xref: /freebsd/sbin/newfs/mkfs.c (revision ce834215a70ff69e7e222827437116eee2f9ac6f)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
36 #endif /* not lint */
37 
38 #include <unistd.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/wait.h>
42 #include <sys/resource.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ufs/dir.h>
45 #include <ufs/ffs/fs.h>
46 #include <sys/disklabel.h>
47 #include <sys/file.h>
48 #include <sys/mman.h>
49 #include <sys/ioctl.h>
50 
51 #ifndef STANDALONE
52 #include <a.out.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #endif
56 
57 /*
58  * make file system for cylinder-group style file systems
59  */
60 
61 /*
62  * We limit the size of the inode map to be no more than a
63  * third of the cylinder group space, since we must leave at
64  * least an equal amount of space for the block map.
65  *
66  * N.B.: MAXIPG must be a multiple of INOPB(fs).
67  */
68 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
69 
70 #define UMASK		0755
71 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
72 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
73 
74 /*
75  * variables set up by front end.
76  */
77 extern int	mfs;		/* run as the memory based filesystem */
78 extern int	Nflag;		/* run mkfs without writing file system */
79 extern int	Oflag;		/* format as an 4.3BSD file system */
80 extern int	fssize;		/* file system size */
81 extern int	ntracks;	/* # tracks/cylinder */
82 extern int	nsectors;	/* # sectors/track */
83 extern int	nphyssectors;	/* # sectors/track including spares */
84 extern int	secpercyl;	/* sectors per cylinder */
85 extern int	sectorsize;	/* bytes/sector */
86 extern int	realsectorsize;	/* bytes/sector in hardware*/
87 extern int	rpm;		/* revolutions/minute of drive */
88 extern int	interleave;	/* hardware sector interleave */
89 extern int	trackskew;	/* sector 0 skew, per track */
90 extern int	fsize;		/* fragment size */
91 extern int	bsize;		/* block size */
92 extern int	cpg;		/* cylinders/cylinder group */
93 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
94 extern int	minfree;	/* free space threshold */
95 extern int	opt;		/* optimization preference (space or time) */
96 extern int	density;	/* number of bytes per inode */
97 extern int	maxcontig;	/* max contiguous blocks to allocate */
98 extern int	rotdelay;	/* rotational delay between blocks */
99 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
100 extern int	nrpos;		/* # of distinguished rotational positions */
101 extern int	bbsize;		/* boot block size */
102 extern int	sbsize;		/* superblock size */
103 extern u_long	memleft;	/* virtual memory available */
104 extern caddr_t	membase;	/* start address of memory based filesystem */
105 #ifdef STANDALONE
106 extern caddr_t	malloc(), calloc();
107 #endif
108 extern char *	filename;
109 
110 union {
111 	struct fs fs;
112 	char pad[SBSIZE];
113 } fsun;
114 #define	sblock	fsun.fs
115 struct	csum *fscs;
116 
117 union {
118 	struct cg cg;
119 	char pad[MAXBSIZE];
120 } cgun;
121 #define	acg	cgun.cg
122 
123 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
124 
125 int	fsi, fso;
126 #ifdef FSIRAND
127 int     randinit;
128 #endif
129 daddr_t	alloc();
130 long	calcipg();
131 static int charsperline();
132 
133 mkfs(pp, fsys, fi, fo)
134 	struct partition *pp;
135 	char *fsys;
136 	int fi, fo;
137 {
138 	register long i, mincpc, mincpg, inospercg;
139 	long cylno, rpos, blk, j, warn = 0;
140 	long used, mincpgcnt, bpcg;
141 	off_t usedb;
142 	long mapcramped, inodecramped;
143 	long postblsize, rotblsize, totalsbsize;
144 	int ppid, status, fd;
145 	time_t utime;
146 	quad_t sizepb;
147 	void started();
148 	int width;
149 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
150 
151 #ifndef STANDALONE
152 	time(&utime);
153 #endif
154 #ifdef FSIRAND
155 	if (!randinit) {
156 		randinit = 1;
157 		srandomdev();
158 	}
159 #endif
160 	if (mfs) {
161 		ppid = getpid();
162 		(void) signal(SIGUSR1, started);
163 		if (i = fork()) {
164 			if (i == -1) {
165 				perror("mfs");
166 				exit(10);
167 			}
168 			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
169 				exit(WEXITSTATUS(status));
170 			exit(11);
171 			/* NOTREACHED */
172 		}
173 #ifdef STANDALONE
174 		(void)malloc(0);
175 #else
176 		raise_data_limit();
177 #endif
178 		if(filename) {
179 			unsigned char buf[BUFSIZ];
180 			unsigned long l,l1;
181 			fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644);
182 			if(fd < 0) {
183 				perror(filename);
184 				exit(12);
185 			}
186 			for(l=0;l< fssize * sectorsize;l += l1) {
187 				l1 = fssize * sectorsize;
188 				if (BUFSIZ < l1)
189 					l1 = BUFSIZ;
190 				if (l1 != write(fd,buf,l1)) {
191 					perror(filename);
192 					exit(12);
193 				}
194 			}
195 			membase = mmap(
196 				0,
197 				fssize * sectorsize,
198 				PROT_READ|PROT_WRITE,
199 				MAP_SHARED,
200 				fd,
201 				0);
202 			if(membase == MAP_FAILED) {
203 				perror("mmap");
204 				exit(12);
205 			}
206 			close(fd);
207 		} else {
208 #ifndef STANDALONE
209 			get_memleft();
210 #endif
211 			if (fssize * sectorsize > (memleft - 16384))
212 				fssize = (memleft - 16384) / sectorsize;
213 			if ((membase = malloc(fssize * sectorsize)) == 0) {
214 				perror("malloc");
215 				exit(13);
216 			}
217 		}
218 	}
219 	fsi = fi;
220 	fso = fo;
221 	if (Oflag) {
222 		sblock.fs_inodefmt = FS_42INODEFMT;
223 		sblock.fs_maxsymlinklen = 0;
224 	} else {
225 		sblock.fs_inodefmt = FS_44INODEFMT;
226 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
227 	}
228 	/*
229 	 * Validate the given file system size.
