1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 union { 125 struct fs fdummy; 126 char cdummy[SBLOCKSIZE]; 127 } dummy; 128 #define fsdummy dummy.fdummy 129 #define chdummy dummy.cdummy 130 131 /* 132 * Our blocks == sector size, and the version of UFS we are using is 133 * specified by Oflag. 134 */ 135 disk.d_bsize = sectorsize; 136 disk.d_ufs = Oflag; 137 if (Rflag) { 138 utime = 1000000000; 139 } else { 140 time(&utime); 141 arc4random_stir(); 142 } 143 sblock.fs_old_flags = FS_FLAGS_UPDATED; 144 sblock.fs_flags = 0; 145 if (Uflag) 146 sblock.fs_flags |= FS_DOSOFTDEP; 147 if (Lflag) 148 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 149 if (Jflag) 150 sblock.fs_flags |= FS_GJOURNAL; 151 if (lflag) 152 sblock.fs_flags |= FS_MULTILABEL; 153 if (tflag) 154 sblock.fs_flags |= FS_TRIM; 155 /* 156 * Validate the given file system size. 157 * Verify that its last block can actually be accessed. 158 * Convert to file system fragment sized units. 159 */ 160 if (fssize <= 0) { 161 printf("preposterous size %jd\n", (intmax_t)fssize); 162 exit(13); 163 } 164 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 165 (char *)&sblock); 166 /* 167 * collect and verify the file system density info 168 */ 169 sblock.fs_avgfilesize = avgfilesize; 170 sblock.fs_avgfpdir = avgfilesperdir; 171 if (sblock.fs_avgfilesize <= 0) 172 printf("illegal expected average file size %d\n", 173 sblock.fs_avgfilesize), exit(14); 174 if (sblock.fs_avgfpdir <= 0) 175 printf("illegal expected number of files per directory %d\n", 176 sblock.fs_avgfpdir), exit(15); 177 178 restart: 179 /* 180 * collect and verify the block and fragment sizes 181 */ 182 sblock.fs_bsize = bsize; 183 sblock.fs_fsize = fsize; 184 if (!POWEROF2(sblock.fs_bsize)) { 185 printf("block size must be a power of 2, not %d\n", 186 sblock.fs_bsize); 187 exit(16); 188 } 189 if (!POWEROF2(sblock.fs_fsize)) { 190 printf("fragment size must be a power of 2, not %d\n", 191 sblock.fs_fsize); 192 exit(17); 193 } 194 if (sblock.fs_fsize < sectorsize) { 195 printf("increasing fragment size from %d to sector size (%d)\n", 196 sblock.fs_fsize, sectorsize); 197 sblock.fs_fsize = sectorsize; 198 } 199 if (sblock.fs_bsize > MAXBSIZE) { 200 printf("decreasing block size from %d to maximum (%d)\n", 201 sblock.fs_bsize, MAXBSIZE); 202 sblock.fs_bsize = MAXBSIZE; 203 } 204 if (sblock.fs_bsize < MINBSIZE) { 205 printf("increasing block size from %d to minimum (%d)\n", 206 sblock.fs_bsize, MINBSIZE); 207 sblock.fs_bsize = MINBSIZE; 208 } 209 if (sblock.fs_fsize > MAXBSIZE) { 210 printf("decreasing fragment size from %d to maximum (%d)\n", 211 sblock.fs_fsize, MAXBSIZE); 212 sblock.fs_fsize = MAXBSIZE; 213 } 214 if (sblock.fs_bsize < sblock.fs_fsize) { 215 printf("increasing block size from %d to fragment size (%d)\n", 216 sblock.fs_bsize, sblock.fs_fsize); 217 sblock.fs_bsize = sblock.fs_fsize; 218 } 219 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 220 printf( 221 "increasing fragment size from %d to block size / %d (%d)\n", 222 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 223 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 224 } 225 if (maxbsize == 0) 226 maxbsize = bsize; 227 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 228 sblock.fs_maxbsize = sblock.fs_bsize; 229 printf("Extent size set to %d\n", sblock.fs_maxbsize); 230 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 231 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 232 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 233 } else { 234 sblock.fs_maxbsize = maxbsize; 235 } 236 /* 237 * Maxcontig sets the default for the maximum number of blocks 238 * that may be allocated sequentially. With file system clustering 239 * it is possible to allocate contiguous blocks up to the maximum 240 * transfer size permitted by the controller or buffering. 