1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #endif 43 #include <sys/cdefs.h> 44 #define _WANT_P_OSREL 45 #include <sys/param.h> 46 #include <sys/disklabel.h> 47 #include <sys/file.h> 48 #include <sys/ioctl.h> 49 #include <sys/mman.h> 50 #include <sys/resource.h> 51 #include <sys/stat.h> 52 #include <sys/wait.h> 53 #include <err.h> 54 #include <grp.h> 55 #include <limits.h> 56 #include <signal.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <stdint.h> 60 #include <stdio.h> 61 #include <time.h> 62 #include <unistd.h> 63 #include <ufs/ufs/dinode.h> 64 #include <ufs/ufs/dir.h> 65 #include <ufs/ffs/fs.h> 66 #include "newfs.h" 67 68 /* 69 * make file system for cylinder-group style file systems 70 */ 71 #define UMASK 0755 72 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 73 74 /* 75 * The definition of "struct cg" used to contain an extra field at the end 76 * to represent the variable-length data that followed the fixed structure. 77 * This had the effect of artificially limiting the number of blocks that 78 * newfs would put in a CG, since newfs thought that the fixed-size header 79 * was bigger than it really was. When we started validating that the CG 80 * header data actually fit into one fs block, the placeholder field caused 81 * a problem because it caused struct cg to be a different size depending on 82 * platform. The placeholder field was later removed, but this caused a 83 * backward compatibility problem with older binaries that still thought 84 * struct cg was larger, and a new file system could fail validation if 85 * viewed by the older binaries. To avoid this compatibility problem, we 86 * now artificially reduce the amount of space that the variable-length data 87 * can use such that new file systems will pass validation by older binaries. 88 */ 89 #define CGSIZEFUDGE 8 90 91 static struct csum *fscs; 92 #define sblock disk.d_fs 93 #define acg disk.d_cg 94 95 union dinode { 96 struct ufs1_dinode dp1; 97 struct ufs2_dinode dp2; 98 }; 99 #define DIP(dp, field) \ 100 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 101 (dp)->dp1.field : (dp)->dp2.field) 102 103 static caddr_t iobuf; 104 static long iobufsize; 105 static ufs2_daddr_t alloc(int size, int mode); 106 static int charsperline(void); 107 static void clrblock(struct fs *, unsigned char *, int); 108 static void fsinit(time_t); 109 static int ilog2(int); 110 static void initcg(int, time_t); 111 static int isblock(struct fs *, unsigned char *, int); 112 static void iput(union dinode *, ino_t); 113 static int makedir(struct direct *, int); 114 static void setblock(struct fs *, unsigned char *, int); 115 static void wtfs(ufs2_daddr_t, int, char *); 116 static u_int32_t newfs_random(void); 117 118 void 119 mkfs(struct partition *pp, char *fsys) 120 { 121 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 122 long i, j, csfrags; 123 uint cg; 124 time_t utime; 125 quad_t sizepb; 126 int width; 127 ino_t maxinum; 128 int minfragsperinode; /* minimum ratio of frags to inodes */ 129 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 130 struct fsrecovery *fsr; 131 char *fsrbuf; 132 union { 133 struct fs fdummy; 134 char cdummy[SBLOCKSIZE]; 135 } dummy; 136 #define fsdummy dummy.fdummy 137 #define chdummy dummy.cdummy 138 139 /* 140 * Our blocks == sector size, and the version of UFS we are using is 141 * specified by Oflag. 142 */ 143 disk.d_bsize = sectorsize; 144 disk.d_ufs = Oflag; 145 if (Rflag) 146 utime = 1000000000; 147 else 148 time(&utime); 149 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 150 printf("Superblock summary info allocation failed.\n"); 151 exit(18); 152 } 153 sblock.fs_old_flags = FS_FLAGS_UPDATED; 154 sblock.fs_flags = 0; 155 if (Uflag) 156 sblock.fs_flags |= FS_DOSOFTDEP; 157 if (Lflag) 158 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 159 if (Jflag) 160 sblock.fs_flags |= FS_GJOURNAL; 161 if (lflag) 162 sblock.fs_flags |= FS_MULTILABEL; 163 if (tflag) 164 sblock.fs_flags |= FS_TRIM; 165 /* 166 * Validate the given file system size. 167 * Verify that its last block can actually be accessed. 168 * Convert to file system fragment sized units. 