xref: /freebsd/sbin/newfs/mkfs.c (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
69 
70 /*
71  * make file system for cylinder-group style file systems
72  */
73 #define UMASK		0755
74 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75 
76 static struct	csum *fscs;
77 #define	sblock	disk.d_fs
78 #define	acg	disk.d_cg
79 
80 union dinode {
81 	struct ufs1_dinode dp1;
82 	struct ufs2_dinode dp2;
83 };
84 #define DIP(dp, field) \
85 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86 	(dp)->dp1.field : (dp)->dp2.field)
87 
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static void cgckhash(struct cg *);
102 static u_int32_t newfs_random(void);
103 
104 static int
105 do_sbwrite(struct uufsd *disk)
106 {
107 	if (!disk->d_sblock)
108 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
109 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
110 	    disk->d_sblock) * disk->d_bsize)));
111 }
112 
113 void
114 mkfs(struct partition *pp, char *fsys)
115 {
116 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
117 	long i, j, csfrags;
118 	uint cg;
119 	time_t utime;
120 	quad_t sizepb;
121 	int width;
122 	ino_t maxinum;
123 	int minfragsperinode;	/* minimum ratio of frags to inodes */
124 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
125 	struct fsrecovery *fsr;
126 	char *fsrbuf;
127 	union {
128 		struct fs fdummy;
129 		char cdummy[SBLOCKSIZE];
130 	} dummy;
131 #define fsdummy dummy.fdummy
132 #define chdummy dummy.cdummy
133 
134 	/*
135 	 * Our blocks == sector size, and the version of UFS we are using is
136 	 * specified by Oflag.
137 	 */
138 	disk.d_bsize = sectorsize;
139 	disk.d_ufs = Oflag;
140 	if (Rflag)
141 		utime = 1000000000;
142 	else
143 		time(&utime);
144 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
145 	sblock.fs_flags = 0;
146 	if (Uflag)
147 		sblock.fs_flags |= FS_DOSOFTDEP;
148 	if (Lflag)
149 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
150 	if (Jflag)
151 		sblock.fs_flags |= FS_GJOURNAL;
152 	if (lflag)
153 		sblock.fs_flags |= FS_MULTILABEL;
154 	if (tflag)
155 		sblock.fs_flags |= FS_TRIM;
156 	/*
157 	 * Validate the given file system size.
158 	 * Verify that its last block can actually be accessed.
159 	 * Convert to file system fragment sized units.
160 	 */
161 	if (fssize <= 0) {
162 		printf("preposterous size %jd\n", (intmax_t)fssize);
163 		exit(13);
164 	}
165 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
166 	    (char *)&sblock);
167 	/*
168 	 * collect and verify the file system density info
169 	 */
170 	sblock.fs_avgfilesize = avgfilesize;
171 	sblock.fs_avgfpdir = avgfilesperdir;
172 	if (sblock.fs_avgfilesize <= 0)
173 		printf("illegal expected average file size %d\n",
174 		    sblock.fs_avgfilesize), exit(14);
175 	if (sblock.fs_avgfpdir <= 0)
176 		printf("illegal expected number of files per directory %d\n",
177 		    sblock.fs_avgfpdir), exit(15);
178 
179 restart:
180 	/*
181 	 * collect and verify the block and fragment sizes
182 	 */
183 	sblock.fs_bsize = bsize;
184 	sblock.fs_fsize = fsize;
185 	if (!POWEROF2(sblock.fs_bsize)) {
186 		printf("block size must be a power of 2, not %d\n",
187 		    sblock.fs_bsize);
188 		exit(16);
189 	}
190 	if (!POWEROF2(sblock.fs_fsize)) {
191 		printf("fragment size must be a power of 2, not %d\n",
192 		    sblock.fs_fsize);
193 		exit(17);
194 	}
195 	if (sblock.fs_fsize < sectorsize) {
196 		printf("increasing fragment size from %d to sector size (%d)\n",
197 		    sblock.fs_fsize, sectorsize);
198 		sblock.fs_fsize = sectorsize;
199 	}
200 	if (sblock.fs_bsize > MAXBSIZE) {
201 		printf("decreasing block size from %d to maximum (%d)\n",
202 		    sblock.fs_bsize, MAXBSIZE);
203 		sblock.fs_bsize = MAXBSIZE;
204 	}
205 	if (sblock.fs_bsize < MINBSIZE) {
206 		printf("increasing block size from %d to minimum (%d)\n",
207 		    sblock.fs_bsize, MINBSIZE);
208 		sblock.fs_bsize = MINBSIZE;
209 	}
210 	if (sblock.fs_fsize > MAXBSIZE) {
211 		printf("decreasing fragment size from %d to maximum (%d)\n",
212 		    sblock.fs_fsize, MAXBSIZE);
213 		sblock.fs_fsize = MAXBSIZE;
214 	}
215 	if (sblock.fs_bsize < sblock.fs_fsize) {
216 		printf("increasing block size from %d to fragment size (%d)\n",
217 		    sblock.fs_bsize, sblock.fs_fsize);
218 		sblock.fs_bsize = sblock.fs_fsize;
219 	}
220 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
221 		printf(
222 		"increasing fragment size from %d to block size / %d (%d)\n",
223 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
224 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
225 	}
226 	if (maxbsize == 0)
227 		maxbsize = bsize;
228 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
229 		sblock.fs_maxbsize = sblock.fs_bsize;
230 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
231 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
232 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
233 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
234 	} else {
235 		sblock.fs_maxbsize = maxbsize;
236 	}
237 	/*
238 	 * Maxcontig sets the default for the maximum number of blocks
239 	 * that may be allocated sequentially. With file system clustering
240 	 * it is possible to allocate contiguous blocks up to the maximum
241 	 * transfer size permitted by the controller or buffering.
