1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 union { 125 struct fs fdummy; 126 char cdummy[SBLOCKSIZE]; 127 } dummy; 128 #define fsdummy dummy.fdummy 129 #define chdummy dummy.cdummy 130 131 /* 132 * Our blocks == sector size, and the version of UFS we are using is 133 * specified by Oflag. 134 */ 135 disk.d_bsize = sectorsize; 136 disk.d_ufs = Oflag; 137 if (Rflag) { 138 utime = 1000000000; 139 } else { 140 time(&utime); 141 arc4random_stir(); 142 } 143 sblock.fs_old_flags = FS_FLAGS_UPDATED; 144 sblock.fs_flags = 0; 145 if (Uflag) 146 sblock.fs_flags |= FS_DOSOFTDEP; 147 if (Lflag) 148 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 149 if (Jflag) 150 sblock.fs_flags |= FS_GJOURNAL; 151 if (lflag) 152 sblock.fs_flags |= FS_MULTILABEL; 153 if (tflag) 154 sblock.fs_flags |= FS_TRIM; 155 /* 156 * Validate the given file system size. 157 * Verify that its last block can actually be accessed. 158 * Convert to file system fragment sized units. 159 */ 160 if (fssize <= 0) { 161 printf("preposterous size %jd\n", (intmax_t)fssize); 162 exit(13); 163 } 164 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 165 (char *)&sblock); 166 /* 167 * collect and verify the file system density info 168 */ 169 sblock.fs_avgfilesize = avgfilesize; 170 sblock.fs_avgfpdir = avgfilesperdir; 171 if (sblock.fs_avgfilesize <= 0) 172 printf("illegal expected average file size %d\n", 173 sblock.fs_avgfilesize), exit(14); 174 if (sblock.fs_avgfpdir <= 0) 175 printf("illegal expected number of files per directory %d\n", 176 sblock.fs_avgfpdir), exit(15); 177 178 restart: 179 /* 180 * collect and verify the block and fragment sizes 181 */ 182 sblock.fs_bsize = bsize; 183 sblock.fs_fsize = fsize; 184 if (!POWEROF2(sblock.fs_bsize)) { 185 printf("block size must be a power of 2, not %d\n", 186 sblock.fs_bsize); 187 exit(16); 188 } 189 if (!POWEROF2(sblock.fs_fsize)) { 190 printf("fragment size must be a power of 2, not %d\n", 191 sblock.fs_fsize); 192 exit(17); 193 } 194 if (sblock.fs_fsize < sectorsize) { 195 printf("increasing fragment size from %d to sector size (%d)\n", 196 sblock.fs_fsize, sectorsize); 197 sblock.fs_fsize = sectorsize; 198 } 199 if (sblock.fs_bsize > MAXBSIZE) { 200 printf("decreasing block size from %d to maximum (%d)\n", 201 sblock.fs_bsize, MAXBSIZE); 202 sblock.fs_bsize = MAXBSIZE; 203 } 204 if (sblock.fs_bsize < MINBSIZE) { 205 printf("increasing block size from %d to minimum (%d)\n", 206 sblock.fs_bsize, MINBSIZE); 207 sblock.fs_bsize = MINBSIZE; 208 } 209 if (sblock.fs_fsize > MAXBSIZE) { 210 printf("decreasing fragment size from %d to maximum (%d)\n", 211 sblock.fs_fsize, MAXBSIZE); 212 sblock.fs_fsize = MAXBSIZE; 213 } 214 if (sblock.fs_bsize < sblock.fs_fsize) { 215 printf("increasing block size from %d to fragment size (%d)\n", 216 sblock.fs_bsize, sblock.fs_fsize); 217 sblock.fs_bsize = sblock.fs_fsize; 218 } 219 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 220 printf( 221 "increasing fragment size from %d to block size / %d (%d)\n", 222 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 223 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 224 } 225 if (maxbsize == 0) 226 maxbsize = bsize; 227 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 228 sblock.fs_maxbsize = sblock.fs_bsize; 229 printf("Extent size set to %d\n", sblock.fs_maxbsize); 230 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 231 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 232 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 233 } else { 234 sblock.fs_maxbsize = maxbsize; 235 } 236 /* 237 * Maxcontig sets the default for the maximum number of blocks 238 * that may be allocated sequentially. With file system clustering 239 * it is possible to allocate contiguous blocks up to the maximum 240 * transfer size permitted by the controller or buffering. 