1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 #if 0 36 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 37 #endif 38 static const char rcsid[] = 39 "$FreeBSD$"; 40 #endif /* not lint */ 41 42 #include <err.h> 43 #include <signal.h> 44 #include <string.h> 45 #include <stdio.h> 46 #include <unistd.h> 47 #include <sys/param.h> 48 #include <sys/time.h> 49 #include <sys/types.h> 50 #include <sys/wait.h> 51 #include <sys/resource.h> 52 #include <sys/stat.h> 53 #include <ufs/ufs/dinode.h> 54 #include <ufs/ufs/dir.h> 55 #include <ufs/ffs/fs.h> 56 #include <sys/disklabel.h> 57 #include <sys/file.h> 58 #include <sys/mman.h> 59 #include <sys/ioctl.h> 60 61 #ifndef STANDALONE 62 #include <stdlib.h> 63 #else 64 extern int atoi __P((char *)); 65 extern char * getenv __P((char *)); 66 #endif 67 68 #ifdef FSIRAND 69 extern long random __P((void)); 70 extern void srandomdev __P((void)); 71 #endif 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 77 /* 78 * We limit the size of the inode map to be no more than a 79 * third of the cylinder group space, since we must leave at 80 * least an equal amount of space for the block map. 81 * 82 * N.B.: MAXIPG must be a multiple of INOPB(fs). 83 */ 84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 85 86 #define UMASK 0755 87 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 88 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 89 90 /* 91 * variables set up by front end. 92 */ 93 extern int mfs; /* run as the memory based filesystem */ 94 extern char *mfs_mtpt; /* mount point for mfs */ 95 extern struct stat mfs_mtstat; /* stat prior to mount */ 96 extern int Nflag; /* run mkfs without writing file system */ 97 extern int Oflag; /* format as an 4.3BSD file system */ 98 extern int fssize; /* file system size */ 99 extern int ntracks; /* # tracks/cylinder */ 100 extern int nsectors; /* # sectors/track */ 101 extern int nphyssectors; /* # sectors/track including spares */ 102 extern int secpercyl; /* sectors per cylinder */ 103 extern int sectorsize; /* bytes/sector */ 104 extern int realsectorsize; /* bytes/sector in hardware*/ 105 extern int rpm; /* revolutions/minute of drive */ 106 extern int interleave; /* hardware sector interleave */ 107 extern int trackskew; /* sector 0 skew, per track */ 108 extern int fsize; /* fragment size */ 109 extern int bsize; /* block size */ 110 extern int cpg; /* cylinders/cylinder group */ 111 extern int cpgflg; /* cylinders/cylinder group flag was given */ 112 extern int minfree; /* free space threshold */ 113 extern int opt; /* optimization preference (space or time) */ 114 extern int density; /* number of bytes per inode */ 115 extern int maxcontig; /* max contiguous blocks to allocate */ 116 extern int rotdelay; /* rotational delay between blocks */ 117 extern int maxbpg; /* maximum blocks per file in a cyl group */ 118 extern int nrpos; /* # of distinguished rotational positions */ 119 extern int bbsize; /* boot block size */ 120 extern int sbsize; /* superblock size */ 121 extern u_long memleft; /* virtual memory available */ 122 extern caddr_t membase; /* start address of memory based filesystem */ 123 extern char * filename; 124 125 union { 126 struct fs fs; 127 char pad[SBSIZE]; 128 } fsun; 129 #define sblock fsun.fs 130 struct csum *fscs; 131 132 union { 133 struct cg cg; 134 char pad[MAXBSIZE]; 135 } cgun; 136 #define acg cgun.cg 137 138 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 139 140 int fsi, fso; 141 #ifdef FSIRAND 142 int randinit; 143 #endif 144 daddr_t alloc(); 145 long calcipg(); 146 static int charsperline(); 147 void clrblock __P((struct fs *, unsigned char *, int)); 148 void fsinit __P((time_t)); 149 void initcg __P((int, time_t)); 150 int isblock __P((struct fs *, unsigned char *, int)); 151 void iput __P((struct dinode *, ino_t)); 152 int makedir __P((struct direct *, int)); 153 void rdfs __P((daddr_t, int, char *)); 154 void setblock __P((struct fs *, unsigned char *, int)); 155 void wtfs __P((daddr_t, int, char *)); 156 157 #ifndef STANDALONE 158 void get_memleft __P((void)); 159 void raise_data_limit __P((void)); 160 #else 161 void free __P((char *)); 162 char * calloc __P((u_long, u_long)); 163 caddr_t malloc __P((u_long)); 164 caddr_t realloc __P((char *, u_long)); 165 #endif 166 167 int mfs_ppid = 0; 168 169 void 170 mkfs(pp, fsys, fi, fo) 171 struct partition *pp; 172 char *fsys; 173 int fi, fo; 174 { 175 register long i, mincpc, mincpg, inospercg; 176 long cylno, rpos, blk, j, warn = 0; 177 long used, mincpgcnt, bpcg; 178 off_t usedb; 179 long mapcramped, inodecramped; 180 long postblsize, rotblsize, totalsbsize; 181 int status, fd; 182 time_t utime; 183 quad_t sizepb; 184 void started(); 185 int width; 186 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 187 188 #ifndef STANDALONE 189 time(&utime); 190 #endif 191 #ifdef FSIRAND 192 if (!randinit) { 193 randinit = 1; 194 srandomdev(); 195 } 196 #endif 197 if (mfs) { 198 mfs_ppid = getpid(); 199 (void) signal(SIGUSR1, started); 200 if ((i = fork())) { 201 if (i == -1) 202 err(10, "mfs"); 203 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 204 exit(WEXITSTATUS(status)); 205 