1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define _WANT_P_OSREL 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 /* 80 * The definition of "struct cg" used to contain an extra field at the end 81 * to represent the variable-length data that followed the fixed structure. 82 * This had the effect of artificially limiting the number of blocks that 83 * newfs would put in a CG, since newfs thought that the fixed-size header 84 * was bigger than it really was. When we started validating that the CG 85 * header data actually fit into one fs block, the placeholder field caused 86 * a problem because it caused struct cg to be a different size depending on 87 * platform. The placeholder field was later removed, but this caused a 88 * backward compatibility problem with older binaries that still thought 89 * struct cg was larger, and a new file system could fail validation if 90 * viewed by the older binaries. To avoid this compatibility problem, we 91 * now artificially reduce the amount of space that the variable-length data 92 * can use such that new file systems will pass validation by older binaries. 93 */ 94 #define CGSIZEFUDGE 8 95 96 static struct csum *fscs; 97 #define sblock disk.d_fs 98 #define acg disk.d_cg 99 100 union dinode { 101 struct ufs1_dinode dp1; 102 struct ufs2_dinode dp2; 103 }; 104 #define DIP(dp, field) \ 105 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 106 (dp)->dp1.field : (dp)->dp2.field) 107 108 static caddr_t iobuf; 109 static long iobufsize; 110 static ufs2_daddr_t alloc(int size, int mode); 111 static int charsperline(void); 112 static void clrblock(struct fs *, unsigned char *, int); 113 static void fsinit(time_t); 114 static int ilog2(int); 115 static void initcg(int, time_t); 116 static int isblock(struct fs *, unsigned char *, int); 117 static void iput(union dinode *, ino_t); 118 static int makedir(struct direct *, int); 119 static void setblock(struct fs *, unsigned char *, int); 120 static void wtfs(ufs2_daddr_t, int, char *); 121 static u_int32_t newfs_random(void); 122 123 void 124 mkfs(struct partition *pp, char *fsys) 125 { 126 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 127 long i, j, csfrags; 128 uint cg; 129 time_t utime; 130 quad_t sizepb; 131 int width; 132 ino_t maxinum; 133 int minfragsperinode; /* minimum ratio of frags to inodes */ 134 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 135 struct fsrecovery *fsr; 136 char *fsrbuf; 137 union { 138 struct fs fdummy; 139 char cdummy[SBLOCKSIZE]; 140 } dummy; 141 #define fsdummy dummy.fdummy 142 #define chdummy dummy.cdummy 143 144 /* 145 * Our blocks == sector size, and the version of UFS we are using is 146 * specified by Oflag. 147 */ 148 disk.d_bsize = sectorsize; 149 disk.d_ufs = Oflag; 150 if (Rflag) 151 utime = 1000000000; 152 else 153 time(&utime); 154 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 155 printf("Superblock summary info allocation failed.\n"); 156 exit(18); 157 } 158 sblock.fs_old_flags = FS_FLAGS_UPDATED; 159 sblock.fs_flags = 0; 160 if (Uflag) 161 sblock.fs_flags |= FS_DOSOFTDEP; 162 if (Lflag) 163 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 164 if (Jflag) 165 sblock.fs_flags |= FS_GJOURNAL; 166 if (lflag) 167 sblock.fs_flags |= FS_MULTILABEL; 168 if (tflag) 169 sblock.fs_flags |= FS_TRIM; 170 /* 171 * Validate the given file system size. 172 * Verify that its last block can actually be accessed. 173 * Convert to file system fragment sized units. 