169 */ 170 if (fssize <= 0) { 171 printf("preposterous size %jd\n", (intmax_t)fssize); 172 exit(13); 173 } 174 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 175 (char *)&sblock); 176 /* 177 * collect and verify the file system density info 178 */ 179 sblock.fs_avgfilesize = avgfilesize; 180 sblock.fs_avgfpdir = avgfilesperdir; 181 if (sblock.fs_avgfilesize <= 0) 182 printf("illegal expected average file size %d\n", 183 sblock.fs_avgfilesize), exit(14); 184 if (sblock.fs_avgfpdir <= 0) 185 printf("illegal expected number of files per directory %d\n", 186 sblock.fs_avgfpdir), exit(15); 187 188 restart: 189 /* 190 * collect and verify the block and fragment sizes 191 */ 192 sblock.fs_bsize = bsize; 193 sblock.fs_fsize = fsize; 194 if (!POWEROF2(sblock.fs_bsize)) { 195 printf("block size must be a power of 2, not %d\n", 196 sblock.fs_bsize); 197 exit(16); 198 } 199 if (!POWEROF2(sblock.fs_fsize)) { 200 printf("fragment size must be a power of 2, not %d\n", 201 sblock.fs_fsize); 202 exit(17); 203 } 204 if (sblock.fs_fsize < sectorsize) { 205 printf("increasing fragment size from %d to sector size (%d)\n", 206 sblock.fs_fsize, sectorsize); 207 sblock.fs_fsize = sectorsize; 208 } 209 if (sblock.fs_bsize > MAXBSIZE) { 210 printf("decreasing block size from %d to maximum (%d)\n", 211 sblock.fs_bsize, MAXBSIZE); 212 sblock.fs_bsize = MAXBSIZE; 213 } 214 if (sblock.fs_bsize < MINBSIZE) { 215 printf("increasing block size from %d to minimum (%d)\n", 216 sblock.fs_bsize, MINBSIZE); 217 sblock.fs_bsize = MINBSIZE; 218 } 219 if (sblock.fs_fsize > MAXBSIZE) { 220 printf("decreasing fragment size from %d to maximum (%d)\n", 221 sblock.fs_fsize, MAXBSIZE); 222 sblock.fs_fsize = MAXBSIZE; 223 } 224 if (sblock.fs_bsize < sblock.fs_fsize) { 225 printf("increasing block size from %d to fragment size (%d)\n", 226 sblock.fs_bsize, sblock.fs_fsize); 227 sblock.fs_bsize = sblock.fs_fsize; 228 } 229 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 230 printf( 231 "increasing fragment size from %d to block size / %d (%d)\n", 232 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 233 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 234 } 235 if (maxbsize == 0) 236 maxbsize = bsize; 237 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 238 sblock.fs_maxbsize = sblock.fs_bsize; 239 printf("Extent size set to %d\n", sblock.fs_maxbsize); 240 } else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 241 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 242 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 243 } else { 244 sblock.fs_maxbsize = maxbsize; 245 } 246 /* 247 * Maxcontig sets the default for the maximum number of blocks 248 * that may be allocated sequentially. With file system clustering 249 * it is possible to allocate contiguous blocks up to the maximum 250 * transfer size permitted by the controller or buffering. 251 */ 252 if (maxcontig == 0) 253 maxcontig = MAX(1, MAXPHYS / bsize); 254 sblock.fs_maxcontig = maxcontig; 255 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 256 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 257 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 258 } 259 if (sblock.fs_maxcontig > 1) 260 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 261 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 262 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 263 sblock.fs_qbmask = ~sblock.fs_bmask; 264 sblock.fs_qfmask = ~sblock.fs_fmask; 265 sblock.fs_bshift = ilog2(sblock.fs_bsize); 266 sblock.fs_fshift = ilog2(sblock.fs_fsize); 267 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 268 sblock.fs_fragshift = ilog2(sblock.fs_frag); 269 if (sblock.fs_frag > MAXFRAG) { 270 printf("fragment size %d is still too small (can't happen)\n", 271 sblock.fs_bsize / MAXFRAG); 272 exit(21); 273 } 274 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 275 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 276 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 277 278 /* 279 * Before the filesystem is finally initialized, mark it 280 * as incompletely initialized. 281 */ 282 sblock.fs_magic = FS_BAD_MAGIC; 283 284 if (Oflag == 1) { 285 sblock.fs_sblockloc = SBLOCK_UFS1; 286 sblock.fs_sblockactualloc = SBLOCK_UFS1; 287 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 288 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 289 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 290 sizeof(ufs1_daddr_t)); 291 sblock.fs_old_inodefmt = FS_44INODEFMT; 292 sblock.fs_old_cgoffset = 0; 293 sblock.fs_old_cgmask = 0xffffffff; 294 sblock.fs_old_size = sblock.fs_size; 295 sblock.fs_old_rotdelay = 0; 296 sblock.fs_old_rps = 60; 297 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 298 sblock.fs_old_cpg = 1; 299 sblock.fs_old_interleave = 1; 300 sblock.fs_old_trackskew = 0; 301 sblock.fs_old_cpc = 0; 302 sblock.fs_old_postblformat = 1; 303 sblock.fs_old_nrpos = 1; 304 } else { 305 sblock.fs_sblockloc = SBLOCK_UFS2; 306 sblock.fs_sblockactualloc = SBLOCK_UFS2; 307 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 308 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 309 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 310 sizeof(ufs2_daddr_t)); 311 } 312 sblock.fs_sblkno = 313 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 314 sblock.fs_frag); 315 sblock.fs_cblkno = sblock.fs_sblkno + 316 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 317 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 318 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 319 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 320 sizepb *= NINDIR(&sblock); 321 sblock.fs_maxfilesize += sizepb; 322 } 323 324 /* 325 * It's impossible to create a snapshot in case that fs_maxfilesize 326 * is smaller than the fssize. 