1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static void cgckhash(struct cg *); 102 static u_int32_t newfs_random(void); 103 104 static int 105 do_sbwrite(struct uufsd *disk) 106 { 107 if (!disk->d_sblock) 108 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 109 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 110 disk->d_sblock) * disk->d_bsize))); 111 } 112 113 void 114 mkfs(struct partition *pp, char *fsys) 115 { 116 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 117 long i, j, csfrags; 118 uint cg; 119 time_t utime; 120 quad_t sizepb; 121 int width; 122 ino_t maxinum; 123 int minfragsperinode; /* minimum ratio of frags to inodes */ 124 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 125 struct fsrecovery *fsr; 126 char *fsrbuf; 127 union { 128 struct fs fdummy; 129 char cdummy[SBLOCKSIZE]; 130 } dummy; 131 #define fsdummy dummy.fdummy 132 #define chdummy dummy.cdummy 133 134 /* 135 * Our blocks == sector size, and the version of UFS we are using is 136 * specified by Oflag. 137 */ 138 disk.d_bsize = sectorsize; 139 disk.d_ufs = Oflag; 140 if (Rflag) 141 utime = 1000000000; 142 else 143 time(&utime); 144 sblock.fs_old_flags = FS_FLAGS_UPDATED; 145 sblock.fs_flags = 0; 146 if (Uflag) 147 sblock.fs_flags |= FS_DOSOFTDEP; 148 if (Lflag) 149 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 150 if (Jflag) 151 sblock.fs_flags |= FS_GJOURNAL; 152 if (lflag) 153 sblock.fs_flags |= FS_MULTILABEL; 154 if (tflag) 155 sblock.fs_flags |= FS_TRIM; 156 /* 157 * Validate the given file system size. 158 * Verify that its last block can actually be accessed. 159 * Convert to file system fragment sized units. 160 */ 161 if (fssize <= 0) { 162 printf("preposterous size %jd\n", (intmax_t)fssize); 163 exit(13); 164 } 165 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 166 (char *)&sblock); 167 /* 168 * collect and verify the file system density info 169 */ 170 sblock.fs_avgfilesize = avgfilesize; 171 sblock.fs_avgfpdir = avgfilesperdir; 172 if (sblock.fs_avgfilesize <= 0) 173 printf("illegal expected average file size %d\n", 174 sblock.fs_avgfilesize), exit(14); 175 if (sblock.fs_avgfpdir <= 0) 176 printf("illegal expected number of files per directory %d\n", 177 sblock.fs_avgfpdir), exit(15); 178 179 restart: 180 /* 181 * collect and verify the block and fragment sizes 182 */ 183 sblock.fs_bsize = bsize; 184 sblock.fs_fsize = fsize; 185 if (!POWEROF2(sblock.fs_bsize)) { 186 printf("block size must be a power of 2, not %d\n", 187 sblock.fs_bsize); 188 exit(16); 189 } 190 if (!POWEROF2(sblock.fs_fsize)) { 191 printf("fragment size must be a power of 2, not %d\n", 192 sblock.fs_fsize); 193 exit(17); 194 } 195 if (sblock.fs_fsize < sectorsize) { 196 printf("increasing fragment size from %d to sector size (%d)\n", 197 sblock.fs_fsize, sectorsize); 198 sblock.fs_fsize = sectorsize; 199 } 200 if (sblock.fs_bsize > MAXBSIZE) { 201 printf("decreasing block size from %d to maximum (%d)\n", 202 sblock.fs_bsize, MAXBSIZE); 203 sblock.fs_bsize = MAXBSIZE; 204 } 205 if (sblock.fs_bsize < MINBSIZE) { 206 printf("increasing block size from %d to minimum (%d)\n", 207 sblock.fs_bsize, MINBSIZE); 208 sblock.fs_bsize = MINBSIZE; 209 } 210 if (sblock.fs_fsize > MAXBSIZE) { 211 printf("decreasing fragment size from %d to maximum (%d)\n", 212 sblock.fs_fsize, MAXBSIZE); 213 sblock.fs_fsize = MAXBSIZE; 214 } 215 if (sblock.fs_bsize < sblock.fs_fsize) { 216 printf("increasing block size from %d to fragment size (%d)\n", 217 sblock.fs_bsize, sblock.fs_fsize); 218 sblock.fs_bsize = sblock.fs_fsize; 219 } 220 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 221 printf( 222 "increasing fragment size from %d to block size / %d (%d)\n", 223 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 224 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 225 } 226 if (maxbsize == 0) 227 maxbsize = bsize; 228 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 229 sblock.fs_maxbsize = sblock.fs_bsize; 230 printf("Extent size set to %d\n", sblock.fs_maxbsize); 231 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 232 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 233 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 234 } else { 235 sblock.fs_maxbsize = maxbsize; 236 } 237 /* 238 * Maxcontig sets the default for the maximum number of blocks 239 * that may be allocated sequentially. With file system clustering 240 * it is possible to allocate contiguous blocks up to the maximum 241 * transfer size permitted by the controller or buffering. 