230 	 * Verify that its last block can actually be accessed.
231 	 */
232 	if (fssize <= 0)
233 		printf("preposterous size %d\n", fssize), exit(13);
234 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
235 		 (char *)&sblock);
236 	/*
237 	 * collect and verify the sector and track info
238 	 */
239 	sblock.fs_nsect = nsectors;
240 	sblock.fs_ntrak = ntracks;
241 	if (sblock.fs_ntrak <= 0)
242 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
243 	if (sblock.fs_nsect <= 0)
244 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
245 	/*
246 	 * collect and verify the block and fragment sizes
247 	 */
248 	sblock.fs_bsize = bsize;
249 	sblock.fs_fsize = fsize;
250 	if (!POWEROF2(sblock.fs_bsize)) {
251 		printf("block size must be a power of 2, not %d\n",
252 		    sblock.fs_bsize);
253 		exit(16);
254 	}
255 	if (!POWEROF2(sblock.fs_fsize)) {
256 		printf("fragment size must be a power of 2, not %d\n",
257 		    sblock.fs_fsize);
258 		exit(17);
259 	}
260 	if (sblock.fs_fsize < sectorsize) {
261 		printf("fragment size %d is too small, minimum is %d\n",
262 		    sblock.fs_fsize, sectorsize);
263 		exit(18);
264 	}
265 	if (sblock.fs_bsize < MINBSIZE) {
266 		printf("block size %d is too small, minimum is %d\n",
267 		    sblock.fs_bsize, MINBSIZE);
268 		exit(19);
269 	}
270 	if (sblock.fs_bsize < sblock.fs_fsize) {
271 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
272 		    sblock.fs_bsize, sblock.fs_fsize);
273 		exit(20);
274 	}
275 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
276 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
277 	sblock.fs_qbmask = ~sblock.fs_bmask;
278 	sblock.fs_qfmask = ~sblock.fs_fmask;
279 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
280 		sblock.fs_bshift++;
281 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
282 		sblock.fs_fshift++;
283 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
284 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
285 		sblock.fs_fragshift++;
286 	if (sblock.fs_frag > MAXFRAG) {
287 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
288 		    sblock.fs_fsize, sblock.fs_bsize,
289 		    sblock.fs_bsize / MAXFRAG);
290 		exit(21);
291 	}
292 	sblock.fs_nrpos = nrpos;
293 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
294 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
295 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
296 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
297 		sblock.fs_fsbtodb++;
298 	sblock.fs_sblkno =
299 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
300 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
301 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
302 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
303 	sblock.fs_cgoffset = roundup(
304 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
305 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
306 		sblock.fs_cgmask <<= 1;
307 	if (!POWEROF2(sblock.fs_ntrak))
308 		sblock.fs_cgmask <<= 1;
309 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
310 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
311 		sizepb *= NINDIR(&sblock);
312 		sblock.fs_maxfilesize += sizepb;
313 	}
314 	/*
315 	 * Validate specified/determined secpercyl
316 	 * and calculate minimum cylinders per group.
317 	 */
318 	sblock.fs_spc = secpercyl;
319 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
320 	     sblock.fs_cpc > 1 && (i & 1) == 0;
321 	     sblock.fs_cpc >>= 1, i >>= 1)
322 		/* void */;
323 	mincpc = sblock.fs_cpc;
324 	bpcg = sblock.fs_spc * sectorsize;
325 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
326 	if (inospercg > MAXIPG(&sblock))
327 		inospercg = MAXIPG(&sblock);
328 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
329 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
330 	    sblock.fs_spc);
331 	mincpg = roundup(mincpgcnt, mincpc);
332 	/*
333 	 * Ensure that cylinder group with mincpg has enough space
334 	 * for block maps.
335 	 */
336 	sblock.fs_cpg = mincpg;
337 	sblock.fs_ipg = inospercg;
338 	if (maxcontig > 1)
339 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
340 	mapcramped = 0;
341 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
342 		mapcramped = 1;
343 		if (sblock.fs_bsize < MAXBSIZE) {
344 			sblock.fs_bsize <<= 1;
345 			if ((i & 1) == 0) {
346 				i >>= 1;
347 			} else {
348 				sblock.fs_cpc <<= 1;
349 				mincpc <<= 1;
350 				mincpg = roundup(mincpgcnt, mincpc);
351 				sblock.fs_cpg = mincpg;
352 			}
353 			sblock.fs_frag <<= 1;
354 			sblock.fs_fragshift += 1;
355 			if (sblock.fs_frag <= MAXFRAG)
356 				continue;
357 		}
358 		if (sblock.fs_fsize == sblock.fs_bsize) {
359 			printf("There is no block size that");
360 			printf(" can support this disk\n");
361 			exit(22);
362 		}
363 		sblock.fs_frag >>= 1;
364 		sblock.fs_fragshift -= 1;
365 		sblock.fs_fsize <<= 1;
366 		sblock.fs_nspf <<= 1;
367 	}
368 	/*
369 	 * Ensure that cylinder group with mincpg has enough space for inodes.