327 */ 328 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 329 warnx("WARNING: You will be unable to create snapshots on this " 330 "file system. Correct by using a larger blocksize."); 331 } 332 333 /* 334 * Calculate the number of blocks to put into each cylinder group. 335 * 336 * This algorithm selects the number of blocks per cylinder 337 * group. The first goal is to have at least enough data blocks 338 * in each cylinder group to meet the density requirement. Once 339 * this goal is achieved we try to expand to have at least 340 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 341 * pack as many blocks into each cylinder group map as will fit. 342 * 343 * We start by calculating the smallest number of blocks that we 344 * can put into each cylinder group. If this is too big, we reduce 345 * the density until it fits. 346 */ 347 retry: 348 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 349 minfragsperinode = 1 + fssize / maxinum; 350 if (density == 0) { 351 density = MAX(NFPI, minfragsperinode) * fsize; 352 } else if (density < minfragsperinode * fsize) { 353 origdensity = density; 354 density = minfragsperinode * fsize; 355 fprintf(stderr, "density increased from %d to %d\n", 356 origdensity, density); 357 } 358 origdensity = density; 359 for (;;) { 360 fragsperinode = MAX(numfrags(&sblock, density), 1); 361 if (fragsperinode < minfragsperinode) { 362 bsize <<= 1; 363 fsize <<= 1; 364 printf("Block size too small for a file system %s %d\n", 365 "of this size. Increasing blocksize to", bsize); 366 goto restart; 367 } 368 minfpg = fragsperinode * INOPB(&sblock); 369 if (minfpg > sblock.fs_size) 370 minfpg = sblock.fs_size; 371 sblock.fs_ipg = INOPB(&sblock); 372 sblock.fs_fpg = roundup(sblock.fs_iblkno + 373 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 374 if (sblock.fs_fpg < minfpg) 375 sblock.fs_fpg = minfpg; 376 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 377 INOPB(&sblock)); 378 sblock.fs_fpg = roundup(sblock.fs_iblkno + 379 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 380 if (sblock.fs_fpg < minfpg) 381 sblock.fs_fpg = minfpg; 382 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 383 INOPB(&sblock)); 384 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 385 CGSIZEFUDGE) 386 break; 387 density -= sblock.fs_fsize; 388 } 389 if (density != origdensity) 390 printf("density reduced from %d to %d\n", origdensity, density); 391 /* 392 * Start packing more blocks into the cylinder group until 393 * it cannot grow any larger, the number of cylinder groups 394 * drops below MINCYLGRPS, or we reach the size requested. 395 * For UFS1 inodes per cylinder group are stored in an int16_t 396 * so fs_ipg is limited to 2^15 - 1. 397 */ 398 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 399 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 400 INOPB(&sblock)); 401 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 402 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 403 break; 404 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 405 CGSIZEFUDGE) 406 continue; 407 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 408 CGSIZEFUDGE) 409 break; 410 } 411 sblock.fs_fpg -= sblock.fs_frag; 412 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 413 INOPB(&sblock)); 414 break; 415 } 416 /* 417 * Check to be sure that the last cylinder group has enough blocks 418 * to be viable. If it is too small, reduce the number of blocks 419 * per cylinder group which will have the effect of moving more 420 * blocks into the last cylinder group. 