242 */ 243 if (maxcontig == 0) 244 maxcontig = MAX(1, MAXPHYS / bsize); 245 sblock.fs_maxcontig = maxcontig; 246 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 247 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 248 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 249 } 250 if (sblock.fs_maxcontig > 1) 251 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 252 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 253 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 254 sblock.fs_qbmask = ~sblock.fs_bmask; 255 sblock.fs_qfmask = ~sblock.fs_fmask; 256 sblock.fs_bshift = ilog2(sblock.fs_bsize); 257 sblock.fs_fshift = ilog2(sblock.fs_fsize); 258 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 259 sblock.fs_fragshift = ilog2(sblock.fs_frag); 260 if (sblock.fs_frag > MAXFRAG) { 261 printf("fragment size %d is still too small (can't happen)\n", 262 sblock.fs_bsize / MAXFRAG); 263 exit(21); 264 } 265 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 266 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 267 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 268 269 /* 270 * Before the filesystem is finally initialized, mark it 271 * as incompletely initialized. 272 */ 273 sblock.fs_magic = FS_BAD_MAGIC; 274 275 if (Oflag == 1) { 276 sblock.fs_sblockloc = SBLOCK_UFS1; 277 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 278 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 279 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 280 sizeof(ufs1_daddr_t)); 281 sblock.fs_old_inodefmt = FS_44INODEFMT; 282 sblock.fs_old_cgoffset = 0; 283 sblock.fs_old_cgmask = 0xffffffff; 284 sblock.fs_old_size = sblock.fs_size; 285 sblock.fs_old_rotdelay = 0; 286 sblock.fs_old_rps = 60; 287 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 288 sblock.fs_old_cpg = 1; 289 sblock.fs_old_interleave = 1; 290 sblock.fs_old_trackskew = 0; 291 sblock.fs_old_cpc = 0; 292 sblock.fs_old_postblformat = 1; 293 sblock.fs_old_nrpos = 1; 294 } else { 295 sblock.fs_sblockloc = SBLOCK_UFS2; 296 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 297 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 298 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 299 sizeof(ufs2_daddr_t)); 300 } 301 sblock.fs_sblkno = 302 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 303 sblock.fs_frag); 304 sblock.fs_cblkno = sblock.fs_sblkno + 305 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 306 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 307 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 308 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 309 sizepb *= NINDIR(&sblock); 310 sblock.fs_maxfilesize += sizepb; 311 } 312 313 /* 314 * It's impossible to create a snapshot in case that fs_maxfilesize 315 * is smaller than the fssize. 316 */ 317 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 318 warnx("WARNING: You will be unable to create snapshots on this " 319 "file system. Correct by using a larger blocksize."); 320 } 321 322 /* 323 * Calculate the number of blocks to put into each cylinder group. 324 * 325 * This algorithm selects the number of blocks per cylinder 326 * group. The first goal is to have at least enough data blocks 327 * in each cylinder group to meet the density requirement. Once 328 * this goal is achieved we try to expand to have at least 329 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 330 * pack as many blocks into each cylinder group map as will fit. 331 * 332 * We start by calculating the smallest number of blocks that we 333 * can put into each cylinder group. If this is too big, we reduce 334 * the density until it fits. 335 */ 336 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 337 minfragsperinode = 1 + fssize / maxinum; 338 if (density == 0) { 339 density = MAX(NFPI, minfragsperinode) * fsize; 340 } else if (density < minfragsperinode * fsize) { 341 origdensity = density; 342 density = minfragsperinode * fsize; 343 fprintf(stderr, "density increased from %d to %d\n", 344 origdensity, density); 345 } 346 origdensity = density; 347 for (;;) { 348 fragsperinode = MAX(numfrags(&sblock, density), 1); 349 if (fragsperinode < minfragsperinode) { 350 bsize <<= 1; 351 fsize <<= 1; 352 printf("Block size too small for a file system %s %d\n", 353 "of this size. Increasing blocksize to", bsize); 354 goto restart; 355 } 356 minfpg = fragsperinode * INOPB(&sblock); 357 if (minfpg > sblock.fs_size) 358 minfpg = sblock.fs_size; 359 sblock.fs_ipg = INOPB(&sblock); 360 sblock.fs_fpg = roundup(sblock.fs_iblkno + 361 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 362 if (sblock.fs_fpg < minfpg) 363 sblock.fs_fpg = minfpg; 364 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 365 INOPB(&sblock)); 366 sblock.fs_fpg = roundup(sblock.fs_iblkno + 367 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 368 if (sblock.fs_fpg < minfpg) 369 sblock.fs_fpg = minfpg; 370 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 371 INOPB(&sblock)); 372 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 373 break; 374 density -= sblock.fs_fsize; 375 } 376 if (density != origdensity) 377 printf("density reduced from %d to %d\n", origdensity, density); 378 /* 379 * Start packing more blocks into the cylinder group until 380 * it cannot grow any larger, the number of cylinder groups 381 * drops below MINCYLGRPS, or we reach the size requested. 382 * For UFS1 inodes per cylinder group are stored in an int16_t 383 * so fs_ipg is limited to 2^15 - 1. 384 */ 385 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 386 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 387 INOPB(&sblock)); 388 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 389 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 390 break; 391 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 392 continue; 393 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 394 break; 395 } 396 sblock.fs_fpg -= sblock.fs_frag; 397 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 398 INOPB(&sblock)); 399 break; 400 } 401 /* 402 * Check to be sure that the last cylinder group has enough blocks 403 * to be viable. If it is too small, reduce the number of blocks 404 * per cylinder group which will have the effect of moving more 405 * blocks into the last cylinder group. 406 */ 407 optimalfpg = sblock.fs_fpg; 408 for (;;) { 409 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 410 lastminfpg = roundup(sblock.fs_iblkno + 411 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 412 if (sblock.fs_size < lastminfpg) { 413 printf("Filesystem size %jd < minimum size of %d\n", 414 (intmax_t)sblock.fs_size, lastminfpg); 415 exit(28); 416 } 417 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 418 sblock.fs_size % sblock.fs_fpg == 0) 419 break; 420 sblock.fs_fpg -= sblock.fs_frag; 421 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 422 INOPB(&sblock)); 423 } 424 if (optimalfpg != sblock.fs_fpg) 425 printf("Reduced frags per cylinder group from %d to %d %s\n", 426 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 427 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 428 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 429 if (Oflag == 1) { 430 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 431 sblock.fs_old_nsect = sblock.fs_old_spc; 432 sblock.fs_old_npsect = sblock.fs_old_spc; 433 sblock.fs_old_ncyl = sblock.fs_ncg; 434 } 435 /* 436 * fill in remaining fields of the super block 437 */ 438 sblock.fs_csaddr = cgdmin(&sblock, 0); 439 sblock.fs_cssize = 440 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 441 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 442 if (fscs == NULL) 443 errx(31, "calloc failed"); 444 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 445 if (sblock.fs_sbsize > SBLOCKSIZE) 446 sblock.fs_sbsize = SBLOCKSIZE; 447 if (sblock.fs_sbsize < realsectorsize) 448 sblock.fs_sbsize = realsectorsize; 449 sblock.fs_minfree = minfree; 450 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 451 sblock.fs_metaspace = blknum(&sblock, metaspace); 452 else if (metaspace != -1) 453 /* reserve half of minfree for metadata blocks */ 454 sblock.fs_metaspace = blknum(&sblock, 455 (sblock.fs_fpg * minfree) / 200); 456 if (maxbpg == 0) 457 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 458 else 459 sblock.fs_maxbpg = maxbpg; 460 sblock.fs_optim = opt; 461 sblock.fs_cgrotor = 0; 462 sblock.fs_pendingblocks = 0; 463 sblock.fs_pendinginodes = 0; 464 sblock.fs_fmod = 0; 465 sblock.fs_ronly = 0; 466 sblock.fs_state = 0; 467 sblock.fs_clean = 1; 468 sblock.fs_id[0] = (long)utime; 469 sblock.fs_id[1] = newfs_random(); 470 sblock.fs_fsmnt[0] = '\0'; 471 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 472 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 473 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 474 sblock.fs_cstotal.cs_nbfree = 475 fragstoblks(&sblock, sblock.fs_dsize) - 476 howmany(csfrags, sblock.fs_frag); 477 sblock.fs_cstotal.cs_nffree = 478 fragnum(&sblock, sblock.fs_size) + 479 (fragnum(&sblock, csfrags) > 0 ? 480 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 481 sblock.fs_cstotal.cs_nifree = 482 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 483 sblock.fs_cstotal.cs_ndir = 0; 484 sblock.fs_dsize -= csfrags; 485 sblock.fs_time = utime; 486 if (Oflag == 1) { 487 sblock.fs_old_time = utime; 488 sblock.fs_old_dsize = sblock.fs_dsize; 489 sblock.fs_old_csaddr = sblock.fs_csaddr; 490 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 491 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 492 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 493 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 494 } 495 /* 496 * Set flags for metadata that is being check-hashed. 497 */ 498 if (Oflag > 1) 499 sblock.fs_metackhash = CK_CYLGRP; 500 501 /* 502 * Dump out summary information about file system. 503 */ 504 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 505 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 506 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 507 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 508 sblock.fs_fsize); 509 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 510 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 511 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 512 if (sblock.fs_flags & FS_DOSOFTDEP) 513 printf("\twith soft updates\n"); 514 # undef B2MBFACTOR 515 516 if (Eflag && !Nflag) { 517 printf("Erasing sectors [%jd...%jd]\n", 518 sblock.fs_sblockloc / disk.d_bsize, 519 fsbtodb(&sblock, sblock.fs_size) - 1); 520 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 521 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 522 } 523 /* 524 * Wipe out old UFS1 superblock(s) if necessary. 525 */ 526 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 527 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 528 if (i == -1) 529 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 530 531 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 532 fsdummy.fs_magic = 0; 533 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 534 chdummy, SBLOCKSIZE); 535 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 536 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 537 break; 538 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 539 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 540 } 541 } 542 } 543 if (!Nflag) 544 do_sbwrite(&disk); 545 if (Xflag == 1) { 546 printf("** Exiting on Xflag 1\n"); 547 exit(0); 548 } 549 if (Xflag == 2) 550 printf("** Leaving BAD MAGIC on Xflag 2\n"); 551 else 552 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 553 554 /* 555 * Now build the cylinders group blocks and 556 * then print out indices of cylinder groups. 557 */ 558 printf("super-block backups (for fsck_ffs -b #) at:\n"); 559 i = 0; 560 width = charsperline(); 561 /* 562 * allocate space for superblock, cylinder group map, and 563 * two sets of inode blocks. 564 */ 565 if (sblock.fs_bsize < SBLOCKSIZE) 566 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 567 else 568 iobufsize = 4 * sblock.fs_bsize; 569 if ((iobuf = calloc(1, iobufsize)) == 0) { 570 printf("Cannot allocate I/O buffer\n"); 571 exit(38); 572 } 573 /* 574 * Make a copy of the superblock into the buffer that we will be 575 * writing out in each cylinder group. 576 */ 577 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 578 for (cg = 0; cg < sblock.fs_ncg; cg++) { 579 initcg(cg, utime); 580 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 581 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 582 cg < (sblock.fs_ncg-1) ? "," : ""); 583 if (j < 0) 584 tmpbuf[j = 0] = '\0'; 585 if (i + j >= width) { 586 printf("\n"); 587 i = 0; 588 } 589 i += j; 590 printf("%s", tmpbuf); 591 fflush(stdout); 592 } 593 printf("\n"); 594 if (Nflag) 595 exit(0); 596 /* 597 * Now construct the initial file system, 598 * then write out the super-block. 