370 	 */
371 	inodecramped = 0;
372 	inospercg = calcipg(mincpg, bpcg, &usedb);
373 	sblock.fs_ipg = inospercg;
374 	while (inospercg > MAXIPG(&sblock)) {
375 		inodecramped = 1;
376 		if (mincpc == 1 || sblock.fs_frag == 1 ||
377 		    sblock.fs_bsize == MINBSIZE)
378 			break;
379 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
380 		       "minimum bytes per inode is",
381 		       (int)((mincpg * (off_t)bpcg - usedb)
382 			     / MAXIPG(&sblock) + 1));
383 		sblock.fs_bsize >>= 1;
384 		sblock.fs_frag >>= 1;
385 		sblock.fs_fragshift -= 1;
386 		mincpc >>= 1;
387 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
388 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
389 			sblock.fs_bsize <<= 1;
390 			break;
391 		}
392 		mincpg = sblock.fs_cpg;
393 		inospercg = calcipg(mincpg, bpcg, &usedb);
394 		sblock.fs_ipg = inospercg;
395 	}
396 	if (inodecramped) {
397 		if (inospercg > MAXIPG(&sblock)) {
398 			printf("Minimum bytes per inode is %d\n",
399 			       (int)((mincpg * (off_t)bpcg - usedb)
400 				     / MAXIPG(&sblock) + 1));
401 		} else if (!mapcramped) {
402 			printf("With %d bytes per inode, ", density);
403 			printf("minimum cylinders per group is %d\n", mincpg);
404 		}
405 	}
406 	if (mapcramped) {
407 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
408 		printf("minimum cylinders per group is %d\n", mincpg);
409 	}
410 	if (inodecramped || mapcramped) {
411 		if (sblock.fs_bsize != bsize)
412 			printf("%s to be changed from %d to %d\n",
413 			    "This requires the block size",
414 			    bsize, sblock.fs_bsize);
415 		if (sblock.fs_fsize != fsize)
416 			printf("\t%s to be changed from %d to %d\n",
417 			    "and the fragment size",
418 			    fsize, sblock.fs_fsize);
419 		exit(23);
420 	}
421 	/*
422 	 * Calculate the number of cylinders per group
423 	 */
424 	sblock.fs_cpg = cpg;
425 	if (sblock.fs_cpg % mincpc != 0) {
426 		printf("%s groups must have a multiple of %d cylinders\n",
427 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
428 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
429 		if (!cpgflg)
430 			cpg = sblock.fs_cpg;
431 	}
432 	/*
433 	 * Must ensure there is enough space for inodes.
434 	 */
435 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
436 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
437 		inodecramped = 1;
438 		sblock.fs_cpg -= mincpc;
439 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
440 	}
441 	/*
442 	 * Must ensure there is enough space to hold block map.
443 	 */
444 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
445 		mapcramped = 1;
446 		sblock.fs_cpg -= mincpc;
447 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
448 	}
449 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
450 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
451 		printf("panic (fs_cpg * fs_spc) % NSPF != 0");
452 		exit(24);
453 	}
454 	if (sblock.fs_cpg < mincpg) {
455 		printf("cylinder groups must have at least %d cylinders\n",
456 			mincpg);
457 		exit(25);
458 	} else if (sblock.fs_cpg != cpg) {
459 		if (!cpgflg)
460 			printf("Warning: ");
461 		else if (!mapcramped && !inodecramped)
462 			exit(26);
463 		if (mapcramped && inodecramped)
464 			printf("Block size and bytes per inode restrict");
465 		else if (mapcramped)
466 			printf("Block size restricts");
467 		else
468 			printf("Bytes per inode restrict");
469 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
470 		if (cpgflg)
471 			exit(27);
472 	}
473 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
474 	/*
475 	 * Now have size for file system and nsect and ntrak.
476 	 * Determine number of cylinders and blocks in the file system.
477 	 */
478 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
479 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
480 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
481 		sblock.fs_ncyl++;
482 		warn = 1;
483 	}
484 	if (sblock.fs_ncyl < 1) {
485 		printf("file systems must have at least one cylinder\n");
486 		exit(28);
487 	}
488 	/*
489 	 * Determine feasability/values of rotational layout tables.
490 	 *
491 	 * The size of the rotational layout tables is limited by the
492 	 * size of the superblock, SBSIZE. The amount of space available
493 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
494 	 * The size of these tables is inversely proportional to the block
495 	 * size of the file system. The size increases if sectors per track
496 	 * are not powers of two, because more cylinders must be described
497 	 * by the tables before the rotational pattern repeats (fs_cpc).