174 */ 175 if (fssize <= 0) { 176 printf("preposterous size %jd\n", (intmax_t)fssize); 177 exit(13); 178 } 179 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 180 (char *)&sblock); 181 /* 182 * collect and verify the file system density info 183 */ 184 sblock.fs_avgfilesize = avgfilesize; 185 sblock.fs_avgfpdir = avgfilesperdir; 186 if (sblock.fs_avgfilesize <= 0) 187 printf("illegal expected average file size %d\n", 188 sblock.fs_avgfilesize), exit(14); 189 if (sblock.fs_avgfpdir <= 0) 190 printf("illegal expected number of files per directory %d\n", 191 sblock.fs_avgfpdir), exit(15); 192 193 restart: 194 /* 195 * collect and verify the block and fragment sizes 196 */ 197 sblock.fs_bsize = bsize; 198 sblock.fs_fsize = fsize; 199 if (!POWEROF2(sblock.fs_bsize)) { 200 printf("block size must be a power of 2, not %d\n", 201 sblock.fs_bsize); 202 exit(16); 203 } 204 if (!POWEROF2(sblock.fs_fsize)) { 205 printf("fragment size must be a power of 2, not %d\n", 206 sblock.fs_fsize); 207 exit(17); 208 } 209 if (sblock.fs_fsize < sectorsize) { 210 printf("increasing fragment size from %d to sector size (%d)\n", 211 sblock.fs_fsize, sectorsize); 212 sblock.fs_fsize = sectorsize; 213 } 214 if (sblock.fs_bsize > MAXBSIZE) { 215 printf("decreasing block size from %d to maximum (%d)\n", 216 sblock.fs_bsize, MAXBSIZE); 217 sblock.fs_bsize = MAXBSIZE; 218 } 219 if (sblock.fs_bsize < MINBSIZE) { 220 printf("increasing block size from %d to minimum (%d)\n", 221 sblock.fs_bsize, MINBSIZE); 222 sblock.fs_bsize = MINBSIZE; 223 } 224 if (sblock.fs_fsize > MAXBSIZE) { 225 printf("decreasing fragment size from %d to maximum (%d)\n", 226 sblock.fs_fsize, MAXBSIZE); 227 sblock.fs_fsize = MAXBSIZE; 228 } 229 if (sblock.fs_bsize < sblock.fs_fsize) { 230 printf("increasing block size from %d to fragment size (%d)\n", 231 sblock.fs_bsize, sblock.fs_fsize); 232 sblock.fs_bsize = sblock.fs_fsize; 233 } 234 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 235 printf( 236 "increasing fragment size from %d to block size / %d (%d)\n", 237 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 238 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 239 } 240 if (maxbsize == 0) 241 maxbsize = bsize; 242 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 243 sblock.fs_maxbsize = sblock.fs_bsize; 244 printf("Extent size set to %d\n", sblock.fs_maxbsize); 245 } else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 246 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 247 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 248 } else { 249 sblock.fs_maxbsize = maxbsize; 250 } 251 /* 252 * Maxcontig sets the default for the maximum number of blocks 253 * that may be allocated sequentially. With file system clustering 254 * it is possible to allocate contiguous blocks up to the maximum 255 * transfer size permitted by the controller or buffering. 256 */ 257 if (maxcontig == 0) 258 maxcontig = MAX(1, MAXPHYS / bsize); 259 sblock.fs_maxcontig = maxcontig; 260 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 261 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 262 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 263 } 264 if (sblock.fs_maxcontig > 1) 265 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 266 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 267 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 268 sblock.fs_qbmask = ~sblock.fs_bmask; 269 sblock.fs_qfmask = ~sblock.fs_fmask; 270 sblock.fs_bshift = ilog2(sblock.fs_bsize); 271 sblock.fs_fshift = ilog2(sblock.fs_fsize); 272 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 273 sblock.fs_fragshift = ilog2(sblock.fs_frag); 274 if (sblock.fs_frag > MAXFRAG) { 275 printf("fragment size %d is still too small (can't happen)\n", 276 sblock.fs_bsize / MAXFRAG); 277 exit(21); 278 } 279 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 280 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 281 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 282 283 /* 284 * Before the filesystem is finally initialized, mark it 285 * as incompletely initialized. 