599 */ 600 fsinit(utime); 601 if (Oflag == 1) { 602 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 603 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 604 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 605 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 606 } 607 if (Xflag == 3) { 608 printf("** Exiting on Xflag 3\n"); 609 exit(0); 610 } 611 if (!Nflag) { 612 do_sbwrite(&disk); 613 /* 614 * For UFS1 filesystems with a blocksize of 64K, the first 615 * alternate superblock resides at the location used for 616 * the default UFS2 superblock. As there is a valid 617 * superblock at this location, the boot code will use 618 * it as its first choice. Thus we have to ensure that 619 * all of its statistcs on usage are correct. 620 */ 621 if (Oflag == 1 && sblock.fs_bsize == 65536) 622 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 623 sblock.fs_bsize, (char *)&sblock); 624 } 625 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 626 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 627 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 628 ((char *)fscs) + i); 629 /* 630 * Read the last sector of the boot block, replace the last 631 * 20 bytes with the recovery information, then write it back. 632 * The recovery information only works for UFS2 filesystems. 633 */ 634 if (sblock.fs_magic == FS_UFS2_MAGIC) { 635 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 636 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 637 fsrbuf, realsectorsize) == -1) 638 err(1, "can't read recovery area: %s", disk.d_error); 639 fsr = 640 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 641 fsr->fsr_magic = sblock.fs_magic; 642 fsr->fsr_fpg = sblock.fs_fpg; 643 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 644 fsr->fsr_sblkno = sblock.fs_sblkno; 645 fsr->fsr_ncg = sblock.fs_ncg; 646 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 647 realsectorsize, fsrbuf); 648 free(fsrbuf); 649 } 650 /* 651 * Update information about this partition in pack 652 * label, to that it may be updated on disk. 653 */ 654 if (pp != NULL) { 655 pp->p_fstype = FS_BSDFFS; 656 pp->p_fsize = sblock.fs_fsize; 657 pp->p_frag = sblock.fs_frag; 658 pp->p_cpg = sblock.fs_fpg; 659 } 660 } 661 662 /* 663 * Initialize a cylinder group. 664 */ 665 void 666 initcg(int cylno, time_t utime) 667 { 668 long blkno, start; 669 uint i, j, d, dlower, dupper; 670 ufs2_daddr_t cbase, dmax; 671 struct ufs1_dinode *dp1; 672 struct ufs2_dinode *dp2; 673 struct csum *cs; 674 675 /* 676 * Determine block bounds for cylinder group. 677 * Allow space for super block summary information in first 678 * cylinder group. 679 */ 680 cbase = cgbase(&sblock, cylno); 681 dmax = cbase + sblock.fs_fpg; 682 if (dmax > sblock.fs_size) 683 dmax = sblock.fs_size; 684 dlower = cgsblock(&sblock, cylno) - cbase; 685 dupper = cgdmin(&sblock, cylno) - cbase; 686 if (cylno == 0) 687 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 688 cs = &fscs[cylno]; 689 memset(&acg, 0, sblock.fs_cgsize); 690 acg.cg_time = utime; 691 acg.cg_magic = CG_MAGIC; 692 acg.cg_cgx = cylno; 693 acg.cg_niblk = sblock.fs_ipg; 694 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 695 acg.cg_ndblk = dmax - cbase; 696 if (sblock.fs_contigsumsize > 0) 697 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 698 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 699 if (Oflag == 2) { 700 acg.cg_iusedoff = start; 701 } else { 702 acg.cg_old_ncyl = sblock.fs_old_cpg; 703 acg.cg_old_time = acg.cg_time; 704 acg.cg_time = 0; 705 acg.cg_old_niblk = acg.cg_niblk; 706 acg.cg_niblk = 0; 707 acg.cg_initediblk = 0; 708 acg.cg_old_btotoff = start; 709 acg.cg_old_boff = acg.cg_old_btotoff + 710 sblock.fs_old_cpg * sizeof(int32_t); 711 acg.cg_iusedoff = acg.cg_old_boff + 712 sblock.fs_old_cpg * sizeof(u_int16_t); 713 } 714 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 715 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 716 if (sblock.fs_contigsumsize > 0) { 717 acg.cg_clustersumoff = 718 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 719 acg.cg_clustersumoff -= sizeof(u_int32_t); 720 acg.cg_clusteroff = acg.cg_clustersumoff + 721 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 722 acg.cg_nextfreeoff = acg.cg_clusteroff + 723 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 724 } 725 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 726 printf("Panic: cylinder group too big\n"); 727 exit(37); 728 } 729 acg.cg_cs.cs_nifree += sblock.fs_ipg; 730 if (cylno == 0) 731 for (i = 0; i < (long)UFS_ROOTINO; i++) { 732 setbit(cg_inosused(&acg), i); 733 acg.cg_cs.cs_nifree--; 734 } 735 if (cylno > 0) { 736 /* 737 * In cylno 0, beginning space is reserved 738 * for boot and super blocks. 