498 	 */
499 	sblock.fs_interleave = interleave;
500 	sblock.fs_trackskew = trackskew;
501 	sblock.fs_npsect = nphyssectors;
502 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
503 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
504 	if (sblock.fs_ntrak == 1) {
505 		sblock.fs_cpc = 0;
506 		goto next;
507 	}
508 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
509 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
510 	totalsbsize = sizeof(struct fs) + rotblsize;
511 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
512 		/* use old static table space */
513 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
514 		    (char *)(&sblock.fs_firstfield);
515 		sblock.fs_rotbloff = &sblock.fs_space[0] -
516 		    (u_char *)(&sblock.fs_firstfield);
517 	} else {
518 		/* use dynamic table space */
519 		sblock.fs_postbloff = &sblock.fs_space[0] -
520 		    (u_char *)(&sblock.fs_firstfield);
521 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
522 		totalsbsize += postblsize;
523 	}
524 	if (totalsbsize > SBSIZE ||
525 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
526 		printf("%s %s %d %s %d.%s",
527 		    "Warning: insufficient space in super block for\n",
528 		    "rotational layout tables with nsect", sblock.fs_nsect,
529 		    "and ntrak", sblock.fs_ntrak,
530 		    "\nFile system performance may be impaired.\n");
531 		sblock.fs_cpc = 0;
532 		goto next;
533 	}
534 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
535 	/*
536 	 * calculate the available blocks for each rotational position
537 	 */
538 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
539 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
540 			fs_postbl(&sblock, cylno)[rpos] = -1;
541 	for (i = (rotblsize - 1) * sblock.fs_frag;
542 	     i >= 0; i -= sblock.fs_frag) {
543 		cylno = cbtocylno(&sblock, i);
544 		rpos = cbtorpos(&sblock, i);
545 		blk = fragstoblks(&sblock, i);
546 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
547 			fs_rotbl(&sblock)[blk] = 0;
548 		else
549 			fs_rotbl(&sblock)[blk] =
550 			    fs_postbl(&sblock, cylno)[rpos] - blk;
551 		fs_postbl(&sblock, cylno)[rpos] = blk;
552 	}
553 next:
554 	/*
555 	 * Compute/validate number of cylinder groups.
556 	 */
557 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
558 	if (sblock.fs_ncyl % sblock.fs_cpg)
559 		sblock.fs_ncg++;
560 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
561 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
562 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
563 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
564 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
565 		    sblock.fs_fpg / sblock.fs_frag);
566 		printf("number of cylinders per cylinder group (%d) %s.\n",
567 		    sblock.fs_cpg, "must be increased");
568 		exit(29);
569 	}
570 	j = sblock.fs_ncg - 1;
571 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
572 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
573 		if (j == 0) {
574 			printf("Filesystem must have at least %d sectors\n",
575 			    NSPF(&sblock) *
576 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
577 			exit(30);
578 		}
579 		printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
580 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
581 		    i / sblock.fs_frag);
582 		printf("    cylinder group. This implies %d sector(s) cannot be allocated.\n",
583 		    i * NSPF(&sblock));
584 		sblock.fs_ncg--;
585 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
586 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
587 		    NSPF(&sblock);
588 		warn = 0;
589 	}
590 	if (warn && !mfs) {
591 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
592 		    sblock.fs_spc -
593 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
594 		    * sblock.fs_spc));
595 	}
596 	/*
597 	 * fill in remaining fields of the super block
598 	 */
599 	sblock.fs_csaddr = cgdmin(&sblock, 0);
600 	sblock.fs_cssize =
601 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
602 	i = sblock.fs_bsize / sizeof(struct csum);
603 	sblock.fs_csmask = ~(i - 1);
604 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
605 		sblock.fs_csshift++;
606 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
607 	if (fscs == NULL) {
608 		perror("calloc");
609 		exit(31);
610 	}
611 	sblock.fs_magic = FS_MAGIC;
612 	sblock.fs_rotdelay = rotdelay;
613 	sblock.fs_minfree = minfree;
614 	sblock.fs_maxcontig = maxcontig;
615 	sblock.fs_maxbpg = maxbpg;
616 	sblock.fs_rps = rpm / 60;
617 	sblock.fs_optim = opt;
618 	sblock.fs_cgrotor = 0;
619 	sblock.fs_cstotal.cs_ndir = 0;
620 	sblock.fs_cstotal.cs_nbfree = 0;
621 	sblock.fs_cstotal.cs_nifree = 0;
622 	sblock.fs_cstotal.cs_nffree = 0;
623 	sblock.fs_fmod = 0;
624 	sblock.fs_ronly = 0;
625 	sblock.fs_clean = 1;
626 #ifdef FSIRAND
627 	sblock.fs_id[0] = (long)utime;
628 	sblock.fs_id[1] = random();
629 #endif
630 
631 	/*
632 	 * Dump out summary information about file system.
633 	 */
634 	if (!mfs) {
635 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
636 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
637 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
638 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
639 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
640 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
641 		    sblock.fs_ncg, sblock.fs_cpg,
642 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
643 		    sblock.fs_ipg);
644 #undef B2MBFACTOR
645 	}
646 	/*
647 	 * Now build the cylinders group blocks and
648 	 * then print out indices of cylinder groups.
649 	 */
650 	if (!mfs)
651 		printf("super-block backups (for fsck -b #) at:\n");
652 	i = 0;
653 	width = charsperline();
654 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
655 		initcg(cylno, utime);
656 		if (mfs)
657 			continue;
658 		j = sprintf(tmpbuf, " %d,",
659 			fsbtodb(&sblock, cgsblock(&sblock, cylno)));
660 		if (i+j >= width) {
661 			printf("\n");
662 			i = 0;
663 		}
664 		i += j;
665 		printf("%s", tmpbuf);
666 		fflush(stdout);
667 	}
668 	if (!mfs)
669 		printf("\n");
670 	if (Nflag && !mfs)
671 		exit(0);
672 	/*
673 	 * Now construct the initial file system,
674 	 * then write out the super-block.