286 */ 287 sblock.fs_magic = FS_BAD_MAGIC; 288 289 if (Oflag == 1) { 290 sblock.fs_sblockloc = SBLOCK_UFS1; 291 sblock.fs_sblockactualloc = SBLOCK_UFS1; 292 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 293 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 294 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 295 sizeof(ufs1_daddr_t)); 296 sblock.fs_old_inodefmt = FS_44INODEFMT; 297 sblock.fs_old_cgoffset = 0; 298 sblock.fs_old_cgmask = 0xffffffff; 299 sblock.fs_old_size = sblock.fs_size; 300 sblock.fs_old_rotdelay = 0; 301 sblock.fs_old_rps = 60; 302 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 303 sblock.fs_old_cpg = 1; 304 sblock.fs_old_interleave = 1; 305 sblock.fs_old_trackskew = 0; 306 sblock.fs_old_cpc = 0; 307 sblock.fs_old_postblformat = 1; 308 sblock.fs_old_nrpos = 1; 309 } else { 310 sblock.fs_sblockloc = SBLOCK_UFS2; 311 sblock.fs_sblockactualloc = SBLOCK_UFS2; 312 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 313 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 314 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 315 sizeof(ufs2_daddr_t)); 316 } 317 sblock.fs_sblkno = 318 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 319 sblock.fs_frag); 320 sblock.fs_cblkno = sblock.fs_sblkno + 321 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 322 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 323 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 324 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 325 sizepb *= NINDIR(&sblock); 326 sblock.fs_maxfilesize += sizepb; 327 } 328 329 /* 330 * It's impossible to create a snapshot in case that fs_maxfilesize 331 * is smaller than the fssize. 332 */ 333 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 334 warnx("WARNING: You will be unable to create snapshots on this " 335 "file system. Correct by using a larger blocksize."); 336 } 337 338 /* 339 * Calculate the number of blocks to put into each cylinder group. 340 * 341 * This algorithm selects the number of blocks per cylinder 342 * group. The first goal is to have at least enough data blocks 343 * in each cylinder group to meet the density requirement. Once 344 * this goal is achieved we try to expand to have at least 345 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 346 * pack as many blocks into each cylinder group map as will fit. 347 * 348 * We start by calculating the smallest number of blocks that we 349 * can put into each cylinder group. If this is too big, we reduce 350 * the density until it fits. 351 */ 352 retry: 353 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 354 minfragsperinode = 1 + fssize / maxinum; 355 if (density == 0) { 356 density = MAX(NFPI, minfragsperinode) * fsize; 357 } else if (density < minfragsperinode * fsize) { 358 origdensity = density; 359 density = minfragsperinode * fsize; 360 fprintf(stderr, "density increased from %d to %d\n", 361 origdensity, density); 362 } 363 origdensity = density; 364 for (;;) { 365 fragsperinode = MAX(numfrags(&sblock, density), 1); 366 if (fragsperinode < minfragsperinode) { 367 bsize <<= 1; 368 fsize <<= 1; 369 printf("Block size too small for a file system %s %d\n", 370 "of this size. Increasing blocksize to", bsize); 371 goto restart; 372 } 373 minfpg = fragsperinode * INOPB(&sblock); 374 if (minfpg > sblock.fs_size) 375 minfpg = sblock.fs_size; 376 sblock.fs_ipg = INOPB(&sblock); 377 sblock.fs_fpg = roundup(sblock.fs_iblkno + 378 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 379 if (sblock.fs_fpg < minfpg) 380 sblock.fs_fpg = minfpg; 381 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 382 INOPB(&sblock)); 383 sblock.fs_fpg = roundup(sblock.fs_iblkno + 384 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 385 if (sblock.fs_fpg < minfpg) 386 sblock.fs_fpg = minfpg; 387 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 388 INOPB(&sblock)); 389 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 390 CGSIZEFUDGE) 391 break; 392 density -= sblock.fs_fsize; 393 } 394 if (density != origdensity) 395 printf("density reduced from %d to %d\n", origdensity, density); 396 /* 397 * Start packing more blocks into the cylinder group until 398 * it cannot grow any larger, the number of cylinder groups 399 * drops below MINCYLGRPS, or we reach the size requested. 