739 */ 740 for (d = 0; d < dlower; d += sblock.fs_frag) { 741 blkno = d / sblock.fs_frag; 742 setblock(&sblock, cg_blksfree(&acg), blkno); 743 if (sblock.fs_contigsumsize > 0) 744 setbit(cg_clustersfree(&acg), blkno); 745 acg.cg_cs.cs_nbfree++; 746 } 747 } 748 if ((i = dupper % sblock.fs_frag)) { 749 acg.cg_frsum[sblock.fs_frag - i]++; 750 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 751 setbit(cg_blksfree(&acg), dupper); 752 acg.cg_cs.cs_nffree++; 753 } 754 } 755 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 756 d += sblock.fs_frag) { 757 blkno = d / sblock.fs_frag; 758 setblock(&sblock, cg_blksfree(&acg), blkno); 759 if (sblock.fs_contigsumsize > 0) 760 setbit(cg_clustersfree(&acg), blkno); 761 acg.cg_cs.cs_nbfree++; 762 } 763 if (d < acg.cg_ndblk) { 764 acg.cg_frsum[acg.cg_ndblk - d]++; 765 for (; d < acg.cg_ndblk; d++) { 766 setbit(cg_blksfree(&acg), d); 767 acg.cg_cs.cs_nffree++; 768 } 769 } 770 if (sblock.fs_contigsumsize > 0) { 771 int32_t *sump = cg_clustersum(&acg); 772 u_char *mapp = cg_clustersfree(&acg); 773 int map = *mapp++; 774 int bit = 1; 775 int run = 0; 776 777 for (i = 0; i < acg.cg_nclusterblks; i++) { 778 if ((map & bit) != 0) 779 run++; 780 else if (run != 0) { 781 if (run > sblock.fs_contigsumsize) 782 run = sblock.fs_contigsumsize; 783 sump[run]++; 784 run = 0; 785 } 786 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 787 bit <<= 1; 788 else { 789 map = *mapp++; 790 bit = 1; 791 } 792 } 793 if (run != 0) { 794 if (run > sblock.fs_contigsumsize) 795 run = sblock.fs_contigsumsize; 796 sump[run]++; 797 } 798 } 799 *cs = acg.cg_cs; 800 cgckhash(&acg); 801 /* 802 * Write out the duplicate super block, the cylinder group map 803 * and two blocks worth of inodes in a single write. 804 */ 805 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 806 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 807 start += sblock.fs_bsize; 808 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 809 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 810 for (i = 0; i < acg.cg_initediblk; i++) { 811 if (sblock.fs_magic == FS_UFS1_MAGIC) { 812 dp1->di_gen = newfs_random(); 813 dp1++; 814 } else { 815 dp2->di_gen = newfs_random(); 816 dp2++; 817 } 818 } 819 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 820 /* 821 * For the old file system, we have to initialize all the inodes. 822 */ 823 if (Oflag == 1) { 824 for (i = 2 * sblock.fs_frag; 825 i < sblock.fs_ipg / INOPF(&sblock); 826 i += sblock.fs_frag) { 827 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 828 for (j = 0; j < INOPB(&sblock); j++) { 829 dp1->di_gen = newfs_random(); 830 dp1++; 831 } 832 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 833 sblock.fs_bsize, &iobuf[start]); 834 } 835 } 836 } 837 838 /* 839 * initialize the file system 840 */ 841 #define ROOTLINKCNT 3 842 843 static struct direct root_dir[] = { 844 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 845 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 846 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 847 }; 848 849 #define SNAPLINKCNT 2 850 851 static struct direct snap_dir[] = { 852 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 853 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 854 }; 855 856 void 857 fsinit(time_t utime) 858 { 859 union dinode node; 860 struct group *grp; 861 gid_t gid; 862 int entries; 863 864 memset(&node, 0, sizeof node); 865 if ((grp = getgrnam("operator")) != NULL) { 866 gid = grp->gr_gid; 867 } else { 868 warnx("Cannot retrieve operator gid, using gid 0."); 869 gid = 0; 870 } 871 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 872 if (sblock.fs_magic == FS_UFS1_MAGIC) { 873 /* 874 * initialize the node 875 */ 