242 	 */
243 	if (maxcontig == 0)
244 		maxcontig = MAX(1, MAXPHYS / bsize);
245 	sblock.fs_maxcontig = maxcontig;
246 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
247 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
248 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
249 	}
250 	if (sblock.fs_maxcontig > 1)
251 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
252 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
253 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
254 	sblock.fs_qbmask = ~sblock.fs_bmask;
255 	sblock.fs_qfmask = ~sblock.fs_fmask;
256 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
257 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
258 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
259 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
260 	if (sblock.fs_frag > MAXFRAG) {
261 		printf("fragment size %d is still too small (can't happen)\n",
262 		    sblock.fs_bsize / MAXFRAG);
263 		exit(21);
264 	}
265 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
266 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
267 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
268 
269 	/*
270 	 * Before the filesystem is finally initialized, mark it
271 	 * as incompletely initialized.
272 	 */
273 	sblock.fs_magic = FS_BAD_MAGIC;
274 
275 	if (Oflag == 1) {
276 		sblock.fs_sblockloc = SBLOCK_UFS1;
277 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
278 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
279 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
280 		    sizeof(ufs1_daddr_t));
281 		sblock.fs_old_inodefmt = FS_44INODEFMT;
282 		sblock.fs_old_cgoffset = 0;
283 		sblock.fs_old_cgmask = 0xffffffff;
284 		sblock.fs_old_size = sblock.fs_size;
285 		sblock.fs_old_rotdelay = 0;
286 		sblock.fs_old_rps = 60;
287 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
288 		sblock.fs_old_cpg = 1;
289 		sblock.fs_old_interleave = 1;
290 		sblock.fs_old_trackskew = 0;
291 		sblock.fs_old_cpc = 0;
292 		sblock.fs_old_postblformat = 1;
293 		sblock.fs_old_nrpos = 1;
294 	} else {
295 		sblock.fs_sblockloc = SBLOCK_UFS2;
296 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
297 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
298 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
299 		    sizeof(ufs2_daddr_t));
300 	}
301 	sblock.fs_sblkno =
302 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
303 		sblock.fs_frag);
304 	sblock.fs_cblkno = sblock.fs_sblkno +
305 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
306 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
307 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
308 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
309 		sizepb *= NINDIR(&sblock);
310 		sblock.fs_maxfilesize += sizepb;
311 	}
312 
313 	/*
314 	 * It's impossible to create a snapshot in case that fs_maxfilesize
315 	 * is smaller than the fssize.
316 	 */
317 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
318 		warnx("WARNING: You will be unable to create snapshots on this "
319 		      "file system.  Correct by using a larger blocksize.");
320 	}
321 
322 	/*
323 	 * Calculate the number of blocks to put into each cylinder group.
324 	 *
325 	 * This algorithm selects the number of blocks per cylinder
326 	 * group. The first goal is to have at least enough data blocks
327 	 * in each cylinder group to meet the density requirement. Once
328 	 * this goal is achieved we try to expand to have at least
329 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
330 	 * pack as many blocks into each cylinder group map as will fit.
331 	 *
332 	 * We start by calculating the smallest number of blocks that we
333 	 * can put into each cylinder group. If this is too big, we reduce
334 	 * the density until it fits.