241 */ 242 if (maxcontig == 0) 243 maxcontig = MAX(1, MAXPHYS / bsize); 244 sblock.fs_maxcontig = maxcontig; 245 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 246 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 247 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 248 } 249 if (sblock.fs_maxcontig > 1) 250 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 251 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 252 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 253 sblock.fs_qbmask = ~sblock.fs_bmask; 254 sblock.fs_qfmask = ~sblock.fs_fmask; 255 sblock.fs_bshift = ilog2(sblock.fs_bsize); 256 sblock.fs_fshift = ilog2(sblock.fs_fsize); 257 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 258 sblock.fs_fragshift = ilog2(sblock.fs_frag); 259 if (sblock.fs_frag > MAXFRAG) { 260 printf("fragment size %d is still too small (can't happen)\n", 261 sblock.fs_bsize / MAXFRAG); 262 exit(21); 263 } 264 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 265 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 266 267 /* 268 * Before the filesystem is finally initialized, mark it 269 * as incompletely initialized. 270 */ 271 sblock.fs_magic = FS_BAD_MAGIC; 272 273 if (Oflag == 1) { 274 sblock.fs_sblockloc = SBLOCK_UFS1; 275 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 276 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 277 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 278 sizeof(ufs1_daddr_t)); 279 sblock.fs_old_inodefmt = FS_44INODEFMT; 280 sblock.fs_old_cgoffset = 0; 281 sblock.fs_old_cgmask = 0xffffffff; 282 sblock.fs_old_size = sblock.fs_size; 283 sblock.fs_old_rotdelay = 0; 284 sblock.fs_old_rps = 60; 285 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 286 sblock.fs_old_cpg = 1; 287 sblock.fs_old_interleave = 1; 288 sblock.fs_old_trackskew = 0; 289 sblock.fs_old_cpc = 0; 290 sblock.fs_old_postblformat = 1; 291 sblock.fs_old_nrpos = 1; 292 } else { 293 sblock.fs_sblockloc = SBLOCK_UFS2; 294 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 295 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 296 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 297 sizeof(ufs2_daddr_t)); 298 } 299 sblock.fs_sblkno = 300 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 301 sblock.fs_frag); 302 sblock.fs_cblkno = sblock.fs_sblkno + 303 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 304 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 305 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 306 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 307 sizepb *= NINDIR(&sblock); 308 sblock.fs_maxfilesize += sizepb; 309 } 310 311 /* 312 * It's impossible to create a snapshot in case that fs_maxfilesize 313 * is smaller than the fssize. 314 */ 315 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 316 warnx("WARNING: You will be unable to create snapshots on this " 317 "file system. Correct by using a larger blocksize."); 318 } 319 320 /* 321 * Calculate the number of blocks to put into each cylinder group. 322 * 323 * This algorithm selects the number of blocks per cylinder 324 * group. The first goal is to have at least enough data blocks 325 * in each cylinder group to meet the density requirement. Once 326 * this goal is achieved we try to expand to have at least 327 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 328 * pack as many blocks into each cylinder group map as will fit. 329 * 330 * We start by calculating the smallest number of blocks that we 331 * can put into each cylinder group. If this is too big, we reduce 332 * the density until it fits. 333 */ 334 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 335 minfragsperinode = 1 + fssize / maxinum; 336 if (density == 0) { 337 density = MAX(NFPI, minfragsperinode) * fsize; 338 } else if (density < minfragsperinode * fsize) { 339 origdensity = density; 340 density = minfragsperinode * fsize; 341 fprintf(stderr, "density increased from %d to %d\n", 342 origdensity, density); 343 } 344 origdensity = density; 345 for (;;) { 346 fragsperinode = MAX(numfrags(&sblock, density), 1); 347 if (fragsperinode < minfragsperinode) { 348 bsize <<= 1; 349 fsize <<= 1; 350 printf("Block