421 */ 422 optimalfpg = sblock.fs_fpg; 423 for (;;) { 424 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 425 lastminfpg = roundup(sblock.fs_iblkno + 426 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 427 if (sblock.fs_size < lastminfpg) { 428 printf("Filesystem size %jd < minimum size of %d\n", 429 (intmax_t)sblock.fs_size, lastminfpg); 430 exit(28); 431 } 432 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 433 sblock.fs_size % sblock.fs_fpg == 0) 434 break; 435 sblock.fs_fpg -= sblock.fs_frag; 436 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 437 INOPB(&sblock)); 438 } 439 if (optimalfpg != sblock.fs_fpg) 440 printf("Reduced frags per cylinder group from %d to %d %s\n", 441 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 442 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 443 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 444 if (Oflag == 1) { 445 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 446 sblock.fs_old_nsect = sblock.fs_old_spc; 447 sblock.fs_old_npsect = sblock.fs_old_spc; 448 sblock.fs_old_ncyl = sblock.fs_ncg; 449 } 450 /* 451 * fill in remaining fields of the super block 452 */ 453 sblock.fs_csaddr = cgdmin(&sblock, 0); 454 sblock.fs_cssize = 455 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 456 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 457 if (fscs == NULL) 458 errx(31, "calloc failed"); 459 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 460 if (sblock.fs_sbsize > SBLOCKSIZE) 461 sblock.fs_sbsize = SBLOCKSIZE; 462 if (sblock.fs_sbsize < realsectorsize) 463 sblock.fs_sbsize = realsectorsize; 464 sblock.fs_minfree = minfree; 465 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 466 sblock.fs_metaspace = blknum(&sblock, metaspace); 467 else if (metaspace != -1) 468 /* reserve half of minfree for metadata blocks */ 469 sblock.fs_metaspace = blknum(&sblock, 470 (sblock.fs_fpg * minfree) / 200); 471 if (maxbpg == 0) 472 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 473 else 474 sblock.fs_maxbpg = maxbpg; 475 sblock.fs_optim = opt; 476 sblock.fs_cgrotor = 0; 477 sblock.fs_pendingblocks = 0; 478 sblock.fs_pendinginodes = 0; 479 sblock.fs_fmod = 0; 480 sblock.fs_ronly = 0; 481 sblock.fs_state = 0; 482 sblock.fs_clean = 1; 483 sblock.fs_id[0] = (long)utime; 484 sblock.fs_id[1] = newfs_random(); 485 sblock.fs_fsmnt[0] = '\0'; 486 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 487 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 488 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 489 sblock.fs_cstotal.cs_nbfree = 490 fragstoblks(&sblock, sblock.fs_dsize) - 491 howmany(csfrags, sblock.fs_frag); 492 sblock.fs_cstotal.cs_nffree = 493 fragnum(&sblock, sblock.fs_size) + 494 (fragnum(&sblock, csfrags) > 0 ? 495 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 496 sblock.fs_cstotal.cs_nifree = 497 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 498 sblock.fs_cstotal.cs_ndir = 0; 499 sblock.fs_dsize -= csfrags; 500 sblock.fs_time = utime; 501 if (Oflag == 1) { 502 sblock.fs_old_time = utime; 503 sblock.fs_old_dsize = sblock.fs_dsize; 504 sblock.fs_old_csaddr = sblock.fs_csaddr; 505 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 506 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 507 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 508 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 509 } 510 /* 511 * Set flags for metadata that is being check-hashed. 512 * 513 * Metadata check hashes are not supported in the UFS version 1 514 * filesystem to keep it as small and simple as possible. 515 */ 516 if (Oflag > 1) { 517 sblock.fs_flags |= FS_METACKHASH; 518 if (getosreldate() >= P_OSREL_CK_CYLGRP) 519 sblock.fs_metackhash |= CK_CYLGRP; 520 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 521 sblock.fs_metackhash |= CK_SUPERBLOCK; 522 if (getosreldate() >= P_OSREL_CK_INODE) 523 sblock.fs_metackhash |= CK_INODE; 524 } 525 526 /* 527 * Dump out summary information about file system. 528 */ 529 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 530 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 531 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 532 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 533 sblock.fs_fsize); 534 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 535 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 536 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 537 if (sblock.fs_flags & FS_DOSOFTDEP) 538 printf("\twith soft updates\n"); 539 # undef B2MBFACTOR 540 541 if (Eflag && !Nflag) { 542 printf("Erasing sectors [%jd...%jd]\n", 543 sblock.fs_sblockloc / disk.d_bsize, 544 fsbtodb(&sblock, sblock.fs_size) - 1); 545 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 546 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 547 } 548 /* 549 * Wipe out old UFS1 superblock(s) if necessary. 550 */ 551 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 552 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 553 SBLOCKSIZE); 554 if (i == -1) 555 err(1, "can't read old UFS1 superblock: %s", 556 disk.d_error); 557 558 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 559 fsdummy.fs_magic = 0; 560 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 561 chdummy, SBLOCKSIZE); 562 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 563 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 564 fssize) 565 break; 566 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 567 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 568 } 569 } 570 } 571 /* 572 * Reference the summary information so it will also be written. 