675 	 */
676 	fsinit(utime);
677 	sblock.fs_time = utime;
678 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
679 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
680 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
681 			sblock.fs_cssize - i < sblock.fs_bsize ?
682 			    sblock.fs_cssize - i : sblock.fs_bsize,
683 			((char *)fscs) + i);
684 	/*
685 	 * Write out the duplicate super blocks
686 	 */
687 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
688 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
689 		    sbsize, (char *)&sblock);
690 	/*
691 	 * Update information about this partion in pack
692 	 * label, to that it may be updated on disk.
693 	 */
694 	pp->p_fstype = FS_BSDFFS;
695 	pp->p_fsize = sblock.fs_fsize;
696 	pp->p_frag = sblock.fs_frag;
697 	pp->p_cpg = sblock.fs_cpg;
698 	/*
699 	 * Notify parent process of success.
700 	 * Dissociate from session and tty.
701 	 */
702 	if (mfs) {
703 		kill(ppid, SIGUSR1);
704 		(void) setsid();
705 		(void) close(0);
706 		(void) close(1);
707 		(void) close(2);
708 		(void) chdir("/");
709 	}
710 }
711 
712 /*
713  * Initialize a cylinder group.
714  */
715 initcg(cylno, utime)
716 	int cylno;
717 	time_t utime;
718 {
719 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
720 	long i, j, s;
721 	register struct csum *cs;
722 
723 	/*
724 	 * Determine block bounds for cylinder group.
725 	 * Allow space for super block summary information in first
726 	 * cylinder group.
727 	 */
728 	cbase = cgbase(&sblock, cylno);
729 	dmax = cbase + sblock.fs_fpg;
730 	if (dmax > sblock.fs_size)
731 		dmax = sblock.fs_size;
732 	dlower = cgsblock(&sblock, cylno) - cbase;
733 	dupper = cgdmin(&sblock, cylno) - cbase;
734 	if (cylno == 0)
735 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
736 	cs = fscs + cylno;
737 	memset(&acg, 0, sblock.fs_cgsize);
738 	acg.cg_time = utime;
739 	acg.cg_magic = CG_MAGIC;
740 	acg.cg_cgx = cylno;
741 	if (cylno == sblock.fs_ncg - 1)
742 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
743 	else
744 		acg.cg_ncyl = sblock.fs_cpg;
745 	acg.cg_niblk = sblock.fs_ipg;
746 	acg.cg_ndblk = dmax - cbase;
747 	if (sblock.fs_contigsumsize > 0)
748 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
749 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
750 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
751 	acg.cg_iusedoff = acg.cg_boff +
752 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
753 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
754 	if (sblock.fs_contigsumsize <= 0) {
755 		acg.cg_nextfreeoff = acg.cg_freeoff +
756 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
757 	} else {
758 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
759 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
760 		    sizeof(long);
761 		acg.cg_clustersumoff =
762 		    roundup(acg.cg_clustersumoff, sizeof(long));
763 		acg.cg_clusteroff = acg.cg_clustersumoff +
764 		    (sblock.fs_contigsumsize + 1) * sizeof(long);
765 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
766 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
767 	}
768 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
769 		printf("Panic: cylinder group too big\n");
770 		exit(37);
771 	}
772 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
773 	if (cylno == 0)
774 		for (i = 0; i < ROOTINO; i++) {
775 			setbit(cg_inosused(&acg), i);
776 			acg.cg_cs.cs_nifree--;
777 		}
778 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
779 #ifdef FSIRAND
780 		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++)
781 			zino[j].di_gen = random();
782 #endif
783 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
784 		    sblock.fs_bsize, (char *)zino);
785 	}
786 	if (cylno > 0) {
787 		/*
788 		 * In cylno 0, beginning space is reserved
789 		 * for boot and super blocks.