241 */ 242 if (maxcontig == 0) 243 maxcontig = MAX(1, MAXPHYS / bsize); 244 sblock.fs_maxcontig = maxcontig; 245 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 246 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 247 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 248 } 249 if (sblock.fs_maxcontig > 1) 250 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 251 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 252 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 253 sblock.fs_qbmask = ~sblock.fs_bmask; 254 sblock.fs_qfmask = ~sblock.fs_fmask; 255 sblock.fs_bshift = ilog2(sblock.fs_bsize); 256 sblock.fs_fshift = ilog2(sblock.fs_fsize); 257 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 258 sblock.fs_fragshift = ilog2(sblock.fs_frag); 259 if (sblock.fs_frag > MAXFRAG) { 260 printf("fragment size %d is still too small (can't happen)\n", 261 sblock.fs_bsize / MAXFRAG); 262 exit(21); 263 } 264 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 265 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 266 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 267 268 /* 269 * Before the filesystem is finally initialized, mark it 270 * as incompletely initialized. 271 */ 272 sblock.fs_magic = FS_BAD_MAGIC; 273 274 if (Oflag == 1) { 275 sblock.fs_sblockloc = SBLOCK_UFS1; 276 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 277 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 278 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 279 sizeof(ufs1_daddr_t)); 280 sblock.fs_old_inodefmt = FS_44INODEFMT; 281 sblock.fs_old_cgoffset = 0; 282 sblock.fs_old_cgmask = 0xffffffff; 283 sblock.fs_old_size = sblock.fs_size; 284 sblock.fs_old_rotdelay = 0; 285 sblock.fs_old_rps = 60; 286 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 287 sblock.fs_old_cpg = 1; 288 sblock.fs_old_interleave = 1; 289 sblock.fs_old_trackskew = 0; 290 sblock.fs_old_cpc = 0; 291 sblock.fs_old_postblformat = 1; 292 sblock.fs_old_nrpos = 1; 293 } else { 294 sblock.fs_sblockloc = SBLOCK_UFS2; 295 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 296 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 297 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 298 sizeof(ufs2_daddr_t)); 299 } 300 sblock.fs_sblkno = 301 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 302 sblock.fs_frag); 303 sblock.fs_cblkno = sblock.fs_sblkno + 304 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 305 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 306 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 307 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 308 sizepb *= NINDIR(&sblock); 309 sblock.fs_maxfilesize += sizepb; 310 } 311 312 /* 313 * It's impossible to create a snapshot in case that fs_maxfilesize 314 * is smaller than the fssize. 315 */ 316 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 317 warnx("WARNING: You will be unable to create snapshots on this " 318 "file system. Correct by using a larger blocksize."); 319 } 320 321 /* 322 * Calculate the number of blocks to put into each cylinder group. 323 * 324 * This algorithm selects the number of blocks per cylinder 325 * group. The first goal is to have at least enough data blocks 326 * in each cylinder group to meet the density requirement. Once 327 * this goal is achieved we try to expand to have at least 328 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 329 * pack as many blocks into each cylinder group map as will fit. 330 * 331 * We start by calculating the smallest number of blocks that we 332 * can put into each cylinder group. If this is too big, we reduce 333 * the density until it fits. 334 */ 335 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 336 minfragsperinode = 1 + fssize / maxinum; 337 if (density == 0) { 338 density = MAX(NFPI, minfragsperinode) * fsize; 339 } else if (density < minfragsperinode * fsize) { 340 origdensity = density; 341 density = minfragsperinode * fsize; 342 fprintf(stderr, "density increased from %d to %d\n", 343 origdensity, density); 344 } 345 origdensity = density; 346 for (;;) { 347 fragsperinode = MAX(numfrags(&sblock, density), 1); 348 if (fragsperinode < minfragsperinode) { 349 bsize <<= 1; 350 fsize <<= 1; 351 printf("Block