335 	 */
336 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
337 	minfragsperinode = 1 + fssize / maxinum;
338 	if (density == 0) {
339 		density = MAX(NFPI, minfragsperinode) * fsize;
340 	} else if (density < minfragsperinode * fsize) {
341 		origdensity = density;
342 		density = minfragsperinode * fsize;
343 		fprintf(stderr, "density increased from %d to %d\n",
344 		    origdensity, density);
345 	}
346 	origdensity = density;
347 	for (;;) {
348 		fragsperinode = MAX(numfrags(&sblock, density), 1);
349 		if (fragsperinode < minfragsperinode) {
350 			bsize <<= 1;
351 			fsize <<= 1;
352 			printf("Block size too small for a file system %s %d\n",
353 			     "of this size. Increasing blocksize to", bsize);
354 			goto restart;
355 		}
356 		minfpg = fragsperinode * INOPB(&sblock);
357 		if (minfpg > sblock.fs_size)
358 			minfpg = sblock.fs_size;
359 		sblock.fs_ipg = INOPB(&sblock);
360 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
361 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
362 		if (sblock.fs_fpg < minfpg)
363 			sblock.fs_fpg = minfpg;
364 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
365 		    INOPB(&sblock));
366 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
367 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
368 		if (sblock.fs_fpg < minfpg)
369 			sblock.fs_fpg = minfpg;
370 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
371 		    INOPB(&sblock));
372 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
373 			break;
374 		density -= sblock.fs_fsize;
375 	}
376 	if (density != origdensity)
377 		printf("density reduced from %d to %d\n", origdensity, density);
378 	/*
379 	 * Start packing more blocks into the cylinder group until
380 	 * it cannot grow any larger, the number of cylinder groups
381 	 * drops below MINCYLGRPS, or we reach the size requested.
382 	 * For UFS1 inodes per cylinder group are stored in an int16_t
383 	 * so fs_ipg is limited to 2^15 - 1.
384 	 */
385 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
386 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
387 		    INOPB(&sblock));
388 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
389 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
390 				break;
391 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
392 				continue;
393 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
394 				break;
395 		}
396 		sblock.fs_fpg -= sblock.fs_frag;
397 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
398 		    INOPB(&sblock));
399 		break;
400 	}
401 	/*
402 	 * Check to be sure that the last cylinder group has enough blocks
403 	 * to be viable. If it is too small, reduce the number of blocks
404 	 * per cylinder group which will have the effect of moving more
405 	 * blocks into the last cylinder group.
406 	 */
407 	optimalfpg = sblock.fs_fpg;
408 	for (;;) {
409 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
410 		lastminfpg = roundup(sblock.fs_iblkno +
411 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
412 		if (sblock.fs_size < lastminfpg) {
413 			printf("Filesystem size %jd < minimum size of %d\n",
414 			    (intmax_t)sblock.fs_size, lastminfpg);
415 			exit(28);
416 		}
417 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
418 		    sblock.fs_size % sblock.fs_fpg == 0)
419 			break;
420 		sblock.fs_fpg -= sblock.fs_frag;
421 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
422 		    INOPB(&sblock));
423 	}
424 	if (optimalfpg != sblock.fs_fpg)
425 		printf("Reduced frags per cylinder group from %d to %d %s\n",
426 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
427 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
428 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
429 	if (Oflag == 1) {
430 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
431 		sblock.fs_old_nsect = sblock.fs_old_spc;
432 		sblock.fs_old_npsect = sblock.fs_old_spc;
433 		sblock.fs_old_ncyl = sblock.fs_ncg;
434 	}
435 	/*
436 	 * fill in remaining fields of the super block
437 	 */
438 	sblock.fs_csaddr = cgdmin(&sblock, 0);
439 	sblock.fs_cssize =
440 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
441 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
442 	if (fscs == NULL)
443 		errx(31, "calloc failed");
444 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
445 	if (sblock.fs_sbsize > SBLOCKSIZE)
446 		sblock.fs_sbsize = SBLOCKSIZE;
447 	if (sblock.fs_sbsize < realsectorsize)
448 		sblock.fs_sbsize = realsectorsize;
449 	sblock.fs_minfree = minfree;
450 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
451 		sblock.fs_metaspace = blknum(&sblock, metaspace);
452 	else if (metaspace != -1)
453 		/* reserve half of minfree for metadata blocks */
454 		sblock.fs_metaspace = blknum(&sblock,
455 		    (sblock.fs_fpg * minfree) / 200);
456 	if (maxbpg == 0)
457 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
458 	else
459 		sblock.fs_maxbpg = maxbpg;
460 	sblock.fs_optim = opt;
461 	sblock.fs_cgrotor = 0;
462 	sblock.fs_pendingblocks = 0;
463 	sblock.fs_pendinginodes = 0;
464 	sblock.fs_fmod = 0;
465 	sblock.fs_ronly = 0;
466 	sblock.fs_state = 0;
467 	sblock.fs_clean = 1;
468 	sblock.fs_id[0] = (long)utime;
469 	sblock.fs_id[1] = newfs_random();
470 	sblock.fs_fsmnt[0] = '\0';
471 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
472 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
473 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
474 	sblock.fs_cstotal.cs_nbfree =
475 	    fragstoblks(&sblock, sblock.fs_dsize) -
476 	    howmany(csfrags, sblock.fs_frag);
477 	sblock.fs_cstotal.cs_nffree =
478 	    fragnum(&sblock, sblock.fs_size) +
479 	    (fragnum(&sblock, csfrags) > 0 ?