790 		 */
791 		for (d = 0; d < dlower; d += sblock.fs_frag) {
792 			blkno = d / sblock.fs_frag;
793 			setblock(&sblock, cg_blksfree(&acg), blkno);
794 			if (sblock.fs_contigsumsize > 0)
795 				setbit(cg_clustersfree(&acg), blkno);
796 			acg.cg_cs.cs_nbfree++;
797 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
798 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
799 			    [cbtorpos(&sblock, d)]++;
800 		}
801 		sblock.fs_dsize += dlower;
802 	}
803 	sblock.fs_dsize += acg.cg_ndblk - dupper;
804 	if (i = dupper % sblock.fs_frag) {
805 		acg.cg_frsum[sblock.fs_frag - i]++;
806 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
807 			setbit(cg_blksfree(&acg), dupper);
808 			acg.cg_cs.cs_nffree++;
809 		}
810 	}
811 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
812 		blkno = d / sblock.fs_frag;
813 		setblock(&sblock, cg_blksfree(&acg), blkno);
814 		if (sblock.fs_contigsumsize > 0)
815 			setbit(cg_clustersfree(&acg), blkno);
816 		acg.cg_cs.cs_nbfree++;
817 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
818 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
819 		    [cbtorpos(&sblock, d)]++;
820 		d += sblock.fs_frag;
821 	}
822 	if (d < dmax - cbase) {
823 		acg.cg_frsum[dmax - cbase - d]++;
824 		for (; d < dmax - cbase; d++) {
825 			setbit(cg_blksfree(&acg), d);
826 			acg.cg_cs.cs_nffree++;
827 		}
828 	}
829 	if (sblock.fs_contigsumsize > 0) {
830 		int32_t *sump = cg_clustersum(&acg);
831 		u_char *mapp = cg_clustersfree(&acg);
832 		int map = *mapp++;
833 		int bit = 1;
834 		int run = 0;
835 
836 		for (i = 0; i < acg.cg_nclusterblks; i++) {
837 			if ((map & bit) != 0) {
838 				run++;
839 			} else if (run != 0) {
840 				if (run > sblock.fs_contigsumsize)
841 					run = sblock.fs_contigsumsize;
842 				sump[run]++;
843 				run = 0;
844 			}
845 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
846 				bit <<= 1;
847 			} else {
848 				map = *mapp++;
849 				bit = 1;
850 			}
851 		}
852 		if (run != 0) {
853 			if (run > sblock.fs_contigsumsize)
854 				run = sblock.fs_contigsumsize;
855 			sump[run]++;
856 		}
857 	}
858 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
859 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
860 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
861 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
862 	*cs = acg.cg_cs;
863 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
864 		sblock.fs_bsize, (char *)&acg);
865 }
866 
867 /*
868  * initialize the file system
869  */
870 struct dinode node;
871 
872 #ifdef LOSTDIR
873 #define PREDEFDIR 3
874 #else
875 #define PREDEFDIR 2
876 #endif
877 
878 struct direct root_dir[] = {
879 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
880 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
881 #ifdef LOSTDIR
882 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
883 #endif
884 };
885 struct odirect {
886 	u_long	d_ino;
887 	u_short	d_reclen;
888 	u_short	d_namlen;
889 	u_char	d_name[MAXNAMLEN + 1];
890 } oroot_dir[] = {
891 	{ ROOTINO, sizeof(struct direct), 1, "." },
892 	{ ROOTINO, sizeof(struct direct), 2, ".." },
893 #ifdef LOSTDIR
894 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
895 #endif
896 };
897 #ifdef LOSTDIR
898 struct direct lost_found_dir[] = {
899 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
900 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
901 	{ 0, DIRBLKSIZ, 0, 0, 0 },
902 };
903 struct odirect olost_found_dir[] = {
904 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
905 	{ ROOTINO, sizeof(struct direct), 2, ".." },
906 	{ 0, DIRBLKSIZ, 0, 0 },
907 };
908 #endif
909 char buf[MAXBSIZE];
910 
911 fsinit(utime)
912 	time_t utime;
913 {
914 	int i;
915 
916 	/*
917 	 * initialize the node
918 	 */
919 	node.di_atime = utime;
920 	node.di_mtime = utime;
921 	node.di_ctime = utime;
922 #ifdef LOSTDIR
923 	/*
924 	 * create the lost+found directory
925 	 */
926 	if (Oflag) {
927 		(void)makedir((struct direct *)olost_found_dir, 2);
928 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
929 			memmove(&buf[i], &olost_found_dir[2],
930 			    DIRSIZ(0, &olost_found_dir[2]));
931 	} else {
932 		(void)makedir(lost_found_dir, 2);
933 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
934 			memmove(&buf[i], &lost_found_dir[2],
935 			    DIRSIZ(0, &lost_found_dir[2]));
936 	}
937 	node.di_mode = IFDIR | UMASK;
938 	node.di_nlink = 2;
939 	node.di_size = sblock.fs_bsize;
940 	node.di_db[0] = alloc(node.di_size, node.di_mode);
941 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
942 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
943 	iput(&node, LOSTFOUNDINO);
944 #endif
945 	/*
946 	 * create the root directory
947 	 */
948 	if (mfs)
949 		node.di_mode = IFDIR | 01777;
950 	else
951 		node.di_mode = IFDIR | UMASK;
952 	node.di_nlink = PREDEFDIR;
953 	if (Oflag)
954 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
955 	else
956 		node.di_size = makedir(root_dir, PREDEFDIR);
957 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
958 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
959 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
960 	iput(&node, ROOTINO);
961 }
962 
963 /*
964  * construct a set of directory entries in "buf".
965  * return size of directory.
966  */
967 makedir(protodir, entries)
968 	register struct direct *protodir;
969 	int entries;
970 {
971 	char *cp;
972 	int i, spcleft;
973 
974 	spcleft = DIRBLKSIZ;
975 	for (cp = buf, i = 0; i < entries - 1; i++) {
976 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
977 		memmove(cp, &protodir[i], protodir[i].d_reclen);
978 		cp += protodir[i].d_reclen;
979 		spcleft -= protodir[i].d_reclen;
980 	}
981 	protodir[i].d_reclen = spcleft;
982 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
983 	return (DIRBLKSIZ);
984 }
985 
986 /*
987  * allocate a block or frag
988  */
989 daddr_t
990 alloc(size, mode)
991 	int size;
992 	int mode;
993 {
994 	int i, frag;
995 	daddr_t d, blkno;
996 
997 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
998 	    (char *)&acg);
999 	if (acg.cg_magic != CG_MAGIC) {
1000 		printf("cg 0: bad magic number\n");
1001 		return (0);
1002 	}
1003 	if (acg.cg_cs.cs_nbfree == 0) {
1004 		printf("first cylinder group ran out of space\n");
1005 		return (0);
1006 	}
1007 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1008 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1009 			goto goth;
1010 	printf("internal error: can't find block in cyl 0\n");
1011 	return (0);
1012 goth:
1013 	blkno = fragstoblks(&sblock, d);
1014 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1015 	if (sblock.fs_contigsumsize > 0)
1016 		clrbit(cg_clustersfree(&acg), blkno);
1017 	acg.cg_cs.cs_nbfree--;
1018 	sblock.fs_cstotal.cs_nbfree--;
1019 	fscs[0].cs_nbfree--;
1020 	if (mode & IFDIR) {
1021 		acg.cg_cs.cs_ndir++;
1022 		sblock.fs_cstotal.cs_ndir++;
1023 		fscs[0].cs_ndir++;
1024 	}
1025 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1026 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1027 	if (size != sblock.fs_bsize) {
1028 		frag = howmany(size, sblock.fs_fsize);
1029 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1030 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1031 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1032 		acg.cg_frsum[sblock.fs_frag - frag]++;
1033 		for (i = frag; i < sblock.fs_frag; i++)
1034 			setbit(cg_blksfree(&acg), d + i);
1035 	}
1036 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1037 	    (char *)&acg);
1038 	return (d);
1039 }
1040 
1041 /*
1042  * Calculate number of inodes per group.