exit(11); 206 /* NOTREACHED */ 207 } 208 #ifdef STANDALONE 209 (void)malloc(0); 210 #else 211 raise_data_limit(); 212 #endif 213 if(filename) { 214 unsigned char buf[BUFSIZ]; 215 unsigned long l,l1; 216 fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644); 217 if(fd < 0) 218 err(12, "%s", filename); 219 for(l=0;l< fssize * sectorsize;l += l1) { 220 l1 = fssize * sectorsize; 221 if (BUFSIZ < l1) 222 l1 = BUFSIZ; 223 if (l1 != write(fd,buf,l1)) 224 err(12, "%s", filename); 225 } 226 membase = mmap( 227 0, 228 fssize * sectorsize, 229 PROT_READ|PROT_WRITE, 230 MAP_SHARED, 231 fd, 232 0); 233 if(membase == MAP_FAILED) 234 err(12, "mmap"); 235 close(fd); 236 } else { 237 #ifndef STANDALONE 238 get_memleft(); 239 #endif 240 if (fssize * sectorsize > (memleft - 131072)) 241 fssize = (memleft - 131072) / sectorsize; 242 if ((membase = malloc(fssize * sectorsize)) == NULL) 243 errx(13, "malloc failed"); 244 } 245 } 246 fsi = fi; 247 fso = fo; 248 if (Oflag) { 249 sblock.fs_inodefmt = FS_42INODEFMT; 250 sblock.fs_maxsymlinklen = 0; 251 } else { 252 sblock.fs_inodefmt = FS_44INODEFMT; 253 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 254 } 255 /* 256 * Validate the given file system size. 257 * Verify that its last block can actually be accessed. 258 */ 259 if (fssize <= 0) 260 printf("preposterous size %d\n", fssize), exit(13); 261 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 262 (char *)&sblock); 263 /* 264 * collect and verify the sector and track info 265 */ 266 sblock.fs_nsect = nsectors; 267 sblock.fs_ntrak = ntracks; 268 if (sblock.fs_ntrak <= 0) 269 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 270 if (sblock.fs_nsect <= 0) 271 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 272 /* 273 * collect and verify the block and fragment sizes 274 */ 275 sblock.fs_bsize = bsize; 276 sblock.fs_fsize = fsize; 277 if (!POWEROF2(sblock.fs_bsize)) { 278 printf("block size must be a power of 2, not %d\n", 279 sblock.fs_bsize); 280 exit(16); 281 } 282 if (!POWEROF2(sblock.fs_fsize)) { 283 printf("fragment size must be a power of 2, not %d\n", 284 sblock.fs_fsize); 285 exit(17); 286 } 287 if (sblock.fs_fsize < sectorsize) { 288 printf("fragment size %d is too small, minimum is %d\n", 289 sblock.fs_fsize, sectorsize); 290 exit(18); 291 } 292 if (sblock.fs_bsize < MINBSIZE) { 293 printf("block size %d is too small, minimum is %d\n", 294 sblock.fs_bsize, MINBSIZE); 295 exit(19); 296 } 297 if (sblock.fs_bsize < sblock.fs_fsize) { 298 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 299 sblock.fs_bsize, sblock.fs_fsize); 300 exit(20); 301 } 302 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 303 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 304 sblock.fs_qbmask = ~sblock.fs_bmask; 305 sblock.fs_qfmask = ~sblock.fs_fmask; 306 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 307 sblock.fs_bshift++; 308 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 309 sblock.fs_fshift++; 310 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 311 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 312 sblock.fs_fragshift++; 313 if (sblock.fs_frag > MAXFRAG) { 314 printf("fragment size %d is too small, minimum with block size %d is %d\n", 315 sblock.fs_fsize, sblock.fs_bsize, 316 sblock.fs_bsize / MAXFRAG); 317 exit(21); 318 } 319 sblock.fs_nrpos = nrpos; 320 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 321 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 322 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 323 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 324 sblock.fs_fsbtodb++; 325 sblock.fs_sblkno = 326 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 327 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 328 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 329 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 330 sblock.fs_cgoffset = roundup( 331 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 332 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 333 sblock.fs_cgmask <<= 1; 334 if (!POWEROF2(sblock.fs_ntrak)) 335 sblock.fs_cgmask <<= 1; 336 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 337 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 338 sizepb *= NINDIR(&sblock); 339 sblock.fs_maxfilesize += sizepb; 340 } 341 /* 342 * Validate specified/determined secpercyl 343 * and calculate minimum cylinders per group. 