480 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
481 	sblock.fs_cstotal.cs_nifree =
482 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
483 	sblock.fs_cstotal.cs_ndir = 0;
484 	sblock.fs_dsize -= csfrags;
485 	sblock.fs_time = utime;
486 	if (Oflag == 1) {
487 		sblock.fs_old_time = utime;
488 		sblock.fs_old_dsize = sblock.fs_dsize;
489 		sblock.fs_old_csaddr = sblock.fs_csaddr;
490 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
491 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
492 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
493 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
494 	}
495 	/*
496 	 * Set flags for metadata that is being check-hashed.
497 	 */
498 	if (Oflag > 1)
499 		sblock.fs_metackhash = CK_CYLGRP;
500 
501 	/*
502 	 * Dump out summary information about file system.
503 	 */
504 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
505 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
506 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
507 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
508 	    sblock.fs_fsize);
509 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
510 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
511 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
512 	if (sblock.fs_flags & FS_DOSOFTDEP)
513 		printf("\twith soft updates\n");
514 #	undef B2MBFACTOR
515 
516 	if (Eflag && !Nflag) {
517 		printf("Erasing sectors [%jd...%jd]\n",
518 		    sblock.fs_sblockloc / disk.d_bsize,
519 		    fsbtodb(&sblock, sblock.fs_size) - 1);
520 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
521 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
522 	}
523 	/*
524 	 * Wipe out old UFS1 superblock(s) if necessary.
525 	 */
526 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
527 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
528 		if (i == -1)
529 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
530 
531 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
532 			fsdummy.fs_magic = 0;
533 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
534 			    chdummy, SBLOCKSIZE);
535 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
536 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
537 					break;
538 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
539 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
540 			}
541 		}
542 	}
543 	if (!Nflag)
544 		do_sbwrite(&disk);
545 	if (Xflag == 1) {
546 		printf("** Exiting on Xflag 1\n");
547 		exit(0);
548 	}
549 	if (Xflag == 2)
550 		printf("** Leaving BAD MAGIC on Xflag 2\n");
551 	else
552 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
553 
554 	/*
555 	 * Now build the cylinders group blocks and
556 	 * then print out indices of cylinder groups.
557 	 */
558 	printf("super-block backups (for fsck_ffs -b #) at:\n");
559 	i = 0;
560 	width = charsperline();
561 	/*
562 	 * allocate space for superblock, cylinder group map, and
563 	 * two sets of inode blocks.
564 	 */
565 	if (sblock.fs_bsize < SBLOCKSIZE)
566 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
567 	else
568 		iobufsize = 4 * sblock.fs_bsize;
569 	if ((iobuf = calloc(1, iobufsize)) == 0) {
570 		printf("Cannot allocate I/O buffer\n");
571 		exit(38);
572 	}
573 	/*
574 	 * Make a copy of the superblock into the buffer that we will be
575 	 * writing out in each cylinder group.
576 	 */
577 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
578 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
579 		initcg(cg, utime);
580 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
581 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
582 		    cg < (sblock.fs_ncg-1) ? "," : "");
583 		if (j < 0)
584 			tmpbuf[j = 0] = '\0';
585 		if (i + j >= width) {
586 			printf("\n");
587 			i = 0;
588 		}
589 		i += j;
590 		printf("%s", tmpbuf);
591 		fflush(stdout);
592 	}
593 	printf("\n");
594 	if (Nflag)
595 		exit(0);
596 	/*
597 	 * Now construct the initial file system,
598 	 * then write out the super-block.
599 	 */
600 	fsinit(utime);
601 	if (Oflag == 1) {
602 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
603 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
604 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
605 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
606 	}
607 	if (Xflag == 3) {
608 		printf("** Exiting on Xflag 3\n");
609 		exit(0);
610 	}
611 	if (!Nflag) {
612 		do_sbwrite(&disk);
613 		/*
614 		 * For UFS1 filesystems with a blocksize of 64K, the first
615 		 * alternate superblock resides at the location used for
616 		 * the default UFS2 superblock. As there is a valid
617 		 * superblock at this location, the boot code will use
618 		 * it as its first choice. Thus we have to ensure that
619 		 * all of its statistcs on usage are correct.