size too small for a file system %s %d\n", 352 "of this size. Increasing blocksize to", bsize); 353 goto restart; 354 } 355 minfpg = fragsperinode * INOPB(&sblock); 356 if (minfpg > sblock.fs_size) 357 minfpg = sblock.fs_size; 358 sblock.fs_ipg = INOPB(&sblock); 359 sblock.fs_fpg = roundup(sblock.fs_iblkno + 360 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 361 if (sblock.fs_fpg < minfpg) 362 sblock.fs_fpg = minfpg; 363 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 364 INOPB(&sblock)); 365 sblock.fs_fpg = roundup(sblock.fs_iblkno + 366 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 367 if (sblock.fs_fpg < minfpg) 368 sblock.fs_fpg = minfpg; 369 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 370 INOPB(&sblock)); 371 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 372 break; 373 density -= sblock.fs_fsize; 374 } 375 if (density != origdensity) 376 printf("density reduced from %d to %d\n", origdensity, density); 377 /* 378 * Start packing more blocks into the cylinder group until 379 * it cannot grow any larger, the number of cylinder groups 380 * drops below MINCYLGRPS, or we reach the size requested. 381 * For UFS1 inodes per cylinder group are stored in an int16_t 382 * so fs_ipg is limited to 2^15 - 1. 383 */ 384 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 385 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 386 INOPB(&sblock)); 387 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 388 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 389 break; 390 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 391 continue; 392 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 393 break; 394 } 395 sblock.fs_fpg -= sblock.fs_frag; 396 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 397 INOPB(&sblock)); 398 break; 399 } 400 /* 401 * Check to be sure that the last cylinder group has enough blocks 402 * to be viable. If it is too small, reduce the number of blocks 403 * per cylinder group which will have the effect of moving more 404 * blocks into the last cylinder group. 405 */ 406 optimalfpg = sblock.fs_fpg; 407 for (;;) { 408 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 409 lastminfpg = roundup(sblock.fs_iblkno + 410 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 411 if (sblock.fs_size < lastminfpg) { 412 printf("Filesystem size %jd < minimum size of %d\n", 413 (intmax_t)sblock.fs_size, lastminfpg); 414 exit(28); 415 } 416 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 417 sblock.fs_size % sblock.fs_fpg == 0) 418 break; 419 sblock.fs_fpg -= sblock.fs_frag; 420 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 421 INOPB(&sblock)); 422 } 423 if (optimalfpg != sblock.fs_fpg) 424 printf("Reduced frags per cylinder group from %d to %d %s\n", 425 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 427 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 428 if (Oflag == 1) { 429 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 430 sblock.fs_old_nsect = sblock.fs_old_spc; 431 sblock.fs_old_npsect = sblock.fs_old_spc; 432 sblock.fs_old_ncyl = sblock.fs_ncg; 433 } 434 /* 435 * fill in remaining fields of the super block 436 */ 437 sblock.fs_csaddr = cgdmin(&sblock, 0); 438 sblock.fs_cssize = 439 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 440 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 441 if (fscs == NULL) 442 errx(31, "calloc failed"); 443 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 444 if (sblock.fs_sbsize > SBLOCKSIZE) 445 sblock.fs_sbsize = SBLOCKSIZE; 446 sblock.fs_minfree = minfree; 447 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 448 sblock.fs_metaspace = blknum(&sblock, metaspace); 449 else if (metaspace != -1) 450 /* reserve half of minfree for metadata blocks */ 451 sblock.fs_metaspace = blknum(&sblock, 452 (sblock.fs_fpg * minfree) / 200); 453 if (maxbpg == 0) 454 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 455 else 456 sblock.fs_maxbpg = maxbpg; 457 sblock.fs_optim = opt; 458 sblock.fs_cgrotor = 0; 459 sblock.fs_pendingblocks = 0; 460 sblock.fs_pendinginodes = 0; 461 sblock.fs_fmod = 0; 462 sblock.fs_ronly = 0; 463 sblock.fs_state = 0; 464 sblock.fs_clean = 1; 465 sblock.fs_id[0] = (long)utime; 466 sblock.fs_id[1] = newfs_random(); 467 sblock.fs_fsmnt[0] = '\0'; 468 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 469 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 470 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 471 sblock.fs_cstotal.cs_nbfree = 472 fragstoblks(&sblock, sblock.fs_dsize) - 473 howmany(csfrags, sblock.fs_frag); 474 sblock.fs_cstotal.cs_nffree = 475 fragnum(&sblock, sblock.fs_size) + 476 (fragnum(&sblock, csfrags) > 0 ? 477 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 478 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 479 sblock.fs_cstotal.cs_ndir = 0; 480 sblock.fs_dsize -= csfrags; 481 sblock.fs_time = utime; 482 if (Oflag == 1) { 483 sblock.fs_old_time = utime; 484 sblock.fs_old_dsize = sblock.fs_dsize; 485 sblock.fs_old_csaddr = sblock.fs_csaddr; 486 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 487 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 488 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 489 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 490 } 491 492 /* 493 * Dump out summary information about file system. 494 */ 495 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 496 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 497 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 498 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 499 sblock.fs_fsize); 500 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 501 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 502 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 503 if (sblock.fs_flags & FS_DOSOFTDEP) 504 printf("\twith soft updates\n"); 505 # undef B2MBFACTOR 506 507 if (Eflag && !Nflag) { 508 printf("Erasing sectors [%jd...%jd]\n", 509 sblock.fs_sblockloc / disk.d_bsize, 510 fsbtodb(&sblock, sblock.fs_size) - 1); 511 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 512 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 513 } 514 /* 515 * Wipe out old UFS1 superblock(s) if necessary. 516 */ 517 if (!Nflag && Oflag != 1) { 518 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 519 if (i == -1) 520 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 521 522 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 523 fsdummy.fs_magic = 0; 524 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 525 chdummy, SBLOCKSIZE); 526 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 527 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 528 break; 529 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 530 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 531 } 532 } 533 } 534 if (!Nflag) 535 do_sbwrite(&disk); 536 if (Xflag == 1) { 537 printf("** Exiting on Xflag 1\n"); 538 exit(0); 539 } 540 if (Xflag == 2) 541 printf("** Leaving BAD MAGIC on Xflag 2\n"); 542 else 543 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 544 545 /* 546 * Now build the cylinders group blocks and 547 * then print out indices of cylinder groups. 548 */ 549 printf("super-block backups (for fsck -b #) at:\n"); 550 i = 0; 551 width = charsperline(); 552 /* 553 * allocate space for superblock, cylinder group map, and 554 * two sets of inode blocks. 555 */ 556 if (sblock.fs_bsize < SBLOCKSIZE) 557 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 558 else 559 iobufsize = 4 * sblock.fs_bsize; 560 if ((iobuf = calloc(1, iobufsize)) == 0) { 561 printf("Cannot allocate I/O buffer\n"); 562 exit(38); 563 } 564 /* 565 * Make a copy of the superblock into the buffer that we will be 566 * writing out in each cylinder group. 567 */ 568 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 569 for (cg = 0; cg < sblock.fs_ncg; cg++) { 570 initcg(cg, utime); 571 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 572 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 573 cg < (sblock.fs_ncg-1) ? "," : ""); 574 if (j < 0) 575 tmpbuf[j = 0] = '\0'; 576 if (i + j >= width) { 577 printf("\n"); 578 i = 0; 579 } 580 i += j; 581 printf("%s", tmpbuf); 582 fflush(stdout); 583 } 584 printf("\n"); 585 if (Nflag) 586 exit(0); 587 /* 588 * Now construct the initial file system, 589 * then write out the super-block. 