573 */ 574 sblock.fs_csp = fscs; 575 if (!Nflag && sbwrite(&disk, 0) != 0) 576 err(1, "sbwrite: %s", disk.d_error); 577 if (Xflag == 1) { 578 printf("** Exiting on Xflag 1\n"); 579 exit(0); 580 } 581 if (Xflag == 2) 582 printf("** Leaving BAD MAGIC on Xflag 2\n"); 583 else 584 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 585 586 /* 587 * Now build the cylinders group blocks and 588 * then print out indices of cylinder groups. 589 */ 590 printf("super-block backups (for fsck_ffs -b #) at:\n"); 591 i = 0; 592 width = charsperline(); 593 /* 594 * Allocate space for two sets of inode blocks. 595 */ 596 iobufsize = 2 * sblock.fs_bsize; 597 if ((iobuf = calloc(1, iobufsize)) == 0) { 598 printf("Cannot allocate I/O buffer\n"); 599 exit(38); 600 } 601 /* 602 * Write out all the cylinder groups and backup superblocks. 603 */ 604 for (cg = 0; cg < sblock.fs_ncg; cg++) { 605 if (!Nflag) 606 initcg(cg, utime); 607 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 608 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 609 cg < (sblock.fs_ncg-1) ? "," : ""); 610 if (j < 0) 611 tmpbuf[j = 0] = '\0'; 612 if (i + j >= width) { 613 printf("\n"); 614 i = 0; 615 } 616 i += j; 617 printf("%s", tmpbuf); 618 fflush(stdout); 619 } 620 printf("\n"); 621 if (Nflag) 622 exit(0); 623 /* 624 * Now construct the initial file system, 625 * then write out the super-block. 626 */ 627 fsinit(utime); 628 if (Oflag == 1) { 629 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 630 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 631 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 632 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 633 } 634 if (Xflag == 3) { 635 printf("** Exiting on Xflag 3\n"); 636 exit(0); 637 } 638 if (sbwrite(&disk, 0) != 0) 639 err(1, "sbwrite: %s", disk.d_error); 640 /* 641 * For UFS1 filesystems with a blocksize of 64K, the first 642 * alternate superblock resides at the location used for 643 * the default UFS2 superblock. As there is a valid 644 * superblock at this location, the boot code will use 645 * it as its first choice. Thus we have to ensure that 646 * all of its statistcs on usage are correct. 647 */ 648 if (Oflag == 1 && sblock.fs_bsize == 65536) 649 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 650 sblock.fs_bsize, (char *)&sblock); 651 /* 652 * Read the last sector of the boot block, replace the last 653 * 20 bytes with the recovery information, then write it back. 654 * The recovery information only works for UFS2 filesystems. 655 * For UFS1, zero out the area to ensure that an old UFS2 656 * recovery block is not accidentally found. 657 */ 658 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 659 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 660 fsrbuf, realsectorsize) == -1) 661 err(1, "can't read recovery area: %s", disk.d_error); 662 fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 663 if (sblock.fs_magic != FS_UFS2_MAGIC) { 664 memset(fsr, 0, sizeof *fsr); 665 } else { 666 fsr->fsr_magic = sblock.fs_magic; 667 fsr->fsr_fpg = sblock.fs_fpg; 668 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 669 fsr->fsr_sblkno = sblock.fs_sblkno; 670 fsr->fsr_ncg = sblock.fs_ncg; 671 } 672 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 673 realsectorsize, fsrbuf); 674 free(fsrbuf); 675 /* 676 * Update information about this partition in pack 677 * label, to that it may be updated on disk. 678 */ 679 if (pp != NULL) { 680 pp->p_fstype = FS_BSDFFS; 681 pp->p_fsize = sblock.fs_fsize; 682 pp->p_frag = sblock.fs_frag; 683 pp->p_cpg = sblock.fs_fpg; 684 } 685 /* 686 * This should NOT happen. If it does complain loudly and 687 * take evasive action. 688 */ 689 if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) { 690 printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ", 691 sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize); 692 printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n", 693 sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock)); 694 printf("Please file a FreeBSD bug report and include this " 695 "output\n"); 696 maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1; 697 density = 0; 698 goto retry; 699 } 700 } 701 702 /* 703 * Initialize a cylinder group. 704 */ 705 void 706 initcg(int cylno, time_t utime) 707 { 708 long blkno, start; 709 off_t savedactualloc; 710 uint i, j, d, dlower, dupper; 711 ufs2_daddr_t cbase, dmax; 712 struct ufs1_dinode *dp1; 713 struct ufs2_dinode *dp2; 714 struct csum *cs; 715 716 /* 717 * Determine block bounds for cylinder group. 