620 		 */
621 		if (Oflag == 1 && sblock.fs_bsize == 65536)
622 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
623 			    sblock.fs_bsize, (char *)&sblock);
624 	}
625 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
626 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
627 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
628 			((char *)fscs) + i);
629 	/*
630 	 * Read the last sector of the boot block, replace the last
631 	 * 20 bytes with the recovery information, then write it back.
632 	 * The recovery information only works for UFS2 filesystems.
633 	 */
634 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
635 		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
636 		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
637 		    fsrbuf, realsectorsize) == -1)
638 			err(1, "can't read recovery area: %s", disk.d_error);
639 		fsr =
640 		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
641 		fsr->fsr_magic = sblock.fs_magic;
642 		fsr->fsr_fpg = sblock.fs_fpg;
643 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
644 		fsr->fsr_sblkno = sblock.fs_sblkno;
645 		fsr->fsr_ncg = sblock.fs_ncg;
646 		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
647 		    realsectorsize, fsrbuf);
648 		free(fsrbuf);
649 	}
650 	/*
651 	 * Update information about this partition in pack
652 	 * label, to that it may be updated on disk.
653 	 */
654 	if (pp != NULL) {
655 		pp->p_fstype = FS_BSDFFS;
656 		pp->p_fsize = sblock.fs_fsize;
657 		pp->p_frag = sblock.fs_frag;
658 		pp->p_cpg = sblock.fs_fpg;
659 	}
660 }
661 
662 /*
663  * Initialize a cylinder group.
664  */
665 void
666 initcg(int cylno, time_t utime)
667 {
668 	long blkno, start;
669 	uint i, j, d, dlower, dupper;
670 	ufs2_daddr_t cbase, dmax;
671 	struct ufs1_dinode *dp1;
672 	struct ufs2_dinode *dp2;
673 	struct csum *cs;
674 
675 	/*
676 	 * Determine block bounds for cylinder group.
677 	 * Allow space for super block summary information in first
678 	 * cylinder group.
679 	 */
680 	cbase = cgbase(&sblock, cylno);
681 	dmax = cbase + sblock.fs_fpg;
682 	if (dmax > sblock.fs_size)
683 		dmax = sblock.fs_size;
684 	dlower = cgsblock(&sblock, cylno) - cbase;
685 	dupper = cgdmin(&sblock, cylno) - cbase;
686 	if (cylno == 0)
687 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
688 	cs = &fscs[cylno];
689 	memset(&acg, 0, sblock.fs_cgsize);
690 	acg.cg_time = utime;
691 	acg.cg_magic = CG_MAGIC;
692 	acg.cg_cgx = cylno;
693 	acg.cg_niblk = sblock.fs_ipg;
694 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
695 	acg.cg_ndblk = dmax - cbase;
696 	if (sblock.fs_contigsumsize > 0)
697 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
698 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
699 	if (Oflag == 2) {
700 		acg.cg_iusedoff = start;
701 	} else {
702 		acg.cg_old_ncyl = sblock.fs_old_cpg;
703 		acg.cg_old_time = acg.cg_time;
704 		acg.cg_time = 0;
705 		acg.cg_old_niblk = acg.cg_niblk;
706 		acg.cg_niblk = 0;
707 		acg.cg_initediblk = 0;
708 		acg.cg_old_btotoff = start;
709 		acg.cg_old_boff = acg.cg_old_btotoff +
710 		    sblock.fs_old_cpg * sizeof(int32_t);
711 		acg.cg_iusedoff = acg.cg_old_boff +
712 		    sblock.fs_old_cpg * sizeof(u_int16_t);
713 	}
714 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
715 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
716 	if (sblock.fs_contigsumsize > 0) {
717 		acg.cg_clustersumoff =
718 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
719 		acg.cg_clustersumoff -= sizeof(u_int32_t);
720 		acg.cg_clusteroff = acg.cg_clustersumoff +
721 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
722 		acg.cg_nextfreeoff = acg.cg_clusteroff +
723 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
724 	}
725 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
726 		printf("Panic: cylinder group too big\n");
727 		exit(37);
728 	}
729 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
730 	if (cylno == 0)
731 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
732 			setbit(cg_inosused(&acg), i);
733 			acg.cg_cs.cs_nifree--;
734 		}
735 	if (cylno > 0) {
736 		/*
737 		 * In cylno 0, beginning space is reserved
738 		 * for boot and super blocks.