400 * For UFS1 inodes per cylinder group are stored in an int16_t 401 * so fs_ipg is limited to 2^15 - 1. 402 */ 403 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 404 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 405 INOPB(&sblock)); 406 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 407 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 408 break; 409 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 410 CGSIZEFUDGE) 411 continue; 412 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 413 CGSIZEFUDGE) 414 break; 415 } 416 sblock.fs_fpg -= sblock.fs_frag; 417 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 418 INOPB(&sblock)); 419 break; 420 } 421 /* 422 * Check to be sure that the last cylinder group has enough blocks 423 * to be viable. If it is too small, reduce the number of blocks 424 * per cylinder group which will have the effect of moving more 425 * blocks into the last cylinder group. 426 */ 427 optimalfpg = sblock.fs_fpg; 428 for (;;) { 429 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 430 lastminfpg = roundup(sblock.fs_iblkno + 431 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 432 if (sblock.fs_size < lastminfpg) { 433 printf("Filesystem size %jd < minimum size of %d\n", 434 (intmax_t)sblock.fs_size, lastminfpg); 435 exit(28); 436 } 437 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 438 sblock.fs_size % sblock.fs_fpg == 0) 439 break; 440 sblock.fs_fpg -= sblock.fs_frag; 441 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 442 INOPB(&sblock)); 443 } 444 if (optimalfpg != sblock.fs_fpg) 445 printf("Reduced frags per cylinder group from %d to %d %s\n", 446 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 447 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 448 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 449 if (Oflag == 1) { 450 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 451 sblock.fs_old_nsect = sblock.fs_old_spc; 452 sblock.fs_old_npsect = sblock.fs_old_spc; 453 sblock.fs_old_ncyl = sblock.fs_ncg; 454 } 455 /* 456 * fill in remaining fields of the super block 457 */ 458 sblock.fs_csaddr = cgdmin(&sblock, 0); 459 sblock.fs_cssize = 460 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 461 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 462 if (fscs == NULL) 463 errx(31, "calloc failed"); 464 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 465 if (sblock.fs_sbsize > SBLOCKSIZE) 466 sblock.fs_sbsize = SBLOCKSIZE; 467 if (sblock.fs_sbsize < realsectorsize) 468 sblock.fs_sbsize = realsectorsize; 469 sblock.fs_minfree = minfree; 470 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 471 sblock.fs_metaspace = blknum(&sblock, metaspace); 472 else if (metaspace != -1) 473 /* reserve half of minfree for metadata blocks */ 474 sblock.fs_metaspace = blknum(&sblock, 475 (sblock.fs_fpg * minfree) / 200); 476 if (maxbpg == 0) 477 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 478 else 479 sblock.fs_maxbpg = maxbpg; 480 sblock.fs_optim = opt; 481 sblock.fs_cgrotor = 0; 482 sblock.fs_pendingblocks = 0; 483 sblock.fs_pendinginodes = 0; 484 sblock.fs_fmod = 0; 485 sblock.fs_ronly = 0; 486 sblock.fs_state = 0; 487 sblock.fs_clean = 1; 488 sblock.fs_id[0] = (long)utime; 489 sblock.fs_id[1] = newfs_random(); 490 sblock.fs_fsmnt[0] = '\0'; 491 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 492 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 493 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 494 sblock.fs_cstotal.cs_nbfree = 495 fragstoblks(&sblock, sblock.fs_dsize) - 496 howmany(csfrags, sblock.fs_frag); 497 sblock.fs_cstotal.cs_nffree = 498 fragnum(&sblock, sblock.fs_size) + 499 (fragnum(&sblock, csfrags) > 0 ? 