size too small for a file system %s %d\n", 351 "of this size. Increasing blocksize to", bsize); 352 goto restart; 353 } 354 minfpg = fragsperinode * INOPB(&sblock); 355 if (minfpg > sblock.fs_size) 356 minfpg = sblock.fs_size; 357 sblock.fs_ipg = INOPB(&sblock); 358 sblock.fs_fpg = roundup(sblock.fs_iblkno + 359 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 360 if (sblock.fs_fpg < minfpg) 361 sblock.fs_fpg = minfpg; 362 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 363 INOPB(&sblock)); 364 sblock.fs_fpg = roundup(sblock.fs_iblkno + 365 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 366 if (sblock.fs_fpg < minfpg) 367 sblock.fs_fpg = minfpg; 368 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 369 INOPB(&sblock)); 370 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 371 break; 372 density -= sblock.fs_fsize; 373 } 374 if (density != origdensity) 375 printf("density reduced from %d to %d\n", origdensity, density); 376 /* 377 * Start packing more blocks into the cylinder group until 378 * it cannot grow any larger, the number of cylinder groups 379 * drops below MINCYLGRPS, or we reach the size requested. 380 * For UFS1 inodes per cylinder group are stored in an int16_t 381 * so fs_ipg is limited to 2^15 - 1. 382 */ 383 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 384 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 385 INOPB(&sblock)); 386 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 387 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 388 break; 389 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 390 continue; 391 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 392 break; 393 } 394 sblock.fs_fpg -= sblock.fs_frag; 395 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 396 INOPB(&sblock)); 397 break; 398 } 399 /* 400 * Check to be sure that the last cylinder group has enough blocks 401 * to be viable. If it is too small, reduce the number of blocks 402 * per cylinder group which will have the effect of moving more 403 * blocks into the last cylinder group. 404 */ 405 optimalfpg = sblock.fs_fpg; 406 for (;;) { 407 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 408 lastminfpg = roundup(sblock.fs_iblkno + 409 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 410 if (sblock.fs_size < lastminfpg) { 411 printf("Filesystem size %jd < minimum size of %d\n", 412 (intmax_t)sblock.fs_size, lastminfpg); 413 exit(28); 414 } 415 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 416 sblock.fs_size % sblock.fs_fpg == 0) 417 break; 418 sblock.fs_fpg -= sblock.fs_frag; 419 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 420 INOPB(&sblock)); 421 } 422 if (optimalfpg != sblock.fs_fpg) 423 printf("Reduced frags per cylinder group from %d to %d %s\n", 424 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 425 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 426 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 427 if (Oflag == 1) { 428 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 429 sblock.fs_old_nsect = sblock.fs_old_spc; 430 sblock.fs_old_npsect = sblock.fs_old_spc; 431 sblock.fs_old_ncyl = sblock.fs_ncg; 432 } 433 /* 434 * fill in remaining fields of the super block 435 */ 436 sblock.fs_csaddr = cgdmin(&sblock, 0); 437 sblock.fs_cssize = 438 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 439 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 440 if (fscs == NULL) 441 errx(31, "calloc failed"); 442 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 443 if (sblock.fs_sbsize > SBLOCKSIZE) 444 sblock.fs_sbsize = SBLOCKSIZE; 445 sblock.fs_minfree = minfree; 446 if (maxbpg == 0) 447 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 448 else 449 sblock.fs_maxbpg = maxbpg; 450 sblock.fs_optim = opt; 451 sblock.fs_cgrotor = 0; 452 sblock.fs_pendingblocks = 0; 453 sblock.fs_pendinginodes = 0; 454 sblock.fs_fmod = 0; 455 sblock.fs_ronly = 0; 456 sblock.fs_state = 0; 457 sblock.fs_clean = 1; 458 sblock.fs_id[0] = (long)utime; 459 sblock.fs_id[1] = newfs_random(); 460 sblock.fs_fsmnt[0] = '\0'; 461 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 462 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 463 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 464 sblock.fs_cstotal.cs_nbfree = 465 fragstoblks(&sblock, sblock.fs_dsize) - 466 howmany(csfrags, sblock.fs_frag); 467 sblock.fs_cstotal.cs_nffree = 468 fragnum(&sblock, sblock.fs_size) + 469 (fragnum(&sblock, csfrags) > 0 ? 