739 		 */
740 		for (d = 0; d < dlower; d += sblock.fs_frag) {
741 			blkno = d / sblock.fs_frag;
742 			setblock(&sblock, cg_blksfree(&acg), blkno);
743 			if (sblock.fs_contigsumsize > 0)
744 				setbit(cg_clustersfree(&acg), blkno);
745 			acg.cg_cs.cs_nbfree++;
746 		}
747 	}
748 	if ((i = dupper % sblock.fs_frag)) {
749 		acg.cg_frsum[sblock.fs_frag - i]++;
750 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
751 			setbit(cg_blksfree(&acg), dupper);
752 			acg.cg_cs.cs_nffree++;
753 		}
754 	}
755 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
756 	     d += sblock.fs_frag) {
757 		blkno = d / sblock.fs_frag;
758 		setblock(&sblock, cg_blksfree(&acg), blkno);
759 		if (sblock.fs_contigsumsize > 0)
760 			setbit(cg_clustersfree(&acg), blkno);
761 		acg.cg_cs.cs_nbfree++;
762 	}
763 	if (d < acg.cg_ndblk) {
764 		acg.cg_frsum[acg.cg_ndblk - d]++;
765 		for (; d < acg.cg_ndblk; d++) {
766 			setbit(cg_blksfree(&acg), d);
767 			acg.cg_cs.cs_nffree++;
768 		}
769 	}
770 	if (sblock.fs_contigsumsize > 0) {
771 		int32_t *sump = cg_clustersum(&acg);
772 		u_char *mapp = cg_clustersfree(&acg);
773 		int map = *mapp++;
774 		int bit = 1;
775 		int run = 0;
776 
777 		for (i = 0; i < acg.cg_nclusterblks; i++) {
778 			if ((map & bit) != 0)
779 				run++;
780 			else if (run != 0) {
781 				if (run > sblock.fs_contigsumsize)
782 					run = sblock.fs_contigsumsize;
783 				sump[run]++;
784 				run = 0;
785 			}
786 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
787 				bit <<= 1;
788 			else {
789 				map = *mapp++;
790 				bit = 1;
791 			}
792 		}
793 		if (run != 0) {
794 			if (run > sblock.fs_contigsumsize)
795 				run = sblock.fs_contigsumsize;
796 			sump[run]++;
797 		}
798 	}
799 	*cs = acg.cg_cs;
800 	cgckhash(&acg);
801 	/*
802 	 * Write out the duplicate super block, the cylinder group map
803 	 * and two blocks worth of inodes in a single write.
804 	 */
805 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
806 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
807 	start += sblock.fs_bsize;
808 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
809 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
810 	for (i = 0; i < acg.cg_initediblk; i++) {
811 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
812 			dp1->di_gen = newfs_random();
813 			dp1++;
814 		} else {
815 			dp2->di_gen = newfs_random();
816 			dp2++;
817 		}
818 	}
819 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
820 	/*
821 	 * For the old file system, we have to initialize all the inodes.
822 	 */
823 	if (Oflag == 1) {
824 		for (i = 2 * sblock.fs_frag;
825 		     i < sblock.fs_ipg / INOPF(&sblock);
826 		     i += sblock.fs_frag) {
827 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
828 			for (j = 0; j < INOPB(&sblock); j++) {
829 				dp1->di_gen = newfs_random();
830 				dp1++;
831 			}
832 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
833 			    sblock.fs_bsize, &iobuf[start]);
834 		}
835 	}
836 }
837 
838 /*
839  * initialize the file system
840  */
841 #define ROOTLINKCNT 3
842 
843 static struct direct root_dir[] = {
844 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
845 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
846 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
847 };
848 
849 #define SNAPLINKCNT 2
850 
851 static struct direct snap_dir[] = {
852 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
853 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
854 };
855 
856 void
857 fsinit(time_t utime)
858 {
859 	union dinode node;
860 	struct group *grp;
861 	gid_t gid;
862 	int entries;
863 
864 	memset(&node, 0, sizeof node);
865 	if ((grp = getgrnam("operator")) != NULL) {
866 		gid = grp->gr_gid;
867 	} else {
868 		warnx("Cannot retrieve operator gid, using gid 0.");
869 		gid = 0;
870 	}
871 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
872 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
873 		/*
874 		 * initialize the node
875 		 */
876 		node.dp1.di_atime = utime;
877 		node.dp1.di_mtime = utime;
878 		node.dp1.di_ctime = utime;
879 		/*
880 		 * create the root directory
881 		 */
882 		node.dp1.di_mode = IFDIR | UMASK;
883 		node.dp1.di_nlink = entries;
884 		node.dp1.di_size = makedir(root_dir, entries);
885 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
886 		node.dp1.di_blocks =
887 		    btodb(fragroundup(&sblock, node.dp1.di_size));
888 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
889 		    iobuf);
890 		iput(&node, UFS_ROOTINO);
891 		if (!nflag) {
892 			/*
893 			 * create the .snap directory
894 			 */
895 			node.dp1.di_mode |= 020;
896 			node.dp1.di_gid = gid;
897 			node.dp1.di_nlink = SNAPLINKCNT;
898 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
899 				node.dp1.di_db[0] =
900 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
901 			node.dp1.di_blocks =
902 			    btodb(fragroundup(&sblock, node.dp1.di_size));
903 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
904 				    sblock.fs_fsize, iobuf);