718 * Allow space for super block summary information in first 719 * cylinder group. 720 */ 721 cbase = cgbase(&sblock, cylno); 722 dmax = cbase + sblock.fs_fpg; 723 if (dmax > sblock.fs_size) 724 dmax = sblock.fs_size; 725 dlower = cgsblock(&sblock, cylno) - cbase; 726 dupper = cgdmin(&sblock, cylno) - cbase; 727 if (cylno == 0) 728 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 729 cs = &fscs[cylno]; 730 memset(&acg, 0, sblock.fs_cgsize); 731 acg.cg_time = utime; 732 acg.cg_magic = CG_MAGIC; 733 acg.cg_cgx = cylno; 734 acg.cg_niblk = sblock.fs_ipg; 735 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 736 acg.cg_ndblk = dmax - cbase; 737 if (sblock.fs_contigsumsize > 0) 738 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 739 start = sizeof(acg); 740 if (Oflag == 2) { 741 acg.cg_iusedoff = start; 742 } else { 743 acg.cg_old_ncyl = sblock.fs_old_cpg; 744 acg.cg_old_time = acg.cg_time; 745 acg.cg_time = 0; 746 acg.cg_old_niblk = acg.cg_niblk; 747 acg.cg_niblk = 0; 748 acg.cg_initediblk = 0; 749 acg.cg_old_btotoff = start; 750 acg.cg_old_boff = acg.cg_old_btotoff + 751 sblock.fs_old_cpg * sizeof(int32_t); 752 acg.cg_iusedoff = acg.cg_old_boff + 753 sblock.fs_old_cpg * sizeof(u_int16_t); 754 } 755 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 756 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 757 if (sblock.fs_contigsumsize > 0) { 758 acg.cg_clustersumoff = 759 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 760 acg.cg_clustersumoff -= sizeof(u_int32_t); 761 acg.cg_clusteroff = acg.cg_clustersumoff + 762 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 763 acg.cg_nextfreeoff = acg.cg_clusteroff + 764 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 765 } 766 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 767 printf("Panic: cylinder group too big by %d bytes\n", 768 acg.cg_nextfreeoff - (unsigned)sblock.fs_cgsize); 769 exit(37); 770 } 771 acg.cg_cs.cs_nifree += sblock.fs_ipg; 772 if (cylno == 0) 773 for (i = 0; i < (long)UFS_ROOTINO; i++) { 774 setbit(cg_inosused(&acg), i); 775 acg.cg_cs.cs_nifree--; 776 } 777 if (cylno > 0) { 778 /* 779 * In cylno 0, beginning space is reserved 780 * for boot and super blocks. 781 */ 782 for (d = 0; d < dlower; d += sblock.fs_frag) { 783 blkno = d / sblock.fs_frag; 784 setblock(&sblock, cg_blksfree(&acg), blkno); 785 if (sblock.fs_contigsumsize > 0) 786 setbit(cg_clustersfree(&acg), blkno); 787 acg.cg_cs.cs_nbfree++; 788 } 789 } 790 if ((i = dupper % sblock.fs_frag)) { 791 acg.cg_frsum[sblock.fs_frag - i]++; 792 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 793 setbit(cg_blksfree(&acg), dupper); 794 acg.cg_cs.cs_nffree++; 795 } 796 } 797 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 798 d += sblock.fs_frag) { 799 blkno = d / sblock.fs_frag; 800 setblock(&sblock, cg_blksfree(&acg), blkno); 801 if (sblock.fs_contigsumsize > 0) 802 setbit(cg_clustersfree(&acg), blkno); 803 acg.cg_cs.cs_nbfree++; 804 } 805 if (d < acg.cg_ndblk) { 806 acg.cg_frsum[acg.cg_ndblk - d]++; 807 for (; d < acg.cg_ndblk; d++) { 808 setbit(cg_blksfree(&acg), d); 809 acg.cg_cs.cs_nffree++; 810 } 811 } 812 if (sblock.fs_contigsumsize > 0) { 813 int32_t *sump = cg_clustersum(&acg); 814 u_char *mapp = cg_clustersfree(&acg); 815 int map = *mapp++; 816 int bit = 1; 817 int run = 0; 818 819 for (i = 0; i < acg.cg_nclusterblks; i++) { 820 if ((map & bit) != 0) 821 run++; 822 else if (run != 0) { 823 if (run > sblock.fs_contigsumsize) 824 run = sblock.fs_contigsumsize; 825 sump[run]++; 826 run = 0; 827 } 828 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 829 bit <<= 1; 830 else { 831 map = *mapp++; 832 bit = 1; 833 } 834 } 835 if (run != 0) { 836 if (run > sblock.fs_contigsumsize) 837 run = sblock.fs_contigsumsize; 838 sump[run]++; 839 } 840 } 841 *cs = acg.cg_cs; 842 /* 843 * Write out the duplicate super block. Then write the cylinder 844 * group map and two blocks worth of inodes in a single write. 845 */ 846 savedactualloc = sblock.fs_sblockactualloc; 847 sblock.fs_sblockactualloc = 848 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 849 if (sbwrite(&disk, 0) != 0) 850 err(1, "sbwrite: %s", disk.d_error); 851 sblock.fs_sblockactualloc = savedactualloc; 852 if (cgwrite(&disk) != 0) 853 err(1, "initcg: cgwrite: %s", disk.d_error); 854 start = 0; 855 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 856 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 857 for (i = 0; i < acg.cg_initediblk; i++) { 858 if (sblock.fs_magic == FS_UFS1_MAGIC) { 859 dp1->di_gen = newfs_random(); 860 dp1++; 861 } else { 862 dp2->di_gen = newfs_random(); 863 dp2++; 864 } 865 } 866 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 867 /* 868 * For the old file system, we have to initialize all the inodes. 