470 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 471 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 472 sblock.fs_cstotal.cs_ndir = 0; 473 sblock.fs_dsize -= csfrags; 474 sblock.fs_time = utime; 475 if (Oflag == 1) { 476 sblock.fs_old_time = utime; 477 sblock.fs_old_dsize = sblock.fs_dsize; 478 sblock.fs_old_csaddr = sblock.fs_csaddr; 479 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 480 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 481 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 482 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 483 } 484 485 /* 486 * Dump out summary information about file system. 487 */ 488 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 489 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 490 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 491 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 492 sblock.fs_fsize); 493 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 494 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 495 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 496 if (sblock.fs_flags & FS_DOSOFTDEP) 497 printf("\twith soft updates\n"); 498 # undef B2MBFACTOR 499 500 if (Eflag && !Nflag) { 501 printf("Erasing sectors [%jd...%jd]\n", 502 sblock.fs_sblockloc / disk.d_bsize, 503 fsbtodb(&sblock, sblock.fs_size) - 1); 504 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 505 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 506 } 507 /* 508 * Wipe out old UFS1 superblock(s) if necessary. 509 */ 510 if (!Nflag && Oflag != 1) { 511 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 512 if (i == -1) 513 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 514 515 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 516 fsdummy.fs_magic = 0; 517 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 518 chdummy, SBLOCKSIZE); 519 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 520 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 521 break; 522 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 523 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 524 } 525 } 526 } 527 if (!Nflag) 528 do_sbwrite(&disk); 529 if (Xflag == 1) { 530 printf("** Exiting on Xflag 1\n"); 531 exit(0); 532 } 533 if (Xflag == 2) 534 printf("** Leaving BAD MAGIC on Xflag 2\n"); 535 else 536 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 537 538 /* 539 * Now build the cylinders group blocks and 540 * then print out indices of cylinder groups. 541 */ 542 printf("super-block backups (for fsck -b #) at:\n"); 543 i = 0; 544 width = charsperline(); 545 /* 546 * allocate space for superblock, cylinder group map, and 547 * two sets of inode blocks. 548 */ 549 if (sblock.fs_bsize < SBLOCKSIZE) 550 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 551 else 552 iobufsize = 4 * sblock.fs_bsize; 553 if ((iobuf = calloc(1, iobufsize)) == 0) { 554 printf("Cannot allocate I/O buffer\n"); 555 exit(38); 556 } 557 /* 558 * Make a copy of the superblock into the buffer that we will be 559 * writing out in each cylinder group. 560 */ 561 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 562 for (cg = 0; cg < sblock.fs_ncg; cg++) { 563 initcg(cg, utime); 564 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 565 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 566 cg < (sblock.fs_ncg-1) ? "," : ""); 567 if (j < 0) 568 tmpbuf[j = 0] = '\0'; 569 if (i + j >= width) { 570 printf("\n"); 571 i = 0; 572 } 573 i += j; 574 printf("%s", tmpbuf); 575 fflush(stdout); 576 } 577 printf("\n"); 578 if (Nflag) 579 exit(0); 580 /* 581 * Now construct the initial file system, 582 * then write out the super-block. 