905 			iput(&node, UFS_ROOTINO + 1);
906 		}
907 	} else {
908 		/*
909 		 * initialize the node
910 		 */
911 		node.dp2.di_atime = utime;
912 		node.dp2.di_mtime = utime;
913 		node.dp2.di_ctime = utime;
914 		node.dp2.di_birthtime = utime;
915 		/*
916 		 * create the root directory
917 		 */
918 		node.dp2.di_mode = IFDIR | UMASK;
919 		node.dp2.di_nlink = entries;
920 		node.dp2.di_size = makedir(root_dir, entries);
921 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
922 		node.dp2.di_blocks =
923 		    btodb(fragroundup(&sblock, node.dp2.di_size));
924 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
925 		    iobuf);
926 		iput(&node, UFS_ROOTINO);
927 		if (!nflag) {
928 			/*
929 			 * create the .snap directory
930 			 */
931 			node.dp2.di_mode |= 020;
932 			node.dp2.di_gid = gid;
933 			node.dp2.di_nlink = SNAPLINKCNT;
934 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
935 				node.dp2.di_db[0] =
936 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
937 			node.dp2.di_blocks =
938 			    btodb(fragroundup(&sblock, node.dp2.di_size));
939 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
940 				    sblock.fs_fsize, iobuf);
941 			iput(&node, UFS_ROOTINO + 1);
942 		}
943 	}
944 }
945 
946 /*
947  * construct a set of directory entries in "iobuf".
948  * return size of directory.
949  */
950 int
951 makedir(struct direct *protodir, int entries)
952 {
953 	char *cp;
954 	int i, spcleft;
955 
956 	spcleft = DIRBLKSIZ;
957 	memset(iobuf, 0, DIRBLKSIZ);
958 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
959 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
960 		memmove(cp, &protodir[i], protodir[i].d_reclen);
961 		cp += protodir[i].d_reclen;
962 		spcleft -= protodir[i].d_reclen;
963 	}
964 	protodir[i].d_reclen = spcleft;
965 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
966 	return (DIRBLKSIZ);
967 }
968 
969 /*
970  * allocate a block or frag
971  */
972 ufs2_daddr_t
973 alloc(int size, int mode)
974 {
975 	int i, blkno, frag;
976 	uint d;
977 
978 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
979 	    sblock.fs_cgsize);
980 	if (acg.cg_magic != CG_MAGIC) {
981 		printf("cg 0: bad magic number\n");
982 		exit(38);
983 	}
984 	if (acg.cg_cs.cs_nbfree == 0) {
985 		printf("first cylinder group ran out of space\n");
986 		exit(39);
987 	}
988 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
989 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
990 			goto goth;
991 	printf("internal error: can't find block in cyl 0\n");
992 	exit(40);
993 goth:
994 	blkno = fragstoblks(&sblock, d);
995 	clrblock(&sblock, cg_blksfree(&acg), blkno);
996 	if (sblock.fs_contigsumsize > 0)
997 		clrbit(cg_clustersfree(&acg), blkno);
998 	acg.cg_cs.cs_nbfree--;
999 	sblock.fs_cstotal.cs_nbfree--;
1000 	fscs[0].cs_nbfree--;
1001 	if (mode & IFDIR) {
1002 		acg.cg_cs.cs_ndir++;
1003 		sblock.fs_cstotal.cs_ndir++;
1004 		fscs[0].cs_ndir++;
1005 	}
1006 	if (size != sblock.fs_bsize) {
1007 		frag = howmany(size, sblock.fs_fsize);
1008 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1009 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1010 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1011 		acg.cg_frsum[sblock.fs_frag - frag]++;
1012 		for (i = frag; i < sblock.fs_frag; i++)
1013 			setbit(cg_blksfree(&acg), d + i);
1014 	}
1015 	/* XXX cgwrite(&disk, 0)??? */
1016 	cgckhash(&acg);
1017 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1018 	    (char *)&acg);
1019 	return ((ufs2_daddr_t)d);
1020 }
1021 
1022 /*
1023  * Allocate an inode on the disk
1024  */
1025 void
1026 iput(union dinode *ip, ino_t ino)
1027 {
1028 	ufs2_daddr_t d;
1029 
1030 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1031 	    sblock.fs_cgsize);
1032 	if (acg.cg_magic != CG_MAGIC) {
1033 		printf("cg 0: bad magic number\n");
1034 		exit(31);
1035 	}
1036 	acg.cg_cs.cs_nifree--;
1037 	setbit(cg_inosused(&acg), ino);
1038 	cgckhash(&acg);
1039 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1040 	    (char *)&acg);
1041 	sblock.fs_cstotal.cs_nifree--;
1042 	fscs[0].cs_nifree--;
1043 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1044 		printf("fsinit: inode value out of range (%ju).\n",
1045 		    (uintmax_t)ino);
1046 		exit(32);
1047 	}
1048 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1049 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1050 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1051 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1052 		    ip->dp1;
1053 	else
1054 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1055 		    ip->dp2;
1056 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1057 }
1058 
1059 /*
1060  * possibly write to disk
1061  */
1062 static void
1063 wtfs(ufs2_daddr_t bno, int size, char *bf)
1064 {
1065 	if (Nflag)
1066 		return;
1067 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1068 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1069 }
1070 
1071 /*
1072  * Calculate the check-hash of the cylinder group.