590 */ 591 fsinit(utime); 592 if (Oflag == 1) { 593 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 594 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 595 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 596 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 597 } 598 if (Xflag == 3) { 599 printf("** Exiting on Xflag 3\n"); 600 exit(0); 601 } 602 if (!Nflag) { 603 do_sbwrite(&disk); 604 /* 605 * For UFS1 filesystems with a blocksize of 64K, the first 606 * alternate superblock resides at the location used for 607 * the default UFS2 superblock. As there is a valid 608 * superblock at this location, the boot code will use 609 * it as its first choice. Thus we have to ensure that 610 * all of its statistcs on usage are correct. 611 */ 612 if (Oflag == 1 && sblock.fs_bsize == 65536) 613 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 614 sblock.fs_bsize, (char *)&sblock); 615 } 616 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 617 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 618 sblock.fs_cssize - i < sblock.fs_bsize ? 619 sblock.fs_cssize - i : sblock.fs_bsize, 620 ((char *)fscs) + i); 621 /* 622 * Update information about this partition in pack 623 * label, to that it may be updated on disk. 624 */ 625 if (pp != NULL) { 626 pp->p_fstype = FS_BSDFFS; 627 pp->p_fsize = sblock.fs_fsize; 628 pp->p_frag = sblock.fs_frag; 629 pp->p_cpg = sblock.fs_fpg; 630 } 631 } 632 633 /* 634 * Initialize a cylinder group. 635 */ 636 void 637 initcg(int cylno, time_t utime) 638 { 639 long blkno, start; 640 uint i, j, d, dlower, dupper; 641 ufs2_daddr_t cbase, dmax; 642 struct ufs1_dinode *dp1; 643 struct ufs2_dinode *dp2; 644 struct csum *cs; 645 646 /* 647 * Determine block bounds for cylinder group. 648 * Allow space for super block summary information in first 649 * cylinder group. 650 */ 651 cbase = cgbase(&sblock, cylno); 652 dmax = cbase + sblock.fs_fpg; 653 if (dmax > sblock.fs_size) 654 dmax = sblock.fs_size; 655 dlower = cgsblock(&sblock, cylno) - cbase; 656 dupper = cgdmin(&sblock, cylno) - cbase; 657 if (cylno == 0) 658 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 659 cs = &fscs[cylno]; 660 memset(&acg, 0, sblock.fs_cgsize); 661 acg.cg_time = utime; 662 acg.cg_magic = CG_MAGIC; 663 acg.cg_cgx = cylno; 664 acg.cg_niblk = sblock.fs_ipg; 665 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 666 sblock.fs_ipg : 2 * INOPB(&sblock); 667 acg.cg_ndblk = dmax - cbase; 668 if (sblock.fs_contigsumsize > 0) 669 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 670 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 671 if (Oflag == 2) { 672 acg.cg_iusedoff = start; 673 } else { 674 acg.cg_old_ncyl = sblock.fs_old_cpg; 675 acg.cg_old_time = acg.cg_time; 676 acg.cg_time = 0; 677 acg.cg_old_niblk = acg.cg_niblk; 678 acg.cg_niblk = 0; 679 acg.cg_initediblk = 0; 680 acg.cg_old_btotoff = start; 681 acg.cg_old_boff = acg.cg_old_btotoff + 682 sblock.fs_old_cpg * sizeof(int32_t); 683 acg.cg_iusedoff = acg.cg_old_boff + 684 sblock.fs_old_cpg * sizeof(u_int16_t); 685 } 686 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 687 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 688 if (sblock.fs_contigsumsize > 0) { 689 acg.cg_clustersumoff = 690 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 691 acg.cg_clustersumoff -= sizeof(u_int32_t); 692 acg.cg_clusteroff = acg.cg_clustersumoff + 693 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 694 acg.cg_nextfreeoff = acg.cg_clusteroff + 695 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 696 } 697 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 698 printf("Panic: cylinder group too big\n"); 699 exit(37); 700 } 701 acg.cg_cs.cs_nifree += sblock.fs_ipg; 702 if (cylno == 0) 703 for (i = 0; i < (long)ROOTINO; i++) { 704 setbit(cg_inosused(&acg), i); 705 acg.cg_cs.cs_nifree--; 706 } 707 if (cylno > 0) { 708 /* 709 * In cylno 0, beginning space is reserved 710 * for boot and super blocks. 