500 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 501 sblock.fs_cstotal.cs_nifree = 502 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 503 sblock.fs_cstotal.cs_ndir = 0; 504 sblock.fs_dsize -= csfrags; 505 sblock.fs_time = utime; 506 if (Oflag == 1) { 507 sblock.fs_old_time = utime; 508 sblock.fs_old_dsize = sblock.fs_dsize; 509 sblock.fs_old_csaddr = sblock.fs_csaddr; 510 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 511 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 512 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 513 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 514 } 515 /* 516 * Set flags for metadata that is being check-hashed. 517 * 518 * Metadata check hashes are not supported in the UFS version 1 519 * filesystem to keep it as small and simple as possible. 520 */ 521 if (Oflag > 1) { 522 sblock.fs_flags |= FS_METACKHASH; 523 if (getosreldate() >= P_OSREL_CK_CYLGRP) 524 sblock.fs_metackhash |= CK_CYLGRP; 525 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 526 sblock.fs_metackhash |= CK_SUPERBLOCK; 527 if (getosreldate() >= P_OSREL_CK_INODE) 528 sblock.fs_metackhash |= CK_INODE; 529 } 530 531 /* 532 * Dump out summary information about file system. 533 */ 534 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 535 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 536 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 537 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 538 sblock.fs_fsize); 539 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 540 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 541 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 542 if (sblock.fs_flags & FS_DOSOFTDEP) 543 printf("\twith soft updates\n"); 544 # undef B2MBFACTOR 545 546 if (Eflag && !Nflag) { 547 printf("Erasing sectors [%jd...%jd]\n", 548 sblock.fs_sblockloc / disk.d_bsize, 549 fsbtodb(&sblock, sblock.fs_size) - 1); 550 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 551 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 552 } 553 /* 554 * Wipe out old UFS1 superblock(s) if necessary. 555 */ 556 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 557 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 558 SBLOCKSIZE); 559 if (i == -1) 560 err(1, "can't read old UFS1 superblock: %s", 561 disk.d_error); 562 563 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 564 fsdummy.fs_magic = 0; 565 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 566 chdummy, SBLOCKSIZE); 567 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 568 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 569 fssize) 570 break; 571 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 572 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 573 } 574 } 575 } 576 /* 577 * Reference the summary information so it will also be written. 578 */ 579 sblock.fs_csp = fscs; 580 if (!Nflag && sbwrite(&disk, 0) != 0) 581 err(1, "sbwrite: %s", disk.d_error); 582 if (Xflag == 1) { 583 printf("** Exiting on Xflag 1\n"); 584 exit(0); 585 } 586 if (Xflag == 2) 587 printf("** Leaving BAD MAGIC on Xflag 2\n"); 588 else 589 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 590 591 /* 592 * Now build the cylinders group blocks and 593 * then print out indices of cylinder groups. 594 */ 595 printf("super-block backups (for fsck_ffs -b #) at:\n"); 596 i = 0; 597 width = charsperline(); 598 /* 599 * Allocate space for two sets of inode blocks. 600 */ 601 iobufsize = 2 * sblock.fs_bsize; 602 if ((iobuf = calloc(1, iobufsize)) == 0) { 603 printf("Cannot allocate I/O buffer\n"); 604 exit(38); 605 } 606 /* 607 * Write out all the cylinder groups and backup superblocks. 