 855 goto goth; 856 printf("internal error: can't find block in cyl 0\n"); 857 exit(40); 858 goth: 859 blkno = fragstoblks(&sblock, d); 860 clrblock(&sblock, cg_blksfree(&acg), blkno); 861 if (sblock.fs_contigsumsize > 0) 862 clrbit(cg_clustersfree(&acg), blkno); 863 acg.cg_cs.cs_nbfree--; 864 sblock.fs_cstotal.cs_nbfree--; 865 fscs[0].cs_nbfree--; 866 if (mode & IFDIR) { 867 acg.cg_cs.cs_ndir++; 868 sblock.fs_cstotal.cs_ndir++; 869 fscs[0].cs_ndir++; 870 } 871 if (size != sblock.fs_bsize) { 872 frag = howmany(size, sblock.fs_fsize); 873 fscs[0].cs_nffree += sblock.fs_frag - frag; 874 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 875 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 876 acg.cg_frsum[sblock.fs_frag - frag]++; 877 for (i = frag; i < sblock.fs_frag; i++) 878 setbit(cg_blksfree(&acg), d + i); 879 } 880 /* XXX cgwrite(&disk, 0)??? */ 881 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 882 (char *)&acg); 883 return ((ufs2_daddr_t)d); 884 } 885 886 /* 887 * Allocate an inode on the disk 888 */ 889 void 890 iput(union dinode *ip, ino_t ino) 891 { 892 ufs2_daddr_t d; 893 int c; 894 895 c = ino_to_cg(&sblock, ino); 896 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 897 sblock.fs_cgsize); 898 if (acg.cg_magic != CG_MAGIC) { 899 printf("cg 0: bad magic number\n"); 900 exit(31); 901 } 902 acg.cg_cs.cs_nifree--; 903 setbit(cg_inosused(&acg), ino); 904 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 905 (char *)&acg); 906 sblock.fs_cstotal.cs_nifree--; 907 fscs[0].cs_nifree--; 908 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 909 printf("fsinit: inode value out of range (%d).\n", ino); 910 exit(32); 911 } 912 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 913 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 914 if (sblock.fs_magic == FS_UFS1_MAGIC) 915 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 916 ip->dp1; 917 else 918 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 919 ip->dp2; 920 wtfs(d, sblock.fs_bsize, (char *)iobuf); 921 } 922 923 /* 924 * possibly write to disk 925 */ 926 static void 927 wtfs(ufs2_daddr_t bno, int size, char *bf) 928 { 929 if (Nflag) 930 return; 931 if (bwrite(&disk, bno, bf, size) < 0) 932 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 933 } 934 935 /* 936 * check if a block is available 937 */ 938 static int 939 isblock(struct fs *fs, unsigned char *cp, int h) 940 { 941 unsigned char mask; 942 943 switch (fs->fs_frag) { 944 case 8: 945 return (cp[h] == 0xff); 946 case 4: 947 mask = 0x0f << ((h & 0x1) << 2); 948 return ((cp[h >> 1] & mask) == mask); 949 case 2: 950 mask = 0x03 << ((h & 0x3) << 1); 951 return ((cp[h >> 2] & mask) == mask); 952 case 1: 953 mask = 0x01 << (h & 0x7); 954 return ((cp[h >> 3] & mask) == mask); 955 default: 956 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 957 return (0); 958 } 959 } 960 961 /* 962 * take a block out of the map 963 */ 964 static void 965 clrblock(struct fs *fs, unsigned char *cp, int h) 966 { 967 switch ((fs)->fs_frag) { 968 case 8: 969 cp[h] = 0; 970 return; 971 case 4: 972 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 973 return; 974 case 2: 975 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 976 return; 977 case 1: 978 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 979 return; 980 default: 981 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 982 return; 983 } 984 } 985 986 /* 987 * put a block into the map 988 */ 989 static void 990 setblock(struct fs *fs, unsigned char *cp, int h) 991 { 992 switch (fs->fs_frag) { 993 case 8: 994 cp[h] = 0xff; 995 return; 996 case 4: 997 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 998 return; 999 case 2: 1000 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1001 return; 1002 case 1: 1003 cp[h >> 3] |= (0x01 << (h & 0x7)); 1004 return; 1005 default: 1006 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1007 return; 1008 } 1009 } 1010 1011 /* 1012 * Determine the number of characters in a 1013 * single line. 1014 */ 1015 1016 static int 1017 charsperline(void) 1018 { 1019 int columns; 1020 char *cp; 1021 struct winsize ws; 1022 1023 columns = 0; 1024 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1025 columns = ws.ws_col; 1026 if (columns == 0 && (cp = getenv("COLUMNS"))) 1027 columns = atoi(cp); 1028 if (columns == 0) 1029 columns = 80; /* last resort */ 1030 return (columns); 1031 } 1032 1033 static int 1034 ilog2(int val) 1035 { 1036 u_int n; 1037 1038 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1039 if (1 << n == val) 1040 return (n); 1041 errx(1, "ilog2: %d is not a power of 2\n", val); 1042 } 1043 1044 /* 1045 * For the regression test, return predictable random values. 1046 * Otherwise use a true random number generator. 1047 */ 1048 static u_int32_t 1049 newfs_random(void) 1050 { 1051 static int nextnum = 1; 1052 1053 if (Rflag) 1054 return (nextnum++); 1055 return (arc4random()); 1056 } 1057