344 */ 345 sblock.fs_spc = secpercyl; 346 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 347 sblock.fs_cpc > 1 && (i & 1) == 0; 348 sblock.fs_cpc >>= 1, i >>= 1) 349 /* void */; 350 mincpc = sblock.fs_cpc; 351 bpcg = sblock.fs_spc * sectorsize; 352 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 353 if (inospercg > MAXIPG(&sblock)) 354 inospercg = MAXIPG(&sblock); 355 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 356 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 357 sblock.fs_spc); 358 mincpg = roundup(mincpgcnt, mincpc); 359 /* 360 * Ensure that cylinder group with mincpg has enough space 361 * for block maps. 362 */ 363 sblock.fs_cpg = mincpg; 364 sblock.fs_ipg = inospercg; 365 if (maxcontig > 1) 366 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 367 mapcramped = 0; 368 while (CGSIZE(&sblock) > sblock.fs_bsize) { 369 mapcramped = 1; 370 if (sblock.fs_bsize < MAXBSIZE) { 371 sblock.fs_bsize <<= 1; 372 if ((i & 1) == 0) { 373 i >>= 1; 374 } else { 375 sblock.fs_cpc <<= 1; 376 mincpc <<= 1; 377 mincpg = roundup(mincpgcnt, mincpc); 378 sblock.fs_cpg = mincpg; 379 } 380 sblock.fs_frag <<= 1; 381 sblock.fs_fragshift += 1; 382 if (sblock.fs_frag <= MAXFRAG) 383 continue; 384 } 385 if (sblock.fs_fsize == sblock.fs_bsize) { 386 printf("There is no block size that"); 387 printf(" can support this disk\n"); 388 exit(22); 389 } 390 sblock.fs_frag >>= 1; 391 sblock.fs_fragshift -= 1; 392 sblock.fs_fsize <<= 1; 393 sblock.fs_nspf <<= 1; 394 } 395 /* 396 * Ensure that cylinder group with mincpg has enough space for inodes. 397 */ 398 inodecramped = 0; 399 inospercg = calcipg(mincpg, bpcg, &usedb); 400 sblock.fs_ipg = inospercg; 401 while (inospercg > MAXIPG(&sblock)) { 402 inodecramped = 1; 403 if (mincpc == 1 || sblock.fs_frag == 1 || 404 sblock.fs_bsize == MINBSIZE) 405 break; 406 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 407 "minimum bytes per inode is", 408 (int)((mincpg * (off_t)bpcg - usedb) 409 / MAXIPG(&sblock) + 1)); 410 sblock.fs_bsize >>= 1; 411 sblock.fs_frag >>= 1; 412 sblock.fs_fragshift -= 1; 413 mincpc >>= 1; 414 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 415 if (CGSIZE(&sblock) > sblock.fs_bsize) { 416 sblock.fs_bsize <<= 1; 417 break; 418 } 419 mincpg = sblock.fs_cpg; 420 inospercg = calcipg(mincpg, bpcg, &usedb); 421 sblock.fs_ipg = inospercg; 422 } 423 if (inodecramped) { 424 if (inospercg > MAXIPG(&sblock)) { 425 printf("Minimum bytes per inode is %d\n", 426 (int)((mincpg * (off_t)bpcg - usedb) 427 / MAXIPG(&sblock) + 1)); 428 } else if (!mapcramped) { 429 printf("With %d bytes per inode, ", density); 430 printf("minimum cylinders per group is %ld\n", mincpg); 431 } 432 } 433 if (mapcramped) { 434 printf("With %d sectors per cylinder, ", sblock.fs_spc); 435 printf("minimum cylinders per group is %ld\n", mincpg); 436 } 437 if (inodecramped || mapcramped) { 438 if (sblock.fs_bsize != bsize) 439 printf("%s to be changed from %d to %d\n", 440 "This requires the block size", 441 bsize, sblock.fs_bsize); 442 if (sblock.fs_fsize != fsize) 443 printf("\t%s to be changed from %d to %d\n", 444 "and the fragment size", 445 fsize, sblock.fs_fsize); 446 exit(23); 447 } 448 /* 449 * Calculate the number of cylinders per group 450 */ 451 sblock.fs_cpg = cpg; 452 if (sblock.fs_cpg % mincpc != 0) { 453 printf("%s groups must have a multiple of %ld cylinders\n", 454 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 455 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 456 if (!cpgflg) 457 cpg = sblock.fs_cpg; 458 } 459 /* 460 * Must ensure there is enough space for inodes. 461 */ 462 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 463 while (sblock.fs_ipg > MAXIPG(&sblock)) { 464 inodecramped = 1; 465 sblock.fs_cpg -= mincpc; 466 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 467 } 468 /* 469 * Must ensure there is enough space to hold block map. 470 */ 471 while (CGSIZE(&sblock) > sblock.fs_bsize) { 472 mapcramped = 1; 473 sblock.fs_cpg -= mincpc; 474 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 475 } 476 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 477 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 478 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 479 exit(24); 480 } 481 if (sblock.fs_cpg < mincpg) { 482 printf("cylinder groups must have at least %ld cylinders\n", 483 mincpg); 484 exit(25); 485 } else if (sblock.fs_cpg != cpg) { 486 if (!cpgflg) 487 printf("Warning: "); 488 else if (!mapcramped && !inodecramped) 489 exit(26); 490 if (mapcramped && inodecramped) 491 printf("Block size and bytes per inode restrict"); 492 else if (mapcramped) 493 printf("Block size restricts"); 494 else 495 printf("Bytes per inode restrict"); 496 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 497 if (cpgflg) 498 exit(27); 499 } 500 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 501 /* 502 * Now have size for file system and nsect and ntrak. 503 * Determine number of cylinders and blocks in the file system. 504 */ 505 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 506 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 507 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 508 sblock.fs_ncyl++; 509 warn = 1; 510 } 511 if (sblock.fs_ncyl < 1) { 512 printf("file systems must have at least one cylinder\n"); 513 exit(28); 514 } 515 /* 516 * Determine feasability/values of rotational layout tables. 517 * 518 * The size of the rotational layout tables is limited by the 519 * size of the superblock, SBSIZE. The amount of space available 520 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 521 * The size of these tables is inversely proportional to the block 522 * size of the file system. The size increases if sectors per track 523 * are not powers of two, because more cylinders must be described 524 * by the tables before the rotational pattern repeats (fs_cpc). 