869 */ 870 if (Oflag == 1) { 871 for (i = 2 * sblock.fs_frag; 872 i < sblock.fs_ipg / INOPF(&sblock); 873 i += sblock.fs_frag) { 874 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 875 for (j = 0; j < INOPB(&sblock); j++) { 876 dp1->di_gen = newfs_random(); 877 dp1++; 878 } 879 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 880 sblock.fs_bsize, &iobuf[start]); 881 } 882 } 883 } 884 885 /* 886 * initialize the file system 887 */ 888 #define ROOTLINKCNT 3 889 890 static struct direct root_dir[] = { 891 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 892 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 893 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 894 }; 895 896 #define SNAPLINKCNT 2 897 898 static struct direct snap_dir[] = { 899 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 900 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 901 }; 902 903 void 904 fsinit(time_t utime) 905 { 906 union dinode node; 907 struct group *grp; 908 gid_t gid; 909 int entries; 910 911 memset(&node, 0, sizeof node); 912 if ((grp = getgrnam("operator")) != NULL) { 913 gid = grp->gr_gid; 914 } else { 915 warnx("Cannot retrieve operator gid, using gid 0."); 916 gid = 0; 917 } 918 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 919 if (sblock.fs_magic == FS_UFS1_MAGIC) { 920 /* 921 * initialize the node 922 */ 923 node.dp1.di_atime = utime; 924 node.dp1.di_mtime = utime; 925 node.dp1.di_ctime = utime; 926 /* 927 * create the root directory 928 */ 929 node.dp1.di_mode = IFDIR | UMASK; 930 node.dp1.di_nlink = entries; 931 node.dp1.di_size = makedir(root_dir, entries); 932 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 933 node.dp1.di_blocks = 934 btodb(fragroundup(&sblock, node.dp1.di_size)); 935 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 936 iobuf); 937 iput(&node, UFS_ROOTINO); 938 if (!nflag) { 939 /* 940 * create the .snap directory 941 */ 942 node.dp1.di_mode |= 020; 943 node.dp1.di_gid = gid; 944 node.dp1.di_nlink = SNAPLINKCNT; 945 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 946 node.dp1.di_db[0] = 947 alloc(sblock.fs_fsize, node.dp1.di_mode); 948 node.dp1.di_blocks = 949 btodb(fragroundup(&sblock, node.dp1.di_size)); 950 node.dp1.di_dirdepth = 1; 951 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 952 sblock.fs_fsize, iobuf); 953 iput(&node, UFS_ROOTINO + 1); 954 } 955 } else { 956 /* 957 * initialize the node 958 */ 959 node.dp2.di_atime = utime; 960 node.dp2.di_mtime = utime; 961 node.dp2.di_ctime = utime; 962 node.dp2.di_birthtime = utime; 963 /* 964 * create the root directory 965 */ 966 node.dp2.di_mode = IFDIR | UMASK; 967 node.dp2.di_nlink = entries; 968 node.dp2.di_size = makedir(root_dir, entries); 969 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 970 node.dp2.di_blocks = 971 btodb(fragroundup(&sblock, node.dp2.di_size)); 972 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 973 iobuf); 974 iput(&node, UFS_ROOTINO); 975 if (!nflag) { 976 /* 977 * create the .snap directory 978 */ 979 node.dp2.di_mode |= 020; 980 node.dp2.di_gid = gid; 981 node.dp2.di_nlink = SNAPLINKCNT; 982 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 983 node.dp2.di_db[0] = 984 alloc(sblock.fs_fsize, node.dp2.di_mode); 985 node.dp2.di_blocks = 986 btodb(fragroundup(&sblock, node.dp2.di_size)); 987 node.dp2.di_dirdepth = 1; 988 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 989 sblock.fs_fsize, iobuf); 990 iput(&node, UFS_ROOTINO + 1); 991 } 992 } 993 } 994 995 /* 996 * construct a set of directory entries in "iobuf". 997 * return size of directory. 998 */ 999 int 1000 makedir(struct direct *protodir, int entries) 1001 { 1002 char *cp; 1003 int i, spcleft; 1004 1005 spcleft = DIRBLKSIZ; 1006 memset(iobuf, 0, DIRBLKSIZ); 1007 for (cp = iobuf, i = 0; i < entries - 1; i++) { 1008 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1009 memmove(cp, &protodir[i], protodir[i].d_reclen); 1010 cp += protodir[i].d_reclen; 1011 spcleft -= protodir[i].d_reclen; 1012 } 1013 protodir[i].d_reclen = spcleft; 1014 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1015 return (DIRBLKSIZ); 1016 } 1017 1018 /* 1019 * allocate a block or frag 1020 */ 1021 ufs2_daddr_t 1022 alloc(int size, int mode) 1023 { 1024 int i, blkno, frag; 1025 uint d; 1026 1027 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1028 sblock.fs_cgsize); 1029 if (acg.cg_magic != CG_MAGIC) { 1030 printf("cg 0: bad magic number\n"); 1031 exit(38); 1032 } 1033 if (acg.cg_cs.cs_nbfree == 0) { 1034 printf("first cylinder group ran out of space\n"); 1035 exit(39); 1036 } 1037 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1038 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1039 