583 */ 584 fsinit(utime); 585 if (Oflag == 1) { 586 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 587 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 588 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 589 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 590 } 591 if (Xflag == 3) { 592 printf("** Exiting on Xflag 3\n"); 593 exit(0); 594 } 595 if (!Nflag) { 596 do_sbwrite(&disk); 597 /* 598 * For UFS1 filesystems with a blocksize of 64K, the first 599 * alternate superblock resides at the location used for 600 * the default UFS2 superblock. As there is a valid 601 * superblock at this location, the boot code will use 602 * it as its first choice. Thus we have to ensure that 603 * all of its statistcs on usage are correct. 604 */ 605 if (Oflag == 1 && sblock.fs_bsize == 65536) 606 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 607 sblock.fs_bsize, (char *)&sblock); 608 } 609 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 610 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 611 sblock.fs_cssize - i < sblock.fs_bsize ? 612 sblock.fs_cssize - i : sblock.fs_bsize, 613 ((char *)fscs) + i); 614 /* 615 * Update information about this partition in pack 616 * label, to that it may be updated on disk. 617 */ 618 if (pp != NULL) { 619 pp->p_fstype = FS_BSDFFS; 620 pp->p_fsize = sblock.fs_fsize; 621 pp->p_frag = sblock.fs_frag; 622 pp->p_cpg = sblock.fs_fpg; 623 } 624 } 625 626 /* 627 * Initialize a cylinder group. 628 */ 629 void 630 initcg(int cylno, time_t utime) 631 { 632 long blkno, start; 633 uint i, j, d, dlower, dupper; 634 ufs2_daddr_t cbase, dmax; 635 struct ufs1_dinode *dp1; 636 struct ufs2_dinode *dp2; 637 struct csum *cs; 638 639 /* 640 * Determine block bounds for cylinder group. 641 * Allow space for super block summary information in first 642 * cylinder group. 643 */ 644 cbase = cgbase(&sblock, cylno); 645 dmax = cbase + sblock.fs_fpg; 646 if (dmax > sblock.fs_size) 647 dmax = sblock.fs_size; 648 dlower = cgsblock(&sblock, cylno) - cbase; 649 dupper = cgdmin(&sblock, cylno) - cbase; 650 if (cylno == 0) 651 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 652 cs = &fscs[cylno]; 653 memset(&acg, 0, sblock.fs_cgsize); 654 acg.cg_time = utime; 655 acg.cg_magic = CG_MAGIC; 656 acg.cg_cgx = cylno; 657 acg.cg_niblk = sblock.fs_ipg; 658 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 659 sblock.fs_ipg : 2 * INOPB(&sblock); 660 acg.cg_ndblk = dmax - cbase; 661 if (sblock.fs_contigsumsize > 0) 662 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 663 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 664 if (Oflag == 2) { 665 acg.cg_iusedoff = start; 666 } else { 667 acg.cg_old_ncyl = sblock.fs_old_cpg; 668 acg.cg_old_time = acg.cg_time; 669 acg.cg_time = 0; 670 acg.cg_old_niblk = acg.cg_niblk; 671 acg.cg_niblk = 0; 672 acg.cg_initediblk = 0; 673 acg.cg_old_btotoff = start; 674 acg.cg_old_boff = acg.cg_old_btotoff + 675 sblock.fs_old_cpg * sizeof(int32_t); 676 acg.cg_iusedoff = acg.cg_old_boff + 677 sblock.fs_old_cpg * sizeof(u_int16_t); 678 } 679 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 680 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 681 if (sblock.fs_contigsumsize > 0) { 682 acg.cg_clustersumoff = 683 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 684 acg.cg_clustersumoff -= sizeof(u_int32_t); 685 acg.cg_clusteroff = acg.cg_clustersumoff + 686 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 687 acg.cg_nextfreeoff = acg.cg_clusteroff + 688 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 689 } 690 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 691 printf("Panic: cylinder group too big\n"); 692 exit(37); 693 } 694 acg.cg_cs.cs_nifree += sblock.fs_ipg; 695 if (cylno == 0) 696 for (i = 0; i < (long)ROOTINO; i++) { 697 setbit(cg_inosused(&acg), i); 698 acg.cg_cs.cs_nifree--; 699 } 700 if (cylno > 0) { 701 /* 702 * In cylno 0, beginning space is reserved 703 * for boot and super blocks. 