525 */ 526 sblock.fs_interleave = interleave; 527 sblock.fs_trackskew = trackskew; 528 sblock.fs_npsect = nphyssectors; 529 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 530 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 531 if (sblock.fs_sbsize > SBSIZE) 532 sblock.fs_sbsize = SBSIZE; 533 if (sblock.fs_ntrak == 1) { 534 sblock.fs_cpc = 0; 535 goto next; 536 } 537 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 538 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 539 totalsbsize = sizeof(struct fs) + rotblsize; 540 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 541 /* use old static table space */ 542 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 543 (char *)(&sblock.fs_firstfield); 544 sblock.fs_rotbloff = &sblock.fs_space[0] - 545 (u_char *)(&sblock.fs_firstfield); 546 } else { 547 /* use dynamic table space */ 548 sblock.fs_postbloff = &sblock.fs_space[0] - 549 (u_char *)(&sblock.fs_firstfield); 550 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 551 totalsbsize += postblsize; 552 } 553 if (totalsbsize > SBSIZE || 554 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 555 printf("%s %s %d %s %d.%s", 556 "Warning: insufficient space in super block for\n", 557 "rotational layout tables with nsect", sblock.fs_nsect, 558 "and ntrak", sblock.fs_ntrak, 559 "\nFile system performance may be impaired.\n"); 560 sblock.fs_cpc = 0; 561 goto next; 562 } 563 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 564 if (sblock.fs_sbsize > SBSIZE) 565 sblock.fs_sbsize = SBSIZE; 566 /* 567 * calculate the available blocks for each rotational position 568 */ 569 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 570 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 571 fs_postbl(&sblock, cylno)[rpos] = -1; 572 for (i = (rotblsize - 1) * sblock.fs_frag; 573 i >= 0; i -= sblock.fs_frag) { 574 cylno = cbtocylno(&sblock, i); 575 rpos = cbtorpos(&sblock, i); 576 blk = fragstoblks(&sblock, i); 577 if (fs_postbl(&sblock, cylno)[rpos] == -1) 578 fs_rotbl(&sblock)[blk] = 0; 579 else 580 fs_rotbl(&sblock)[blk] = 581 fs_postbl(&sblock, cylno)[rpos] - blk; 582 fs_postbl(&sblock, cylno)[rpos] = blk; 583 } 584 next: 585 /* 586 * Compute/validate number of cylinder groups. 587 */ 588 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 589 if (sblock.fs_ncyl % sblock.fs_cpg) 590 sblock.fs_ncg++; 591 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 592 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 593 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 594 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 595 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 596 (long)(sblock.fs_fpg / sblock.fs_frag)); 597 printf("number of cylinders per cylinder group (%d) %s.\n", 598 sblock.fs_cpg, "must be increased"); 599 exit(29); 600 } 601 j = sblock.fs_ncg - 1; 602 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 603 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 604 if (j == 0) { 605 printf("Filesystem must have at least %d sectors\n", 606 NSPF(&sblock) * 607 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 608 exit(30); 609 } 610 printf( 611 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 612 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 613 i / sblock.fs_frag); 614 printf( 615 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 616 i * NSPF(&sblock)); 617 sblock.fs_ncg--; 618 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 619 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 620 NSPF(&sblock); 621 warn = 0; 622 } 623 if (warn && !mfs) { 624 printf("Warning: %d sector(s) in last cylinder unallocated\n", 625 sblock.fs_spc - 626 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 627 * sblock.fs_spc)); 628 } 629 /* 630 * fill in remaining fields of the super block 631 */ 632 sblock.fs_csaddr = cgdmin(&sblock, 0); 633 sblock.fs_cssize = 634 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 635 i = sblock.fs_bsize / sizeof(struct csum); 636 sblock.fs_csmask = ~(i - 1); 637 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 638 sblock.fs_csshift++; 639 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 640 if (fscs == NULL) 641 errx(31, "calloc failed"); 642 sblock.fs_magic = FS_MAGIC; 643 sblock.fs_rotdelay = rotdelay; 644 sblock.fs_minfree = minfree; 645 sblock.fs_maxcontig = maxcontig; 646 sblock.fs_maxbpg = maxbpg; 647 sblock.fs_rps = rpm / 60; 648 sblock.fs_optim = opt; 649 sblock.fs_cgrotor = 0; 650 sblock.fs_cstotal.cs_ndir = 0; 651 sblock.fs_cstotal.cs_nbfree = 0; 652 sblock.fs_cstotal.cs_nifree = 0; 653 sblock.fs_cstotal.cs_nffree = 0; 654 sblock.fs_fmod = 0; 655 sblock.fs_ronly = 0; 656 sblock.fs_clean = 1; 657 #ifdef FSIRAND 658 sblock.fs_id[0] = (long)utime; 659 sblock.fs_id[1] = random(); 660 #endif 661 662 /* 663 * Dump out summary information about file system. 664 */ 665 if (!mfs) { 666 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 667 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 668 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 669 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 670 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 671 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 672 sblock.fs_ncg, sblock.fs_cpg, 673 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 674 sblock.fs_ipg); 675 #undef B2MBFACTOR 676 } 677 /* 678 * Now build the cylinders group blocks and 679 * then print out indices of cylinder groups. 