608 */ 609 for (cg = 0; cg < sblock.fs_ncg; cg++) { 610 if (!Nflag) 611 initcg(cg, utime); 612 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 613 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 614 cg < (sblock.fs_ncg-1) ? "," : ""); 615 if (j < 0) 616 tmpbuf[j = 0] = '\0'; 617 if (i + j >= width) { 618 printf("\n"); 619 i = 0; 620 } 621 i += j; 622 printf("%s", tmpbuf); 623 fflush(stdout); 624 } 625 printf("\n"); 626 if (Nflag) 627 exit(0); 628 /* 629 * Now construct the initial file system, 630 * then write out the super-block. 631 */ 632 fsinit(utime); 633 if (Oflag == 1) { 634 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 635 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 636 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 637 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 638 } 639 if (Xflag == 3) { 640 printf("** Exiting on Xflag 3\n"); 641 exit(0); 642 } 643 if (sbwrite(&disk, 0) != 0) 644 err(1, "sbwrite: %s", disk.d_error); 645 /* 646 * For UFS1 filesystems with a blocksize of 64K, the first 647 * alternate superblock resides at the location used for 648 * the default UFS2 superblock. As there is a valid 649 * superblock at this location, the boot code will use 650 * it as its first choice. Thus we have to ensure that 651 * all of its statistcs on usage are correct. 652 */ 653 if (Oflag == 1 && sblock.fs_bsize == 65536) 654 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 655 sblock.fs_bsize, (char *)&sblock); 656 /* 657 * Read the last sector of the boot block, replace the last 658 * 20 bytes with the recovery information, then write it back. 659 * The recovery information only works for UFS2 filesystems. 660 * For UFS1, zero out the area to ensure that an old UFS2 661 * recovery block is not accidentally found. 662 */ 663 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 664 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 665 fsrbuf, realsectorsize) == -1) 666 err(1, "can't read recovery area: %s", disk.d_error); 667 fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 668 if (sblock.fs_magic != FS_UFS2_MAGIC) { 669 memset(fsr, 0, sizeof *fsr); 670 } else { 671 fsr->fsr_magic = sblock.fs_magic; 672 fsr->fsr_fpg = sblock.fs_fpg; 673 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 674 fsr->fsr_sblkno = sblock.fs_sblkno; 675 fsr->fsr_ncg = sblock.fs_ncg; 676 } 677 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 678 realsectorsize, fsrbuf); 679 free(fsrbuf); 680 /* 681 * Update information about this partition in pack 682 * label, to that it may be updated on disk. 683 */ 684 if (pp != NULL) { 685 pp->p_fstype = FS_BSDFFS; 686 pp->p_fsize = sblock.fs_fsize; 687 pp->p_frag = sblock.fs_frag; 688 pp->p_cpg = sblock.fs_fpg; 689 } 690 /* 691 * This should NOT happen. If it does complain loudly and 692 * take evasive action. 693 */ 694 if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) { 695 printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ", 696 sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize); 697 printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n", 698 sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock)); 699 printf("Please file a FreeBSD bug report and include this " 700 "output\n"); 701 maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1; 702 density = 0; 703 goto retry; 704 } 705 } 706 707 /* 708 * Initialize a cylinder group. 709 */ 710 void 711 initcg(int cylno, time_t utime) 712 { 713 long blkno, start; 714 off_t savedactualloc; 715 uint i, j, d, dlower, dupper; 716 ufs2_daddr_t cbase, dmax; 717 struct ufs1_dinode *dp1; 718 struct ufs2_dinode *dp2; 719 struct csum *cs; 720 721 /* 722 * Determine block bounds for cylinder group. 723 * Allow space for super block summary information in first 724 * cylinder group. 