704 */ 705 for (d = 0; d < dlower; d += sblock.fs_frag) { 706 blkno = d / sblock.fs_frag; 707 setblock(&sblock, cg_blksfree(&acg), blkno); 708 if (sblock.fs_contigsumsize > 0) 709 setbit(cg_clustersfree(&acg), blkno); 710 acg.cg_cs.cs_nbfree++; 711 } 712 } 713 if ((i = dupper % sblock.fs_frag)) { 714 acg.cg_frsum[sblock.fs_frag - i]++; 715 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 716 setbit(cg_blksfree(&acg), dupper); 717 acg.cg_cs.cs_nffree++; 718 } 719 } 720 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 721 d += sblock.fs_frag) { 722 blkno = d / sblock.fs_frag; 723 setblock(&sblock, cg_blksfree(&acg), blkno); 724 if (sblock.fs_contigsumsize > 0) 725 setbit(cg_clustersfree(&acg), blkno); 726 acg.cg_cs.cs_nbfree++; 727 } 728 if (d < acg.cg_ndblk) { 729 acg.cg_frsum[acg.cg_ndblk - d]++; 730 for (; d < acg.cg_ndblk; d++) { 731 setbit(cg_blksfree(&acg), d); 732 acg.cg_cs.cs_nffree++; 733 } 734 } 735 if (sblock.fs_contigsumsize > 0) { 736 int32_t *sump = cg_clustersum(&acg); 737 u_char *mapp = cg_clustersfree(&acg); 738 int map = *mapp++; 739 int bit = 1; 740 int run = 0; 741 742 for (i = 0; i < acg.cg_nclusterblks; i++) { 743 if ((map & bit) != 0) 744 run++; 745 else if (run != 0) { 746 if (run > sblock.fs_contigsumsize) 747 run = sblock.fs_contigsumsize; 748 sump[run]++; 749 run = 0; 750 } 751 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 752 bit <<= 1; 753 else { 754 map = *mapp++; 755 bit = 1; 756 } 757 } 758 if (run != 0) { 759 if (run > sblock.fs_contigsumsize) 760 run = sblock.fs_contigsumsize; 761 sump[run]++; 762 } 763 } 764 *cs = acg.cg_cs; 765 /* 766 * Write out the duplicate super block, the cylinder group map 767 * and two blocks worth of inodes in a single write. 768 */ 769 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 770 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 771 start += sblock.fs_bsize; 772 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 773 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 774 for (i = 0; i < acg.cg_initediblk; i++) { 775 if (sblock.fs_magic == FS_UFS1_MAGIC) { 776 dp1->di_gen = newfs_random(); 777 dp1++; 778 } else { 779 dp2->di_gen = newfs_random(); 780 dp2++; 781 } 782 } 783 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 784 /* 785 * For the old file system, we have to initialize all the inodes. 786 */ 787 if (Oflag == 1) { 788 for (i = 2 * sblock.fs_frag; 789 i < sblock.fs_ipg / INOPF(&sblock); 790 i += sblock.fs_frag) { 791 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 792 for (j = 0; j < INOPB(&sblock); j++) { 793 dp1->di_gen = newfs_random(); 794 dp1++; 795 } 796 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 797 sblock.fs_bsize, &iobuf[start]); 798 } 799 } 800 } 801 802 /* 803 * initialize the file system 804 */ 805 #define ROOTLINKCNT 3 806 807 static struct direct root_dir[] = { 808 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 809 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 810 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 811 }; 812 813 #define SNAPLINKCNT 2 814 815 static struct direct snap_dir[] = { 816 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 817 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 818 }; 819 820 void 821 fsinit(time_t utime) 822 { 823 union dinode node; 824 struct group *grp; 825 gid_t gid; 826 int entries; 827 828 memset(&node, 0, sizeof node); 829 if ((grp = getgrnam("operator")) != NULL) { 830 gid = grp->gr_gid; 831 } else { 832 warnx("Cannot retrieve operator gid, using gid 0."); 833 gid = 0; 834 } 835 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 836 if (sblock.fs_magic == FS_UFS1_MAGIC) { 837 /* 838 * initialize the node 839 */ 840 node.dp1.di_atime = utime; 841 node.dp1.di_mtime = utime; 842 node.dp1.di_ctime = utime; 843 /* 844 * create the root directory 845 */ 846 node.dp1.di_mode = IFDIR | UMASK; 847 node.dp1.di_nlink = entries; 848 node.dp1.di_size = makedir(root_dir, entries); 