680 */ 681 if (!mfs) 682 printf("super-block backups (for fsck -b #) at:\n"); 683 i = 0; 684 width = charsperline(); 685 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 686 initcg(cylno, utime); 687 if (mfs) 688 continue; 689 j = sprintf(tmpbuf, " %ld%s", 690 fsbtodb(&sblock, cgsblock(&sblock, cylno)), 691 cylno < (sblock.fs_ncg-1) ? "," : "" ); 692 if (i + j >= width) { 693 printf("\n"); 694 i = 0; 695 } 696 i += j; 697 printf("%s", tmpbuf); 698 fflush(stdout); 699 } 700 if (!mfs) 701 printf("\n"); 702 if (Nflag && !mfs) 703 exit(0); 704 /* 705 * Now construct the initial file system, 706 * then write out the super-block. 707 */ 708 fsinit(utime); 709 sblock.fs_time = utime; 710 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 711 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 712 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 713 sblock.fs_cssize - i < sblock.fs_bsize ? 714 sblock.fs_cssize - i : sblock.fs_bsize, 715 ((char *)fscs) + i); 716 /* 717 * Write out the duplicate super blocks 718 */ 719 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 720 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 721 sbsize, (char *)&sblock); 722 /* 723 * Update information about this partion in pack 724 * label, to that it may be updated on disk. 725 */ 726 pp->p_fstype = FS_BSDFFS; 727 pp->p_fsize = sblock.fs_fsize; 728 pp->p_frag = sblock.fs_frag; 729 pp->p_cpg = sblock.fs_cpg; 730 /* 731 * Notify parent process of success. 732 * Dissociate from session and tty. 733 */ 734 if (mfs) { 735 kill(mfs_ppid, SIGUSR1); 736 (void) setsid(); 737 (void) close(0); 738 (void) close(1); 739 (void) close(2); 740 (void) chdir("/"); 741 } 742 } 743 744 /* 745 * Initialize a cylinder group. 746 */ 747 void 748 initcg(cylno, utime) 749 int cylno; 750 time_t utime; 751 { 752 daddr_t cbase, d, dlower, dupper, dmax, blkno; 753 long i; 754 register struct csum *cs; 755 #ifdef FSIRAND 756 long j; 757 #endif 758 759 /* 760 * Determine block bounds for cylinder group. 761 * Allow space for super block summary information in first 762 * cylinder group. 763 */ 764 cbase = cgbase(&sblock, cylno); 765 dmax = cbase + sblock.fs_fpg; 766 if (dmax > sblock.fs_size) 767 dmax = sblock.fs_size; 768 dlower = cgsblock(&sblock, cylno) - cbase; 769 dupper = cgdmin(&sblock, cylno) - cbase; 770 if (cylno == 0) 771 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 772 cs = fscs + cylno; 773 memset(&acg, 0, sblock.fs_cgsize); 774 acg.cg_time = utime; 775 acg.cg_magic = CG_MAGIC; 776 acg.cg_cgx = cylno; 777 if (cylno == sblock.fs_ncg - 1) 778 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 779 else 780 acg.cg_ncyl = sblock.fs_cpg; 781 acg.cg_niblk = sblock.fs_ipg; 782 acg.cg_ndblk = dmax - cbase; 783 if (sblock.fs_contigsumsize > 0) 784 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 785 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 786 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 787 acg.cg_iusedoff = acg.cg_boff + 788 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 789 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 790 if (sblock.fs_contigsumsize <= 0) { 791 acg.cg_nextfreeoff = acg.cg_freeoff + 792 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 793 } else { 794 acg.cg_clustersumoff = acg.cg_freeoff + howmany 795 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 796 sizeof(u_int32_t); 797 acg.cg_clustersumoff = 798 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 799 acg.cg_clusteroff = acg.cg_clustersumoff + 800 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 801 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 802 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 803 } 804 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 805 printf("Panic: cylinder group too big\n"); 806 exit(37); 807 } 808 acg.cg_cs.cs_nifree += sblock.fs_ipg; 809 if (cylno == 0) 810 for (i = 0; i < ROOTINO; i++) { 811 setbit(cg_inosused(&acg), i); 812 acg.cg_cs.cs_nifree--; 813 } 814 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 815 #ifdef FSIRAND 816 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) 817 zino[j].di_gen = random(); 818 #endif 819 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 820 sblock.fs_bsize, (char *)zino); 821 } 822 if (cylno > 0) { 823 /* 824 * In cylno 0, beginning space is reserved 825 * for boot and super blocks. 