711 */ 712 for (d = 0; d < dlower; d += sblock.fs_frag) { 713 blkno = d / sblock.fs_frag; 714 setblock(&sblock, cg_blksfree(&acg), blkno); 715 if (sblock.fs_contigsumsize > 0) 716 setbit(cg_clustersfree(&acg), blkno); 717 acg.cg_cs.cs_nbfree++; 718 } 719 } 720 if ((i = dupper % sblock.fs_frag)) { 721 acg.cg_frsum[sblock.fs_frag - i]++; 722 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 723 setbit(cg_blksfree(&acg), dupper); 724 acg.cg_cs.cs_nffree++; 725 } 726 } 727 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 728 d += sblock.fs_frag) { 729 blkno = d / sblock.fs_frag; 730 setblock(&sblock, cg_blksfree(&acg), blkno); 731 if (sblock.fs_contigsumsize > 0) 732 setbit(cg_clustersfree(&acg), blkno); 733 acg.cg_cs.cs_nbfree++; 734 } 735 if (d < acg.cg_ndblk) { 736 acg.cg_frsum[acg.cg_ndblk - d]++; 737 for (; d < acg.cg_ndblk; d++) { 738 setbit(cg_blksfree(&acg), d); 739 acg.cg_cs.cs_nffree++; 740 } 741 } 742 if (sblock.fs_contigsumsize > 0) { 743 int32_t *sump = cg_clustersum(&acg); 744 u_char *mapp = cg_clustersfree(&acg); 745 int map = *mapp++; 746 int bit = 1; 747 int run = 0; 748 749 for (i = 0; i < acg.cg_nclusterblks; i++) { 750 if ((map & bit) != 0) 751 run++; 752 else if (run != 0) { 753 if (run > sblock.fs_contigsumsize) 754 run = sblock.fs_contigsumsize; 755 sump[run]++; 756 run = 0; 757 } 758 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 759 bit <<= 1; 760 else { 761 map = *mapp++; 762 bit = 1; 763 } 764 } 765 if (run != 0) { 766 if (run > sblock.fs_contigsumsize) 767 run = sblock.fs_contigsumsize; 768 sump[run]++; 769 } 770 } 771 *cs = acg.cg_cs; 772 /* 773 * Write out the duplicate super block, the cylinder group map 774 * and two blocks worth of inodes in a single write. 775 */ 776 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 777 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 778 start += sblock.fs_bsize; 779 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 780 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 781 for (i = 0; i < acg.cg_initediblk; i++) { 782 if (sblock.fs_magic == FS_UFS1_MAGIC) { 783 dp1->di_gen = newfs_random(); 784 dp1++; 785 } else { 786 dp2->di_gen = newfs_random(); 787 dp2++; 788 } 789 } 790 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 791 /* 792 * For the old file system, we have to initialize all the inodes. 793 */ 794 if (Oflag == 1) { 795 for (i = 2 * sblock.fs_frag; 796 i < sblock.fs_ipg / INOPF(&sblock); 797 i += sblock.fs_frag) { 798 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 799 for (j = 0; j < INOPB(&sblock); j++) { 800 dp1->di_gen = newfs_random(); 801 dp1++; 802 } 803 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 804 sblock.fs_bsize, &iobuf[start]); 805 } 806 } 807 } 808 809 /* 810 * initialize the file system 811 */ 812 #define ROOTLINKCNT 3 813 814 static struct direct root_dir[] = { 815 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 816 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 817 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 818 }; 819 820 #define SNAPLINKCNT 2 821 822 static struct direct snap_dir[] = { 823 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 824 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 825 }; 826 827 void 828 fsinit(time_t utime) 829 { 830 union dinode node; 831 struct group *grp; 832 gid_t gid; 833 int entries; 834 835 memset(&node, 0, sizeof node); 836 if ((grp = getgrnam("operator")) != NULL) { 837 gid = grp->gr_gid; 838 } else { 839 warnx("Cannot retrieve operator gid, using gid 0."); 840 gid = 0; 841 } 842 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 843 if (sblock.fs_magic == FS_UFS1_MAGIC) { 844 /* 845 * initialize the node 846 */ 847 node.dp1.di_atime = utime; 848 node.dp1.di_mtime = utime; 849 node.dp1.di_ctime = utime; 850 /* 851 * create the root directory 852 */ 853 node.dp1.di_mode = IFDIR | UMASK; 854 node.dp1.di_nlink = entries; 855 node.dp1.di_size = makedir(root_dir, entries); 856 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 857 node.dp1.di_blocks = 858 btodb(fragroundup(&sblock, node.dp1.di_size)); 859 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 860 iobuf); 861 iput(&node, ROOTINO); 862 if (!nflag) { 863 /* 864 * create the .snap directory 865 */ 866 node.dp1.di_mode |= 020; 867 node.dp1.di_gid = gid; 868 node.dp1.di_nlink = SNAPLINKCNT; 869 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 870 node.dp1.di_db[0] = 871 alloc(sblock.fs_fsize, node.dp1.di_mode); 872 node.dp1.di_blocks = 873 btodb(fragroundup(&sblock, node.dp1.di_size)); 874 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 875 sblock.fs_fsize, iobuf); 876 iput(&node, ROOTINO + 1); 877 } 878 } else { 879 /* 880 * initialize the node 881 */ 882 node.dp2.di_atime = utime; 883 node.dp2.di_mtime = utime; 884 node.dp2.di_ctime = utime; 885 node.dp2.di_birthtime = utime; 886 /* 887 * create the root directory 888 */ 889 node.dp2.di_mode = IFDIR | UMASK; 890 node.dp2.di_nlink = entries; 891 node.dp2.di_size = makedir(root_dir, entries); 892 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 893 node.dp2.di_blocks = 894 btodb(fragroundup(&sblock, node.dp2.di_size)); 895 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 896 iobuf); 897 iput(&node, ROOTINO); 898 if (!nflag) { 899 /* 900 * create the .snap directory 901 */ 902 node.dp2.di_mode |= 020; 903 node.dp2.di_gid = gid; 904 node.dp2.di_nlink = SNAPLINKCNT; 905 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 906 node.dp2.di_db[0] = 907 alloc(sblock.fs_fsize, node.dp2.di_mode); 908 node.dp2.di_blocks = 909 btodb(fragroundup(&sblock, node.dp2.di_size)); 910 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 911 sblock.fs_fsize, iobuf); 912 iput(&node, ROOTINO + 1); 913 } 914 } 915 } 916 917 /* 918 * construct a set of directory entries in "iobuf". 919 * return size of directory. 920 */ 921 int 922 makedir(struct direct *protodir, int entries) 923 { 924 char *cp; 925 int i, spcleft; 926 927 spcleft = DIRBLKSIZ; 928 memset(iobuf, 0, DIRBLKSIZ); 929 for (cp = iobuf, i = 0; i < entries - 1; i++) { 930 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 931 memmove(cp, &protodir[i], protodir[i].d_reclen); 932 cp += protodir[i].d_reclen; 933 spcleft -= protodir[i].d_reclen; 934 } 935 protodir[i].d_reclen = spcleft; 936 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 937 return (DIRBLKSIZ); 938 } 939 940 /* 941 * allocate a block or frag 942 */ 943 ufs2_daddr_t 944 alloc(int size, int mode) 945 { 946 int i, blkno, frag; 947 uint d; 948 949 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 950 sblock.fs_cgsize); 951 if (acg.cg_magic != CG_MAGIC) { 952 printf("cg 0: bad magic number\n"); 953 exit(38); 954 } 955 if (acg.cg_cs.cs_nbfree == 0) { 956 printf("first cylinder group ran out of space\n"); 957 exit(39); 958 } 959 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 960 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 961 goto goth; 962 printf("internal error: can't find block in cyl 0\n"); 963 exit(40); 964 goth: 965 blkno = fragstoblks(&sblock, d); 966 clrblock(&sblock, cg_blksfree(&acg), blkno); 967 if (sblock.fs_contigsumsize > 0) 968 clrbit(cg_clustersfree(&acg), blkno); 969 acg.cg_cs.cs_nbfree--; 970 sblock.fs_cstotal.cs_nbfree--; 971 fscs[0].cs_nbfree--; 972 if (mode & IFDIR) { 973 acg.cg_cs.cs_ndir++; 974 sblock.fs_cstotal.cs_ndir++; 975 fscs[0].cs_ndir++; 976 } 977 if (size != sblock.fs_bsize) { 978 frag = howmany(size, sblock.fs_fsize); 979 fscs[0].cs_nffree += sblock.fs_frag - frag; 980 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 981 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 982 acg.cg_frsum[sblock.fs_frag - frag]++; 983 for (i = frag; i < sblock.fs_frag; i++) 984 setbit(cg_blksfree(&acg), d + i); 985 } 986 /* XXX cgwrite(&disk, 0)??? */ 987 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 988 (char *)&acg); 989 return ((ufs2_daddr_t)d); 990 } 