goto goth; 1040 printf("internal error: can't find block in cyl 0\n"); 1041 exit(40); 1042 goth: 1043 blkno = fragstoblks(&sblock, d); 1044 clrblock(&sblock, cg_blksfree(&acg), blkno); 1045 if (sblock.fs_contigsumsize > 0) 1046 clrbit(cg_clustersfree(&acg), blkno); 1047 acg.cg_cs.cs_nbfree--; 1048 sblock.fs_cstotal.cs_nbfree--; 1049 fscs[0].cs_nbfree--; 1050 if (mode & IFDIR) { 1051 acg.cg_cs.cs_ndir++; 1052 sblock.fs_cstotal.cs_ndir++; 1053 fscs[0].cs_ndir++; 1054 } 1055 if (size != sblock.fs_bsize) { 1056 frag = howmany(size, sblock.fs_fsize); 1057 fscs[0].cs_nffree += sblock.fs_frag - frag; 1058 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1059 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1060 acg.cg_frsum[sblock.fs_frag - frag]++; 1061 for (i = frag; i < sblock.fs_frag; i++) 1062 setbit(cg_blksfree(&acg), d + i); 1063 } 1064 if (cgwrite(&disk) != 0) 1065 err(1, "alloc: cgwrite: %s", disk.d_error); 1066 return ((ufs2_daddr_t)d); 1067 } 1068 1069 /* 1070 * Allocate an inode on the disk 1071 */ 1072 void 1073 iput(union dinode *ip, ino_t ino) 1074 { 1075 union dinodep dp; 1076 1077 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1078 sblock.fs_cgsize); 1079 if (acg.cg_magic != CG_MAGIC) { 1080 printf("cg 0: bad magic number\n"); 1081 exit(31); 1082 } 1083 acg.cg_cs.cs_nifree--; 1084 setbit(cg_inosused(&acg), ino); 1085 if (cgwrite(&disk) != 0) 1086 err(1, "iput: cgwrite: %s", disk.d_error); 1087 sblock.fs_cstotal.cs_nifree--; 1088 fscs[0].cs_nifree--; 1089 if (getinode(&disk, &dp, ino) == -1) { 1090 printf("iput: %s\n", disk.d_error); 1091 exit(32); 1092 } 1093 if (sblock.fs_magic == FS_UFS1_MAGIC) 1094 *dp.dp1 = ip->dp1; 1095 else 1096 *dp.dp2 = ip->dp2; 1097 putinode(&disk); 1098 } 1099 1100 /* 1101 * possibly write to disk 1102 */ 1103 static void 1104 wtfs(ufs2_daddr_t bno, int size, char *bf) 1105 { 1106 if (Nflag) 1107 return; 1108 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1109 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1110 } 1111 1112 /* 1113 * check if a block is available 1114 */ 1115 static int 1116 isblock(struct fs *fs, unsigned char *cp, int h) 1117 { 1118 unsigned char mask; 1119 1120 switch (fs->fs_frag) { 1121 case 8: 1122 return (cp[h] == 0xff); 1123 case 4: 1124 mask = 0x0f << ((h & 0x1) << 2); 1125 return ((cp[h >> 1] & mask) == mask); 1126 case 2: 1127 mask = 0x03 << ((h & 0x3) << 1); 1128 return ((cp[h >> 2] & mask) == mask); 1129 case 1: 1130 mask = 0x01 << (h & 0x7); 1131 return ((cp[h >> 3] & mask) == mask); 1132 default: 1133 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1134 return (0); 1135 } 1136 } 1137 1138 /* 1139 * take a block out of the map 1140 */ 1141 static void 1142 clrblock(struct fs *fs, unsigned char *cp, int h) 1143 { 1144 switch ((fs)->fs_frag) { 1145 case 8: 1146 cp[h] = 0; 1147 return; 1148 case 4: 1149 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1150 return; 1151 case 2: 1152 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1153 return; 1154 case 1: 1155 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1156 return; 1157 default: 1158 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1159 return; 1160 } 1161 } 1162 1163 /* 1164 * put a block into the map 1165 */ 1166 static void 1167 setblock(struct fs *fs, unsigned char *cp, int h) 1168 { 1169 switch (fs->fs_frag) { 1170 case 8: 1171 cp[h] = 0xff; 1172 return; 1173 case 4: 1174 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1175 return; 1176 case 2: 1177 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1178 return; 1179 case 1: 1180 cp[h >> 3] |= (0x01 << (h & 0x7)); 1181 return; 1182 default: 1183 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1184 return; 1185 } 1186 } 1187 1188 /* 1189 * Determine the number of characters in a 1190 * single line. 1191 */ 1192 1193 static int 1194 charsperline(void) 1195 { 1196 int columns; 1197 char *cp; 1198 struct winsize ws; 1199 1200 columns = 0; 1201 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1202 columns = ws.ws_col; 1203 if (columns == 0 && (cp = getenv("COLUMNS"))) 1204 columns = atoi(cp); 1205 if (columns == 0) 1206 columns = 80; /* last resort */ 1207 return (columns); 1208 } 1209 1210 static int 1211 ilog2(int val) 1212 { 1213 u_int n; 1214 1215 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1216 if (1 << n == val) 1217 return (n); 1218 errx(1, "ilog2: %d is not a power of 2\n", val); 1219 } 1220 1221 /* 1222 * For the regression test, return predictable random values. 1223 * Otherwise use a true random number generator. 1224 */ 1225 static u_int32_t 1226 newfs_random(void) 1227 { 1228 static u_int32_t nextnum = 1; 1229 1230 if (Rflag) 1231 return (nextnum++); 1232 return (arc4random()); 1233 } 1234