826 */ 827 for (d = 0; d < dlower; d += sblock.fs_frag) { 828 blkno = d / sblock.fs_frag; 829 setblock(&sblock, cg_blksfree(&acg), blkno); 830 if (sblock.fs_contigsumsize > 0) 831 setbit(cg_clustersfree(&acg), blkno); 832 acg.cg_cs.cs_nbfree++; 833 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 834 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 835 [cbtorpos(&sblock, d)]++; 836 } 837 sblock.fs_dsize += dlower; 838 } 839 sblock.fs_dsize += acg.cg_ndblk - dupper; 840 if ((i = dupper % sblock.fs_frag)) { 841 acg.cg_frsum[sblock.fs_frag - i]++; 842 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 843 setbit(cg_blksfree(&acg), dupper); 844 acg.cg_cs.cs_nffree++; 845 } 846 } 847 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 848 blkno = d / sblock.fs_frag; 849 setblock(&sblock, cg_blksfree(&acg), blkno); 850 if (sblock.fs_contigsumsize > 0) 851 setbit(cg_clustersfree(&acg), blkno); 852 acg.cg_cs.cs_nbfree++; 853 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 854 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 855 [cbtorpos(&sblock, d)]++; 856 d += sblock.fs_frag; 857 } 858 if (d < dmax - cbase) { 859 acg.cg_frsum[dmax - cbase - d]++; 860 for (; d < dmax - cbase; d++) { 861 setbit(cg_blksfree(&acg), d); 862 acg.cg_cs.cs_nffree++; 863 } 864 } 865 if (sblock.fs_contigsumsize > 0) { 866 int32_t *sump = cg_clustersum(&acg); 867 u_char *mapp = cg_clustersfree(&acg); 868 int map = *mapp++; 869 int bit = 1; 870 int run = 0; 871 872 for (i = 0; i < acg.cg_nclusterblks; i++) { 873 if ((map & bit) != 0) { 874 run++; 875 } else if (run != 0) { 876 if (run > sblock.fs_contigsumsize) 877 run = sblock.fs_contigsumsize; 878 sump[run]++; 879 run = 0; 880 } 881 if ((i & (NBBY - 1)) != (NBBY - 1)) { 882 bit <<= 1; 883 } else { 884 map = *mapp++; 885 bit = 1; 886 } 887 } 888 if (run != 0) { 889 if (run > sblock.fs_contigsumsize) 890 run = sblock.fs_contigsumsize; 891 sump[run]++; 892 } 893 } 894 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 895 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 896 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 897 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 898 *cs = acg.cg_cs; 899 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 900 sblock.fs_bsize, (char *)&acg); 901 } 902 903 /* 904 * initialize the file system 905 */ 906 struct dinode node; 907 908 #ifdef LOSTDIR 909 #define PREDEFDIR 3 910 #else 911 #define PREDEFDIR 2 912 #endif 913 914 struct direct root_dir[] = { 915 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 916 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 917 #ifdef LOSTDIR 918 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 919 #endif 920 }; 921 struct odirect { 922 u_long d_ino; 923 u_short d_reclen; 924 u_short d_namlen; 925 u_char d_name[MAXNAMLEN + 1]; 926 } oroot_dir[] = { 927 { ROOTINO, sizeof(struct direct), 1, "." }, 928 { ROOTINO, sizeof(struct direct), 2, ".." }, 929 #ifdef LOSTDIR 930 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 931 #endif 932 }; 933 #ifdef LOSTDIR 934 struct direct lost_found_dir[] = { 935 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 936 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 937 { 0, DIRBLKSIZ, 0, 0, 0 }, 938 }; 939 struct odirect olost_found_dir[] = { 940 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 941 { ROOTINO, sizeof(struct direct), 2, ".." }, 942 { 0, DIRBLKSIZ, 0, 0 }, 943 }; 944 #endif 945 char buf[MAXBSIZE]; 946 947 void 948 fsinit(utime) 949 time_t utime; 950 { 951 #ifdef LOSTDIR 952 int i; 953 #endif 954 955 /* 956 * initialize the node 957 */ 958 node.di_atime = utime; 959 node.di_mtime = utime; 960 node.di_ctime = utime; 961 #ifdef LOSTDIR 962 /* 963 * create the lost+found directory 964 */ 965 if (Oflag) { 966 (void)makedir((struct direct *)olost_found_dir, 2); 967 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 968 memmove(&buf[i], &olost_found_dir[2], 969 DIRSIZ(0, &olost_found_dir[2])); 970 } else { 971 (void)makedir(lost_found_dir, 2); 972 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 973 memmove(&buf[i], &lost_found_dir[2], 974 DIRSIZ(0, &lost_found_dir[2])); 975 } 976 node.di_mode = IFDIR | UMASK; 977 node.di_nlink = 2; 978 node.di_size = sblock.fs_bsize; 979 node.di_db[0] = alloc(node.di_size, node.di_mode); 980 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 981 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 982 iput(&node, LOSTFOUNDINO); 983 #endif 984 /* 985 * create the root directory 986 */ 987 if (mfs) 988 node.di_mode = IFDIR | 01777; 989 else 990 node.di_mode = IFDIR | UMASK; 991 node.di_nlink = PREDEFDIR; 992 if (Oflag) 993 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 994 else 995 node.di_size = makedir(root_dir, PREDEFDIR); 996 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 997 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 998 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 999 iput(&node, ROOTINO); 1000 } 1001 1002 /* 1003 * construct a set of directory entries in "buf". 1004 * return size of directory. 