1043  */
1044 long
1045 calcipg(cpg, bpcg, usedbp)
1046 	long cpg;
1047 	long bpcg;
1048 	off_t *usedbp;
1049 {
1050 	int i;
1051 	long ipg, new_ipg, ncg, ncyl;
1052 	off_t usedb;
1053 
1054 	/*
1055 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1056 	 * Note that fssize is still in sectors, not filesystem blocks.
1057 	 */
1058 	ncyl = howmany(fssize, secpercyl);
1059 	ncg = howmany(ncyl, cpg);
1060 	/*
1061 	 * Iterate a few times to allow for ipg depending on itself.
1062 	 */
1063 	ipg = 0;
1064 	for (i = 0; i < 10; i++) {
1065 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1066 			* NSPF(&sblock) * (off_t)sectorsize;
1067 		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1068 			  / ncg / secpercyl / cpg;
1069 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1070 		if (new_ipg == ipg)
1071 			break;
1072 		ipg = new_ipg;
1073 	}
1074 	*usedbp = usedb;
1075 	return (ipg);
1076 }
1077 
1078 /*
1079  * Allocate an inode on the disk
1080  */
1081 iput(ip, ino)
1082 	register struct dinode *ip;
1083 	register ino_t ino;
1084 {
1085 	struct dinode buf[MAXINOPB];
1086 	daddr_t d;
1087 	int c;
1088 
1089 #ifdef FSIRAND
1090 	ip->di_gen = random();
1091 #endif
1092 	c = ino_to_cg(&sblock, ino);
1093 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1094 	    (char *)&acg);
1095 	if (acg.cg_magic != CG_MAGIC) {
1096 		printf("cg 0: bad magic number\n");
1097 		exit(31);
1098 	}
1099 	acg.cg_cs.cs_nifree--;
1100 	setbit(cg_inosused(&acg), ino);
1101 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1102 	    (char *)&acg);
1103 	sblock.fs_cstotal.cs_nifree--;
1104 	fscs[0].cs_nifree--;
1105 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1106 		printf("fsinit: inode value out of range (%d).\n", ino);
1107 		exit(32);
1108 	}
1109 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1110 	rdfs(d, sblock.fs_bsize, buf);
1111 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
1112 	wtfs(d, sblock.fs_bsize, buf);
1113 }
1114 
1115 /*
1116  * Notify parent process that the filesystem has created itself successfully.
1117  */
1118 void
1119 started()
1120 {
1121 
1122 	exit(0);
1123 }
1124 
1125 #ifdef STANDALONE
1126 /*
1127  * Replace libc function with one suited to our needs.
1128  */
1129 caddr_t
1130 malloc(size)
1131 	register u_long size;
1132 {
1133 	char *base, *i;
1134 	static u_long pgsz;
1135 	struct rlimit rlp;
1136 
1137 	if (pgsz == 0) {
1138 		base = sbrk(0);
1139 		pgsz = getpagesize() - 1;
1140 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1141 		base = sbrk(i - base);
1142 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1143 			perror("getrlimit");
1144 		rlp.rlim_cur = rlp.rlim_max;
1145 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1146 			perror("setrlimit");
1147 		memleft = rlp.rlim_max - (u_long)base;
1148 	}
1149 	size = (size + pgsz) &~ pgsz;
1150 	if (size > memleft)
1151 		size = memleft;
1152 	memleft -= size;
1153 	if (size == 0)
1154 		return (0);
1155 	return ((caddr_t)sbrk(size));
1156 }
1157 
1158 /*
1159  * Replace libc function with one suited to our needs.
1160  */
1161 caddr_t
1162 realloc(ptr, size)
1163 	char *ptr;
1164 	u_long size;
1165 {
1166 	void *p;
1167 
1168 	if ((p = malloc(size)) == NULL)
1169 		return (NULL);
1170 	memmove(p, ptr, size);
1171 	free(ptr);
1172 	return (p);
1173 }
1174 
1175 /*
1176  * Replace libc function with one suited to our needs.
1177  */
1178 char *
1179 calloc(size, numelm)
1180 	u_long size, numelm;
1181 {
1182 	caddr_t base;
1183 
1184 	size *= numelm;
1185 	base = malloc(size);
1186 	memset(base, 0, size);
1187 	return (base);
1188 }
1189 
1190 /*
1191  * Replace libc function with one suited to our needs.