725 */ 726 cbase = cgbase(&sblock, cylno); 727 dmax = cbase + sblock.fs_fpg; 728 if (dmax > sblock.fs_size) 729 dmax = sblock.fs_size; 730 dlower = cgsblock(&sblock, cylno) - cbase; 731 dupper = cgdmin(&sblock, cylno) - cbase; 732 if (cylno == 0) 733 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 734 cs = &fscs[cylno]; 735 memset(&acg, 0, sblock.fs_cgsize); 736 acg.cg_time = utime; 737 acg.cg_magic = CG_MAGIC; 738 acg.cg_cgx = cylno; 739 acg.cg_niblk = sblock.fs_ipg; 740 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 741 acg.cg_ndblk = dmax - cbase; 742 if (sblock.fs_contigsumsize > 0) 743 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 744 start = sizeof(acg); 745 if (Oflag == 2) { 746 acg.cg_iusedoff = start; 747 } else { 748 acg.cg_old_ncyl = sblock.fs_old_cpg; 749 acg.cg_old_time = acg.cg_time; 750 acg.cg_time = 0; 751 acg.cg_old_niblk = acg.cg_niblk; 752 acg.cg_niblk = 0; 753 acg.cg_initediblk = 0; 754 acg.cg_old_btotoff = start; 755 acg.cg_old_boff = acg.cg_old_btotoff + 756 sblock.fs_old_cpg * sizeof(int32_t); 757 acg.cg_iusedoff = acg.cg_old_boff + 758 sblock.fs_old_cpg * sizeof(u_int16_t); 759 } 760 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 761 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 762 if (sblock.fs_contigsumsize > 0) { 763 acg.cg_clustersumoff = 764 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 765 acg.cg_clustersumoff -= sizeof(u_int32_t); 766 acg.cg_clusteroff = acg.cg_clustersumoff + 767 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 768 acg.cg_nextfreeoff = acg.cg_clusteroff + 769 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 770 } 771 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 772 printf("Panic: cylinder group too big by %d bytes\n", 773 acg.cg_nextfreeoff - (unsigned)sblock.fs_cgsize); 774 exit(37); 775 } 776 acg.cg_cs.cs_nifree += sblock.fs_ipg; 777 if (cylno == 0) 778 for (i = 0; i < (long)UFS_ROOTINO; i++) { 779 setbit(cg_inosused(&acg), i); 780 acg.cg_cs.cs_nifree--; 781 } 782 if (cylno > 0) { 783 /* 784 * In cylno 0, beginning space is reserved 785 * for boot and super blocks. 786 */ 787 for (d = 0; d < dlower; d += sblock.fs_frag) { 788 blkno = d / sblock.fs_frag; 789 setblock(&sblock, cg_blksfree(&acg), blkno); 790 if (sblock.fs_contigsumsize > 0) 791 setbit(cg_clustersfree(&acg), blkno); 792 acg.cg_cs.cs_nbfree++; 793 } 794 } 795 if ((i = dupper % sblock.fs_frag)) { 796 acg.cg_frsum[sblock.fs_frag - i]++; 797 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 798 setbit(cg_blksfree(&acg), dupper); 799 acg.cg_cs.cs_nffree++; 800 } 801 } 802 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 803 d += sblock.fs_frag) { 804 blkno = d / sblock.fs_frag; 805 setblock(&sblock, cg_blksfree(&acg), blkno); 806 if (sblock.fs_contigsumsize > 0) 807 setbit(cg_clustersfree(&acg), blkno); 808 acg.cg_cs.cs_nbfree++; 809 } 810 if (d < acg.cg_ndblk) { 811 acg.cg_frsum[acg.cg_ndblk - d]++; 812 for (; d < acg.cg_ndblk; d++) { 813 setbit(cg_blksfree(&acg), d); 814 acg.cg_cs.cs_nffree++; 815 } 816 } 817 if (sblock.fs_contigsumsize > 0) { 818 int32_t *sump = cg_clustersum(&acg); 819 u_char *mapp = cg_clustersfree(&acg); 820 int map = *mapp++; 821 int bit = 1; 822 int run = 0; 823 824 for (i = 0; i < acg.cg_nclusterblks; i++) { 825 if ((map & bit) != 0) 826 run++; 827 else if (run != 0) { 828 if (run > sblock.fs_contigsumsize) 829 run = sblock.fs_contigsumsize; 830 sump[run]++; 831 run = 0; 832 } 833 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 834 bit <<= 1; 835 else { 836 map = *mapp++; 837 bit = 1; 838 } 839 } 840 if (run != 0) { 841 if (run > sblock.fs_contigsumsize) 842 run = sblock.fs_contigsumsize; 843 sump[run]++; 844 } 845 } 846 *cs = acg.cg_cs; 847 /* 848 * Write out the duplicate super block. Then write the cylinder 849 * group map and two blocks worth of inodes in a single write. 