1005 */ 1006 int 1007 makedir(protodir, entries) 1008 register struct direct *protodir; 1009 int entries; 1010 { 1011 char *cp; 1012 int i, spcleft; 1013 1014 spcleft = DIRBLKSIZ; 1015 for (cp = buf, i = 0; i < entries - 1; i++) { 1016 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1017 memmove(cp, &protodir[i], protodir[i].d_reclen); 1018 cp += protodir[i].d_reclen; 1019 spcleft -= protodir[i].d_reclen; 1020 } 1021 protodir[i].d_reclen = spcleft; 1022 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1023 return (DIRBLKSIZ); 1024 } 1025 1026 /* 1027 * allocate a block or frag 1028 */ 1029 daddr_t 1030 alloc(size, mode) 1031 int size; 1032 int mode; 1033 { 1034 int i, frag; 1035 daddr_t d, blkno; 1036 1037 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1038 (char *)&acg); 1039 if (acg.cg_magic != CG_MAGIC) { 1040 printf("cg 0: bad magic number\n"); 1041 return (0); 1042 } 1043 if (acg.cg_cs.cs_nbfree == 0) { 1044 printf("first cylinder group ran out of space\n"); 1045 return (0); 1046 } 1047 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1048 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1049 goto goth; 1050 printf("internal error: can't find block in cyl 0\n"); 1051 return (0); 1052 goth: 1053 blkno = fragstoblks(&sblock, d); 1054 clrblock(&sblock, cg_blksfree(&acg), blkno); 1055 if (sblock.fs_contigsumsize > 0) 1056 clrbit(cg_clustersfree(&acg), blkno); 1057 acg.cg_cs.cs_nbfree--; 1058 sblock.fs_cstotal.cs_nbfree--; 1059 fscs[0].cs_nbfree--; 1060 if (mode & IFDIR) { 1061 acg.cg_cs.cs_ndir++; 1062 sblock.fs_cstotal.cs_ndir++; 1063 fscs[0].cs_ndir++; 1064 } 1065 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1066 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1067 if (size != sblock.fs_bsize) { 1068 frag = howmany(size, sblock.fs_fsize); 1069 fscs[0].cs_nffree += sblock.fs_frag - frag; 1070 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1071 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1072 acg.cg_frsum[sblock.fs_frag - frag]++; 1073 for (i = frag; i < sblock.fs_frag; i++) 1074 setbit(cg_blksfree(&acg), d + i); 1075 } 1076 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1077 (char *)&acg); 1078 return (d); 1079 } 1080 1081 /* 1082 * Calculate number of inodes per group. 1083 */ 1084 long 1085 calcipg(cpg, bpcg, usedbp) 1086 long cpg; 1087 long bpcg; 1088 off_t *usedbp; 1089 { 1090 int i; 1091 long ipg, new_ipg, ncg, ncyl; 1092 off_t usedb; 1093 1094 /* 1095 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1096 * Note that fssize is still in sectors, not filesystem blocks. 1097 */ 1098 ncyl = howmany(fssize, (u_int)secpercyl); 1099 ncg = howmany(ncyl, cpg); 1100 /* 1101 * Iterate a few times to allow for ipg depending on itself. 1102 */ 1103 ipg = 0; 1104 for (i = 0; i < 10; i++) { 1105 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1106 * NSPF(&sblock) * (off_t)sectorsize; 1107 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize 1108 / ncg / secpercyl / cpg; 1109 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1110 if (new_ipg == ipg) 1111 break; 1112 ipg = new_ipg; 1113 } 1114 *usedbp = usedb; 1115 return (ipg); 1116 } 1117 1118 /* 1119 * Allocate an inode on the disk 1120 */ 1121 void 1122 iput(ip, ino) 1123 register struct dinode *ip; 1124 register ino_t ino; 1125 { 1126 struct dinode buf[MAXINOPB]; 1127 daddr_t d; 1128 int c; 1129 1130 #ifdef FSIRAND 1131 ip->di_gen = random(); 1132 #endif 1133 c = ino_to_cg(&sblock, ino); 1134 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1135 (char *)&acg); 1136 if (acg.cg_magic != CG_MAGIC) { 1137 printf("cg 0: bad magic number\n"); 1138 exit(31); 1139 } 1140 acg.cg_cs.cs_nifree--; 1141 setbit(cg_inosused(&acg), ino); 1142 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1143 (char *)&acg); 1144 sblock.fs_cstotal.cs_nifree--; 1145 fscs[0].cs_nifree--; 1146 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 1147 printf("fsinit: inode value out of range (%d).\n", ino); 1148 exit(32); 1149 } 1150 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1151 rdfs(d, sblock.fs_bsize, (char *)buf); 1152 buf[ino_to_fsbo(&sblock, ino)] = *ip; 1153 wtfs(d, sblock.fs_bsize, (char *)buf); 1154 } 1155 1156 /* 1157 * Notify parent process that the filesystem has created itself successfully. 1158 * 1159 * We have to wait until the mount has actually completed! 1160 */ 1161 void 1162 started() 1163 { 1164 int retry = 100; /* 10 seconds, 100ms */ 1165 1166 while (mfs_ppid && retry) { 1167 struct stat st; 1168 1169 if ( 1170 stat(mfs_mtpt, &st) < 0 || 1171 st.st_dev != mfs_mtstat.st_dev 1172 ) { 1173 break; 1174 } 1175 usleep(100*1000); 1176 --retry; 1177 } 1178 if (retry == 0) { 1179 fatal("mfs mount failed waiting for mount to go active"); 1180 } 1181 exit(0); 1182 } 1183 1184 #ifdef STANDALONE 1185 /* 1186 * Replace libc function with one suited to our needs. 1187 */ 1188 caddr_t 1189 malloc(size) 1190 register u_long size; 1191 { 1192 char *base, *i; 1193 static u_long pgsz; 1194 struct rlimit rlp; 1195 1196 if (pgsz == 0) { 1197 base = sbrk(0); 1198 pgsz = getpagesize() - 1; 1199 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1200 base = sbrk(i - base); 1201 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1202 warn("getrlimit"); 1203 rlp.rlim_cur = rlp.rlim_max; 1204 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1205 warn("setrlimit"); 1206 memleft = rlp.rlim_max - (u_long)base; 1207 } 1208 size = (size + pgsz) &~ pgsz; 1209 if (size > memleft) 1210 size = memleft; 1211 memleft -= size; 1212 if (size == 0) 1213 return (0); 1214 return ((caddr_t)sbrk(size)); 1215 } 1216 1217 /* 1218 * Replace libc function with one suited to our needs. 