1192  */
1193 free(ptr)
1194 	char *ptr;
1195 {
1196 
1197 	/* do not worry about it for now */
1198 }
1199 
1200 #else   /* !STANDALONE */
1201 
1202 raise_data_limit()
1203 {
1204 	struct rlimit rlp;
1205 
1206 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1207 		perror("getrlimit");
1208 	rlp.rlim_cur = rlp.rlim_max;
1209 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1210 		perror("setrlimit");
1211 }
1212 
1213 get_memleft()
1214 {
1215 	char *base;
1216 	static u_long pgsz, i;
1217 	struct rlimit rlp;
1218 
1219 	base = sbrk(0);
1220 	pgsz = getpagesize() - 1;
1221 	i = ((u_long)(base + pgsz) &~ pgsz);
1222 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1223 		perror("getrlimit");
1224 	memleft = rlp.rlim_cur - (u_long)base - i;
1225 }
1226 #endif  /* STANDALONE */
1227 
1228 /*
1229  * read a block from the file system
1230  */
1231 rdfs(bno, size, bf)
1232 	daddr_t bno;
1233 	int size;
1234 	char *bf;
1235 {
1236 	int n;
1237 
1238 	if (mfs) {
1239 		memmove(bf, membase + bno * sectorsize, size);
1240 		return;
1241 	}
1242 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1243 		printf("seek error: %ld\n", bno);
1244 		perror("rdfs");
1245 		exit(33);
1246 	}
1247 	n = read(fsi, bf, size);
1248 	if (n != size) {
1249 		printf("read error: %ld\n", bno);
1250 		perror("rdfs");
1251 		exit(34);
1252 	}
1253 }
1254 
1255 /*
1256  * write a block to the file system
1257  */
1258 wtfs(bno, size, bf)
1259 	daddr_t bno;
1260 	int size;
1261 	char *bf;
1262 {
1263 	int n;
1264 
1265 	if (mfs) {
1266 		memmove(membase + bno * sectorsize, bf, size);
1267 		return;
1268 	}
1269 	if (Nflag)
1270 		return;
1271 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1272 		printf("seek error: %ld\n", bno);
1273 		perror("wtfs");
1274 		exit(35);
1275 	}
1276 	n = write(fso, bf, size);
1277 	if (n != size) {
1278 		printf("write error: %ld\n", bno);
1279 		perror("wtfs");
1280 		exit(36);
1281 	}
1282 }
1283 
1284 /*
1285  * check if a block is available
1286  */
1287 isblock(fs, cp, h)
1288 	struct fs *fs;
1289 	unsigned char *cp;
1290 	int h;
1291 {
1292 	unsigned char mask;
1293 
1294 	switch (fs->fs_frag) {
1295 	case 8:
1296 		return (cp[h] == 0xff);
1297 	case 4:
1298 		mask = 0x0f << ((h & 0x1) << 2);
1299 		return ((cp[h >> 1] & mask) == mask);
1300 	case 2:
1301 		mask = 0x03 << ((h & 0x3) << 1);
1302 		return ((cp[h >> 2] & mask) == mask);
1303 	case 1:
1304 		mask = 0x01 << (h & 0x7);
1305 		return ((cp[h >> 3] & mask) == mask);
1306 	default:
1307 #ifdef STANDALONE
1308 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1309 #else
1310 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1311 #endif
1312 		return (0);
1313 	}
1314 }
1315 
1316 /*
1317  * take a block out of the map
1318  */
1319 clrblock(fs, cp, h)
1320 	struct fs *fs;
1321 	unsigned char *cp;
1322 	int h;
1323 {
1324 	switch ((fs)->fs_frag) {
1325 	case 8:
1326 		cp[h] = 0;
1327 		return;
1328 	case 4:
1329 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1330 		return;
1331 	case 2:
1332 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1333 		return;
1334 	case 1:
1335 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1336 		return;
1337 	default:
1338 #ifdef STANDALONE
1339 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1340 #else
1341 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1342 #endif
1343 		return;
1344 	}
1345 }
1346 
1347 /*
1348  * put a block into the map
1349  */
1350 setblock(fs, cp, h)
1351 	struct fs *fs;
1352 	unsigned char *cp;
1353 	int h;
1354 {
1355 	switch (fs->fs_frag) {
1356 	case 8:
1357 		cp[h] = 0xff;
1358 		return;
1359 	case 4:
1360 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1361 		return;
1362 	case 2:
1363 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1364 		return;
1365 	case 1:
1366 		cp[h >> 3] |= (0x01 << (h & 0x7));
1367 		return;
1368 	default:
1369 #ifdef STANDALONE
1370 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1371 #else
1372 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1373 #endif
1374 		return;
1375 	}
1376 }
1377 
1378 /*
1379  * Determine the number of characters in a
1380  * single line.
1381  */
1382 
1383 static int
1384 charsperline()
1385 {
1386 	int columns;
1387 	char *cp;
1388 	struct winsize ws;
1389 	extern char *getenv();
1390 
1391 	columns = 0;
1392 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1393 		columns = ws.ws_col;
1394 	if (columns == 0 && (cp = getenv("COLUMNS")))
1395 		columns = atoi(cp);
1396 	if (columns == 0)
1397 		columns = 80;	/* last resort */
1398 	return columns;
1399 }
1400