876 node.dp1.di_atime = utime; 877 node.dp1.di_mtime = utime; 878 node.dp1.di_ctime = utime; 879 /* 880 * create the root directory 881 */ 882 node.dp1.di_mode = IFDIR | UMASK; 883 node.dp1.di_nlink = entries; 884 node.dp1.di_size = makedir(root_dir, entries); 885 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 886 node.dp1.di_blocks = 887 btodb(fragroundup(&sblock, node.dp1.di_size)); 888 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 889 iobuf); 890 iput(&node, UFS_ROOTINO); 891 if (!nflag) { 892 /* 893 * create the .snap directory 894 */ 895 node.dp1.di_mode |= 020; 896 node.dp1.di_gid = gid; 897 node.dp1.di_nlink = SNAPLINKCNT; 898 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 899 node.dp1.di_db[0] = 900 alloc(sblock.fs_fsize, node.dp1.di_mode); 901 node.dp1.di_blocks = 902 btodb(fragroundup(&sblock, node.dp1.di_size)); 903 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 904 sblock.fs_fsize, iobuf); 905 iput(&node, UFS_ROOTINO + 1); 906 } 907 } else { 908 /* 909 * initialize the node 910 */ 911 node.dp2.di_atime = utime; 912 node.dp2.di_mtime = utime; 913 node.dp2.di_ctime = utime; 914 node.dp2.di_birthtime = utime; 915 /* 916 * create the root directory 917 */ 918 node.dp2.di_mode = IFDIR | UMASK; 919 node.dp2.di_nlink = entries; 920 node.dp2.di_size = makedir(root_dir, entries); 921 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 922 node.dp2.di_blocks = 923 btodb(fragroundup(&sblock, node.dp2.di_size)); 924 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 925 iobuf); 926 iput(&node, UFS_ROOTINO); 927 if (!nflag) { 928 /* 929 * create the .snap directory 930 */ 931 node.dp2.di_mode |= 020; 932 node.dp2.di_gid = gid; 933 node.dp2.di_nlink = SNAPLINKCNT; 934 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 935 node.dp2.di_db[0] = 936 alloc(sblock.fs_fsize, node.dp2.di_mode); 937 node.dp2.di_blocks = 938 btodb(fragroundup(&sblock, node.dp2.di_size)); 939 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 940 sblock.fs_fsize, iobuf); 941 iput(&node, UFS_ROOTINO + 1); 942 } 943 } 944 } 945 946 /* 947 * construct a set of directory entries in "iobuf". 948 * return size of directory. 949 */ 950 int 951 makedir(struct direct *protodir, int entries) 952 { 953 char *cp; 954 int i, spcleft; 955 956 spcleft = DIRBLKSIZ; 957 memset(iobuf, 0, DIRBLKSIZ); 958 for (cp = iobuf, i = 0; i < entries - 1; i++) { 959 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 960 memmove(cp, &protodir[i], protodir[i].d_reclen); 961 cp += protodir[i].d_reclen; 962 spcleft -= protodir[i].d_reclen; 963 } 964 protodir[i].d_reclen = spcleft; 965 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 966 return (DIRBLKSIZ); 967 } 968 969 /* 970 * allocate a block or frag 971 */ 972 ufs2_daddr_t 973 alloc(int size, int mode) 974 { 975 int i, blkno, frag; 976 uint d; 977 978 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 979 sblock.fs_cgsize); 980 if (acg.cg_magic != CG_MAGIC) { 981 printf("cg 0: bad magic number\n"); 982 exit(38); 983 } 984 if (acg.cg_cs.cs_nbfree == 0) { 985 printf("first cylinder group ran out of space\n"); 986 exit(39); 987 } 988 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 989 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 990 goto goth; 991 printf("internal error: can't find block in cyl 0\n"); 992 exit(40); 993 goth: 994 blkno = fragstoblks(&sblock, d); 995 clrblock(&sblock, cg_blksfree(&acg), blkno); 996 if (sblock.fs_contigsumsize > 0) 997 clrbit(cg_clustersfree(&acg), blkno); 998 acg.cg_cs.cs_nbfree--; 999 sblock.fs_cstotal.cs_nbfree--; 1000 fscs[0].cs_nbfree--; 1001 if (mode & IFDIR) { 1002 acg.cg_cs.cs_ndir++; 1003 sblock.fs_cstotal.cs_ndir++; 1004 fscs[0].cs_ndir++; 1005 } 1006 if (size != sblock.fs_bsize) { 1007 frag = howmany(size, sblock.fs_fsize); 1008 fscs[0].cs_nffree += sblock.fs_frag - frag; 1009 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1010 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1011 acg.cg_frsum[sblock.fs_frag - frag]++; 1012 for (i = frag; i < sblock.fs_frag; i++) 1013 setbit(cg_blksfree(&acg), d + i); 1014 } 1015 /* XXX cgwrite(&disk, 0)??? */ 1016 cgckhash(&acg); 1017 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1018 (char *)&acg); 1019 return ((ufs2_daddr_t)d); 1020 } 1021 1022 /* 1023 * Allocate an inode on the disk 1024 */ 1025 void 1026 iput(union dinode *ip, ino_t ino) 1027 { 1028 ufs2_daddr_t d; 1029 1030 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1031 sblock.fs_cgsize); 1032 if (acg.cg_magic != CG_MAGIC) { 1033 printf("cg 0: bad magic number\n"); 1034 exit(31); 1035 } 1036 acg.cg_cs.cs_nifree--; 1037 setbit(cg_inosused(&acg), ino); 1038 cgckhash(&acg); 1039 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1040 (char *)&acg); 1041 sblock.fs_cstotal.cs_nifree--; 1042 fscs[0].cs_nifree--; 1043 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1044 printf("fsinit: inode value out of range (%ju).