1219 */ 1220 caddr_t 1221 realloc(ptr, size) 1222 char *ptr; 1223 u_long size; 1224 { 1225 void *p; 1226 1227 if ((p = malloc(size)) == NULL) 1228 return (NULL); 1229 memmove(p, ptr, size); 1230 free(ptr); 1231 return (p); 1232 } 1233 1234 /* 1235 * Replace libc function with one suited to our needs. 1236 */ 1237 char * 1238 calloc(size, numelm) 1239 u_long size, numelm; 1240 { 1241 caddr_t base; 1242 1243 size *= numelm; 1244 if ((base = malloc(size)) == NULL) 1245 return (NULL); 1246 memset(base, 0, size); 1247 return (base); 1248 } 1249 1250 /* 1251 * Replace libc function with one suited to our needs. 1252 */ 1253 void 1254 free(ptr) 1255 char *ptr; 1256 { 1257 1258 /* do not worry about it for now */ 1259 } 1260 1261 #else /* !STANDALONE */ 1262 1263 void 1264 raise_data_limit() 1265 { 1266 struct rlimit rlp; 1267 1268 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1269 warn("getrlimit"); 1270 rlp.rlim_cur = rlp.rlim_max; 1271 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1272 warn("setrlimit"); 1273 } 1274 1275 #ifdef __ELF__ 1276 extern char *_etext; 1277 #define etext _etext 1278 #else 1279 extern char *etext; 1280 #endif 1281 1282 void 1283 get_memleft() 1284 { 1285 static u_long pgsz; 1286 struct rlimit rlp; 1287 u_long freestart; 1288 u_long dstart; 1289 u_long memused; 1290 1291 pgsz = getpagesize() - 1; 1292 dstart = ((u_long)&etext) &~ pgsz; 1293 freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz); 1294 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1295 warn("getrlimit"); 1296 memused = freestart - dstart; 1297 memleft = rlp.rlim_cur - memused; 1298 } 1299 #endif /* STANDALONE */ 1300 1301 /* 1302 * read a block from the file system 1303 */ 1304 void 1305 rdfs(bno, size, bf) 1306 daddr_t bno; 1307 int size; 1308 char *bf; 1309 { 1310 int n; 1311 1312 if (mfs) { 1313 memmove(bf, membase + bno * sectorsize, size); 1314 return; 1315 } 1316 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1317 printf("seek error: %ld\n", (long)bno); 1318 err(33, "rdfs"); 1319 } 1320 n = read(fsi, bf, size); 1321 if (n != size) { 1322 printf("read error: %ld\n", (long)bno); 1323 err(34, "rdfs"); 1324 } 1325 } 1326 1327 /* 1328 * write a block to the file system 1329 */ 1330 void 1331 wtfs(bno, size, bf) 1332 daddr_t bno; 1333 int size; 1334 char *bf; 1335 { 1336 int n; 1337 1338 if (mfs) { 1339 memmove(membase + bno * sectorsize, bf, size); 1340 return; 1341 } 1342 if (Nflag) 1343 return; 1344 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1345 printf("seek error: %ld\n", (long)bno); 1346 err(35, "wtfs"); 1347 } 1348 n = write(fso, bf, size); 1349 if (n != size) { 1350 printf("write error: %ld\n", (long)bno); 1351 err(36, "wtfs"); 1352 } 1353 } 1354 1355 /* 1356 * check if a block is available 1357 */ 1358 int 1359 isblock(fs, cp, h) 1360 struct fs *fs; 1361 unsigned char *cp; 1362 int h; 1363 { 1364 unsigned char mask; 1365 1366 switch (fs->fs_frag) { 1367 case 8: 1368 return (cp[h] == 0xff); 1369 case 4: 1370 mask = 0x0f << ((h & 0x1) << 2); 1371 return ((cp[h >> 1] & mask) == mask); 1372 case 2: 1373 mask = 0x03 << ((h & 0x3) << 1); 1374 return ((cp[h >> 2] & mask) == mask); 1375 case 1: 1376 mask = 0x01 << (h & 0x7); 1377 return ((cp[h >> 3] & mask) == mask); 1378 default: 1379 #ifdef STANDALONE 1380 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1381 #else 1382 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1383 #endif 1384 return (0); 1385 } 1386 } 1387 1388 /* 1389 * take a block out of the map 1390 */ 1391 void 1392 clrblock(fs, cp, h) 1393 struct fs *fs; 1394 unsigned char *cp; 1395 int h; 1396 { 1397 switch ((fs)->fs_frag) { 1398 case 8: 1399 cp[h] = 0; 1400 return; 1401 case 4: 1402 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1403 return; 1404 case 2: 1405 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1406 return; 1407 case 1: 1408 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1409 return; 1410 default: 1411 #ifdef STANDALONE 1412 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1413 #else 1414 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1415 #endif 1416 return; 1417 } 1418 } 1419 1420 /* 1421 * put a block into the map 1422 */ 1423 void 1424 setblock(fs, cp, h) 1425 struct fs *fs; 1426 unsigned char *cp; 1427 int h; 1428 { 1429 switch (fs->fs_frag) { 1430 case 8: 1431 cp[h] = 0xff; 1432 return; 1433 case 4: 1434 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1435 return; 1436 case 2: 1437 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1438 return; 1439 case 1: 1440 cp[h >> 3] |= (0x01 << (h & 0x7)); 1441 return; 1442 default: 1443 #ifdef STANDALONE 1444 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1445 #else 1446 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1447 #endif 1448 return; 1449 } 1450 } 1451 1452 /* 1453 * Determine the number of characters in a 1454 * single line. 1455 */ 1456 1457 static int 1458 charsperline() 1459 { 1460 int columns; 1461 char *cp; 1462 struct winsize ws; 1463 1464 columns = 0; 1465 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1466 columns = ws.ws_col; 1467 if (columns == 0 && (cp = getenv("COLUMNS"))) 1468 columns = atoi(cp); 1469 if (columns == 0) 1470 columns = 80; /* last resort */ 1471 return columns; 1472 } 1473