849 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 850 node.dp1.di_blocks = 851 btodb(fragroundup(&sblock, node.dp1.di_size)); 852 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 853 iobuf); 854 iput(&node, ROOTINO); 855 if (!nflag) { 856 /* 857 * create the .snap directory 858 */ 859 node.dp1.di_mode |= 020; 860 node.dp1.di_gid = gid; 861 node.dp1.di_nlink = SNAPLINKCNT; 862 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 863 node.dp1.di_db[0] = 864 alloc(sblock.fs_fsize, node.dp1.di_mode); 865 node.dp1.di_blocks = 866 btodb(fragroundup(&sblock, node.dp1.di_size)); 867 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 868 sblock.fs_fsize, iobuf); 869 iput(&node, ROOTINO + 1); 870 } 871 } else { 872 /* 873 * initialize the node 874 */ 875 node.dp2.di_atime = utime; 876 node.dp2.di_mtime = utime; 877 node.dp2.di_ctime = utime; 878 node.dp2.di_birthtime = utime; 879 /* 880 * create the root directory 881 */ 882 node.dp2.di_mode = IFDIR | UMASK; 883 node.dp2.di_nlink = entries; 884 node.dp2.di_size = makedir(root_dir, entries); 885 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 886 node.dp2.di_blocks = 887 btodb(fragroundup(&sblock, node.dp2.di_size)); 888 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 889 iobuf); 890 iput(&node, ROOTINO); 891 if (!nflag) { 892 /* 893 * create the .snap directory 894 */ 895 node.dp2.di_mode |= 020; 896 node.dp2.di_gid = gid; 897 node.dp2.di_nlink = SNAPLINKCNT; 898 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 899 node.dp2.di_db[0] = 900 alloc(sblock.fs_fsize, node.dp2.di_mode); 901 node.dp2.di_blocks = 902 btodb(fragroundup(&sblock, node.dp2.di_size)); 903 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 904 sblock.fs_fsize, iobuf); 905 iput(&node, ROOTINO + 1); 906 } 907 } 908 } 909 910 /* 911 * construct a set of directory entries in "iobuf". 912 * return size of directory. 913 */ 914 int 915 makedir(struct direct *protodir, int entries) 916 { 917 char *cp; 918 int i, spcleft; 919 920 spcleft = DIRBLKSIZ; 921 memset(iobuf, 0, DIRBLKSIZ); 922 for (cp = iobuf, i = 0; i < entries - 1; i++) { 923 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 924 memmove(cp, &protodir[i], protodir[i].d_reclen); 925 cp += protodir[i].d_reclen; 926 spcleft -= protodir[i].d_reclen; 927 } 928 protodir[i].d_reclen = spcleft; 929 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 930 return (DIRBLKSIZ); 931 } 932 933 /* 934 * allocate a block or frag 935 */ 936 ufs2_daddr_t 937 alloc(int size, int mode) 938 { 939 int i, blkno, frag; 940 uint d; 941 942 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 943 sblock.fs_cgsize); 944 if (acg.cg_magic != CG_MAGIC) { 945 printf("cg 0: bad magic number\n"); 946 exit(38); 947 } 948 if (acg.cg_cs.cs_nbfree == 0) { 949 printf("first cylinder group ran out of space\n"); 950 exit(39); 951 } 952 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 953 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 954 goto goth; 955 printf("internal error: can't find block in cyl 0\n"); 956 exit(40); 957 goth: 958 blkno = fragstoblks(&sblock, d); 959 clrblock(&sblock, cg_blksfree(&acg), blkno); 960 if (sblock.fs_contigsumsize > 0) 961 clrbit(cg_clustersfree(&acg), blkno); 962 acg.cg_cs.cs_nbfree--; 963 sblock.fs_cstotal.cs_nbfree--; 964 fscs[0].cs_nbfree--; 965 if (mode & IFDIR) { 966 acg.cg_cs.cs_ndir++; 967 sblock.fs_cstotal.cs_ndir++; 968 fscs[0].cs_ndir++; 969 } 970 if (size != sblock.fs_bsize) { 971 frag = howmany(size, sblock.fs_fsize); 972 fscs[0].cs_nffree += sblock.fs_frag - frag; 973 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 974 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 975 acg.cg_frsum[sblock.fs_frag - frag]++; 976 for (i = frag; i < sblock.fs_frag; i++) 977 setbit(cg_blksfree(&acg), d + i); 978 } 979 /* XXX cgwrite(&disk, 0)??? */ 980 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 981 (char *)&acg); 982 return ((ufs2_daddr_t)d); 983 } 984 985 /* 986 * Allocate an inode on the disk 987 */ 