991 992 /* 993 * Allocate an inode on the disk 994 */ 995 void 996 iput(union dinode *ip, ino_t ino) 997 { 998 ufs2_daddr_t d; 999 1000 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1001 sblock.fs_cgsize); 1002 if (acg.cg_magic != CG_MAGIC) { 1003 printf("cg 0: bad magic number\n"); 1004 exit(31); 1005 } 1006 acg.cg_cs.cs_nifree--; 1007 setbit(cg_inosused(&acg), ino); 1008 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1009 (char *)&acg); 1010 sblock.fs_cstotal.cs_nifree--; 1011 fscs[0].cs_nifree--; 1012 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1013 printf("fsinit: inode value out of range (%ju).\n", 1014 (uintmax_t)ino); 1015 exit(32); 1016 } 1017 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1018 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1019 if (sblock.fs_magic == FS_UFS1_MAGIC) 1020 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1021 ip->dp1; 1022 else 1023 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1024 ip->dp2; 1025 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1026 } 1027 1028 /* 1029 * possibly write to disk 1030 */ 1031 static void 1032 wtfs(ufs2_daddr_t bno, int size, char *bf) 1033 { 1034 if (Nflag) 1035 return; 1036 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1037 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1038 } 1039 1040 /* 1041 * check if a block is available 1042 */ 1043 static int 1044 isblock(struct fs *fs, unsigned char *cp, int h) 1045 { 1046 unsigned char mask; 1047 1048 switch (fs->fs_frag) { 1049 case 8: 1050 return (cp[h] == 0xff); 1051 case 4: 1052 mask = 0x0f << ((h & 0x1) << 2); 1053 return ((cp[h >> 1] & mask) == mask); 1054 case 2: 1055 mask = 0x03 << ((h & 0x3) << 1); 1056 return ((cp[h >> 2] & mask) == mask); 1057 case 1: 1058 mask = 0x01 << (h & 0x7); 1059 return ((cp[h >> 3] & mask) == mask); 1060 default: 1061 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1062 return (0); 1063 } 1064 } 1065 1066 /* 1067 * take a block out of the map 1068 */ 1069 static void 1070 clrblock(struct fs *fs, unsigned char *cp, int h) 1071 { 1072 switch ((fs)->fs_frag) { 1073 case 8: 1074 cp[h] = 0; 1075 return; 1076 case 4: 1077 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1078 return; 1079 case 2: 1080 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1081 return; 1082 case 1: 1083 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1084 return; 1085 default: 1086 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1087 return; 1088 } 1089 } 1090 1091 /* 1092 * put a block into the map 1093 */ 1094 static void 1095 setblock(struct fs *fs, unsigned char *cp, int h) 1096 { 1097 switch (fs->fs_frag) { 1098 case 8: 1099 cp[h] = 0xff; 1100 return; 1101 case 4: 1102 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1103 return; 1104 case 2: 1105 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1106 return; 1107 case 1: 1108 cp[h >> 3] |= (0x01 << (h & 0x7)); 1109 return; 1110 default: 1111 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1112 return; 1113 } 1114 } 1115 1116 /* 1117 * Determine the number of characters in a 1118 * single line. 1119 */ 1120 1121 static int 1122 charsperline(void) 1123 { 1124 int columns; 1125 char *cp; 1126 struct winsize ws; 1127 1128 columns = 0; 1129 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1130 columns = ws.ws_col; 1131 if (columns == 0 && (cp = getenv("COLUMNS"))) 1132 columns = atoi(cp); 1133 if (columns == 0) 1134 columns = 80; /* last resort */ 1135 return (columns); 1136 } 1137 1138 static int 1139 ilog2(int val) 1140 { 1141 u_int n; 1142 1143 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1144 if (1 << n == val) 1145 return (n); 1146 errx(1, "ilog2: %d is not a power of 2\n", val); 1147 } 1148 1149 /* 1150 * For the regression test, return predictable random values. 1151 * Otherwise use a true random number generator. 1152 */ 1153 static u_int32_t 1154 newfs_random(void) 1155 { 1156 static int nextnum = 1; 1157 1158 if (Rflag) 1159 return (nextnum++); 1160 return (arc4random()); 1161 } 1162