1073  */
1074 static void
1075 cgckhash(cgp)
1076 	struct cg *cgp;
1077 {
1078 
1079 	if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
1080 		return;
1081 	cgp->cg_ckhash = 0;
1082 	cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
1083 }
1084 
1085 /*
1086  * check if a block is available
1087  */
1088 static int
1089 isblock(struct fs *fs, unsigned char *cp, int h)
1090 {
1091 	unsigned char mask;
1092 
1093 	switch (fs->fs_frag) {
1094 	case 8:
1095 		return (cp[h] == 0xff);
1096 	case 4:
1097 		mask = 0x0f << ((h & 0x1) << 2);
1098 		return ((cp[h >> 1] & mask) == mask);
1099 	case 2:
1100 		mask = 0x03 << ((h & 0x3) << 1);
1101 		return ((cp[h >> 2] & mask) == mask);
1102 	case 1:
1103 		mask = 0x01 << (h & 0x7);
1104 		return ((cp[h >> 3] & mask) == mask);
1105 	default:
1106 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1107 		return (0);
1108 	}
1109 }
1110 
1111 /*
1112  * take a block out of the map
1113  */
1114 static void
1115 clrblock(struct fs *fs, unsigned char *cp, int h)
1116 {
1117 	switch ((fs)->fs_frag) {
1118 	case 8:
1119 		cp[h] = 0;
1120 		return;
1121 	case 4:
1122 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1123 		return;
1124 	case 2:
1125 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1126 		return;
1127 	case 1:
1128 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1129 		return;
1130 	default:
1131 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1132 		return;
1133 	}
1134 }
1135 
1136 /*
1137  * put a block into the map
1138  */
1139 static void
1140 setblock(struct fs *fs, unsigned char *cp, int h)
1141 {
1142 	switch (fs->fs_frag) {
1143 	case 8:
1144 		cp[h] = 0xff;
1145 		return;
1146 	case 4:
1147 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1148 		return;
1149 	case 2:
1150 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1151 		return;
1152 	case 1:
1153 		cp[h >> 3] |= (0x01 << (h & 0x7));
1154 		return;
1155 	default:
1156 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1157 		return;
1158 	}
1159 }
1160 
1161 /*
1162  * Determine the number of characters in a
1163  * single line.
1164  */
1165 
1166 static int
1167 charsperline(void)
1168 {
1169 	int columns;
1170 	char *cp;
1171 	struct winsize ws;
1172 
1173 	columns = 0;
1174 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1175 		columns = ws.ws_col;
1176 	if (columns == 0 && (cp = getenv("COLUMNS")))
1177 		columns = atoi(cp);
1178 	if (columns == 0)
1179 		columns = 80;	/* last resort */
1180 	return (columns);
1181 }
1182 
1183 static int
1184 ilog2(int val)
1185 {
1186 	u_int n;
1187 
1188 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1189 		if (1 << n == val)
1190 			return (n);
1191 	errx(1, "ilog2: %d is not a power of 2\n", val);
1192 }
1193 
1194 /*
1195  * For the regression test, return predictable random values.
1196  * Otherwise use a true random number generator.
1197  */
1198 static u_int32_t
1199 newfs_random(void)
1200 {
1201 	static int nextnum = 1;
1202 
1203 	if (Rflag)
1204 		return (nextnum++);
1205 	return (arc4random());
1206 }
1207