988 void 989 iput(union dinode *ip, ino_t ino) 990 { 991 ufs2_daddr_t d; 992 int c; 993 994 c = ino_to_cg(&sblock, ino); 995 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 996 sblock.fs_cgsize); 997 if (acg.cg_magic != CG_MAGIC) { 998 printf("cg 0: bad magic number\n"); 999 exit(31); 1000 } 1001 acg.cg_cs.cs_nifree--; 1002 setbit(cg_inosused(&acg), ino); 1003 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1004 (char *)&acg); 1005 sblock.fs_cstotal.cs_nifree--; 1006 fscs[0].cs_nifree--; 1007 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1008 printf("fsinit: inode value out of range (%d).\n", ino); 1009 exit(32); 1010 } 1011 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1012 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1013 if (sblock.fs_magic == FS_UFS1_MAGIC) 1014 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1015 ip->dp1; 1016 else 1017 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1018 ip->dp2; 1019 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1020 } 1021 1022 /* 1023 * possibly write to disk 1024 */ 1025 static void 1026 wtfs(ufs2_daddr_t bno, int size, char *bf) 1027 { 1028 if (Nflag) 1029 return; 1030 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1031 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1032 } 1033 1034 /* 1035 * check if a block is available 1036 */ 1037 static int 1038 isblock(struct fs *fs, unsigned char *cp, int h) 1039 { 1040 unsigned char mask; 1041 1042 switch (fs->fs_frag) { 1043 case 8: 1044 return (cp[h] == 0xff); 1045 case 4: 1046 mask = 0x0f << ((h & 0x1) << 2); 1047 return ((cp[h >> 1] & mask) == mask); 1048 case 2: 1049 mask = 0x03 << ((h & 0x3) << 1); 1050 return ((cp[h >> 2] & mask) == mask); 1051 case 1: 1052 mask = 0x01 << (h & 0x7); 1053 return ((cp[h >> 3] & mask) == mask); 1054 default: 1055 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1056 return (0); 1057 } 1058 } 1059 1060 /* 1061 * take a block out of the map 1062 */ 1063 static void 1064 clrblock(struct fs *fs, unsigned char *cp, int h) 1065 { 1066 switch ((fs)->fs_frag) { 1067 case 8: 1068 cp[h] = 0; 1069 return; 1070 case 4: 1071 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1072 return; 1073 case 2: 1074 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1075 return; 1076 case 1: 1077 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1078 return; 1079 default: 1080 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1081 return; 1082 } 1083 } 1084 1085 /* 1086 * put a block into the map 1087 */ 1088 static void 1089 setblock(struct fs *fs, unsigned char *cp, int h) 1090 { 1091 switch (fs->fs_frag) { 1092 case 8: 1093 cp[h] = 0xff; 1094 return; 1095 case 4: 1096 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1097 return; 1098 case 2: 1099 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1100 return; 1101 case 1: 1102 cp[h >> 3] |= (0x01 << (h & 0x7)); 1103 return; 1104 default: 1105 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1106 return; 1107 } 1108 } 1109 1110 /* 1111 * Determine the number of characters in a 1112 * single line. 1113 */ 1114 1115 static int 1116 charsperline(void) 1117 { 1118 int columns; 1119 char *cp; 1120 struct winsize ws; 1121 1122 columns = 0; 1123 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1124 columns = ws.ws_col; 1125 if (columns == 0 && (cp = getenv("COLUMNS"))) 1126 columns = atoi(cp); 1127 if (columns == 0) 1128 columns = 80; /* last resort */ 1129 return (columns); 1130 } 1131 1132 static int 1133 ilog2(int val) 1134 { 1135 u_int n; 1136 1137 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1138 if (1 << n == val) 1139 return (n); 1140 errx(1, "ilog2: %d is not a power of 2\n", val); 1141 } 1142 1143 /* 1144 * For the regression test, return predictable random values. 1145 * Otherwise use a true random number generator. 1146 */ 1147 static u_int32_t 1148 newfs_random(void) 1149 { 1150 static int nextnum = 1; 1151 1152 if (Rflag) 1153 return (nextnum++); 1154 return (arc4random()); 1155 } 1156