\n", 1045 (uintmax_t)ino); 1046 exit(32); 1047 } 1048 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1049 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1050 if (sblock.fs_magic == FS_UFS1_MAGIC) 1051 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1052 ip->dp1; 1053 else 1054 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1055 ip->dp2; 1056 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1057 } 1058 1059 /* 1060 * possibly write to disk 1061 */ 1062 static void 1063 wtfs(ufs2_daddr_t bno, int size, char *bf) 1064 { 1065 if (Nflag) 1066 return; 1067 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1068 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1069 } 1070 1071 /* 1072 * Calculate the check-hash of the cylinder group. 1073 */ 1074 static void 1075 cgckhash(cgp) 1076 struct cg *cgp; 1077 { 1078 1079 if ((sblock.fs_metackhash & CK_CYLGRP) == 0) 1080 return; 1081 cgp->cg_ckhash = 0; 1082 cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); 1083 } 1084 1085 /* 1086 * check if a block is available 1087 */ 1088 static int 1089 isblock(struct fs *fs, unsigned char *cp, int h) 1090 { 1091 unsigned char mask; 1092 1093 switch (fs->fs_frag) { 1094 case 8: 1095 return (cp[h] == 0xff); 1096 case 4: 1097 mask = 0x0f << ((h & 0x1) << 2); 1098 return ((cp[h >> 1] & mask) == mask); 1099 case 2: 1100 mask = 0x03 << ((h & 0x3) << 1); 1101 return ((cp[h >> 2] & mask) == mask); 1102 case 1: 1103 mask = 0x01 << (h & 0x7); 1104 return ((cp[h >> 3] & mask) == mask); 1105 default: 1106 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1107 return (0); 1108 } 1109 } 1110 1111 /* 1112 * take a block out of the map 1113 */ 1114 static void 1115 clrblock(struct fs *fs, unsigned char *cp, int h) 1116 { 1117 switch ((fs)->fs_frag) { 1118 case 8: 1119 cp[h] = 0; 1120 return; 1121 case 4: 1122 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1123 return; 1124 case 2: 1125 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1126 return; 1127 case 1: 1128 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1129 return; 1130 default: 1131 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1132 return; 1133 } 1134 } 1135 1136 /* 1137 * put a block into the map 1138 */ 1139 static void 1140 setblock(struct fs *fs, unsigned char *cp, int h) 1141 { 1142 switch (fs->fs_frag) { 1143 case 8: 1144 cp[h] = 0xff; 1145 return; 1146 case 4: 1147 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1148 return; 1149 case 2: 1150 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1151 return; 1152 case 1: 1153 cp[h >> 3] |= (0x01 << (h & 0x7)); 1154 return; 1155 default: 1156 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1157 return; 1158 } 1159 } 1160 1161 /* 1162 * Determine the number of characters in a 1163 * single line. 1164 */ 1165 1166 static int 1167 charsperline(void) 1168 { 1169 int columns; 1170 char *cp; 1171 struct winsize ws; 1172 1173 columns = 0; 1174 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1175 columns = ws.ws_col; 1176 if (columns == 0 && (cp = getenv("COLUMNS"))) 1177 columns = atoi(cp); 1178 if (columns == 0) 1179 columns = 80; /* last resort */ 1180 return (columns); 1181 } 1182 1183 static int 1184 ilog2(int val) 1185 { 1186 u_int n; 1187 1188 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1189 if (1 << n == val) 1190 return (n); 1191 errx(1, "ilog2: %d is not a power of 2\n", val); 1192 } 1193 1194 /* 1195 * For the regression test, return predictable random values. 1196 * Otherwise use a true random number generator. 1197 */ 1198 static u_int32_t 1199 newfs_random(void) 1200 { 1201 static int nextnum = 1; 1202 1203 if (Rflag) 1204 return (nextnum++); 1205 return (arc4random()); 1206 } 1207