850 */ 851 savedactualloc = sblock.fs_sblockactualloc; 852 sblock.fs_sblockactualloc = 853 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 854 if (sbwrite(&disk, 0) != 0) 855 err(1, "sbwrite: %s", disk.d_error); 856 sblock.fs_sblockactualloc = savedactualloc; 857 if (cgwrite(&disk) != 0) 858 err(1, "initcg: cgwrite: %s", disk.d_error); 859 start = 0; 860 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 861 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 862 for (i = 0; i < acg.cg_initediblk; i++) { 863 if (sblock.fs_magic == FS_UFS1_MAGIC) { 864 dp1->di_gen = newfs_random(); 865 dp1++; 866 } else { 867 dp2->di_gen = newfs_random(); 868 dp2++; 869 } 870 } 871 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 872 /* 873 * For the old file system, we have to initialize all the inodes. 874 */ 875 if (Oflag == 1) { 876 for (i = 2 * sblock.fs_frag; 877 i < sblock.fs_ipg / INOPF(&sblock); 878 i += sblock.fs_frag) { 879 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 880 for (j = 0; j < INOPB(&sblock); j++) { 881 dp1->di_gen = newfs_random(); 882 dp1++; 883 } 884 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 885 sblock.fs_bsize, &iobuf[start]); 886 } 887 } 888 } 889 890 /* 891 * initialize the file system 892 */ 893 #define ROOTLINKCNT 3 894 895 static struct direct root_dir[] = { 896 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 897 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 898 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 899 }; 900 901 #define SNAPLINKCNT 2 902 903 static struct direct snap_dir[] = { 904 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 905 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 906 }; 907 908 void 909 fsinit(time_t utime) 910 { 911 union dinode node; 912 struct group *grp; 913 gid_t gid; 914 int entries; 915 916 memset(&node, 0, sizeof node); 917 if ((grp = getgrnam("operator")) != NULL) { 918 gid = grp->gr_gid; 919 } else { 920 warnx("Cannot retrieve operator gid, using gid 0."); 921 gid = 0; 922 } 923 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 924 if (sblock.fs_magic == FS_UFS1_MAGIC) { 925 /* 926 * initialize the node 927 */ 928 node.dp1.di_atime = utime; 929 node.dp1.di_mtime = utime; 930 node.dp1.di_ctime = utime; 931 /* 932 * create the root directory 933 */ 934 node.dp1.di_mode = IFDIR | UMASK; 935 node.dp1.di_nlink = entries; 936 node.dp1.di_size = makedir(root_dir, entries); 937 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 938 node.dp1.di_blocks = 939 btodb(fragroundup(&sblock, node.dp1.di_size)); 940 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 941 iobuf); 942 iput(&node, UFS_ROOTINO); 943 if (!nflag) { 944 /* 945 * create the .snap directory 946 */ 947 node.dp1.di_mode |= 020; 948 node.dp1.di_gid = gid; 949 node.dp1.di_nlink = SNAPLINKCNT; 950 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 951 node.dp1.di_db[0] = 952 alloc(sblock.fs_fsize, node.dp1.di_mode); 953 node.dp1.di_blocks = 954 btodb(fragroundup(&sblock, node.dp1.di_size)); 955 node.dp1.di_dirdepth = 1; 956 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 957 sblock.fs_fsize, iobuf); 958 iput(&node, UFS_ROOTINO + 1); 959 } 960 } else { 961 /* 962 * initialize the node 963 */ 964 node.dp2.di_atime = utime; 965 node.dp2.di_mtime = utime; 966 node.dp2.di_ctime = utime; 967 node.dp2.di_birthtime = utime; 968 /* 969 * create the root directory 970 */ 971 node.dp2.di_mode = IFDIR | UMASK; 972 node.dp2.di_nlink = entries; 973 node.dp2.di_size = makedir(root_dir, entries); 974 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 975 node.dp2.di_blocks = 976 btodb(fragroundup(&sblock, node.dp2.di_size)); 977 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 978 iobuf); 979 iput(&node, UFS_ROOTINO); 980 if (!nflag) { 981 /* 982 * create the .snap directory 983 */ 984 node.dp2.di_mode |= 020; 985 node.dp2.di_gid = gid; 986 node.dp2.di_nlink = SNAPLINKCNT; 987 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 988 node.dp2.di_db[0] = 989 alloc(sblock.fs_fsize, node.dp2.di_mode); 990 node.dp2.di_blocks = 991 btodb(fragroundup(&sblock, node.dp2.di_size)); 992 node.dp2.di_dirdepth = 1; 993 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 994 sblock.fs_fsize, iobuf); 995 iput(&node, UFS_ROOTINO + 1); 996 } 997 } 998 } 999 1000 /* 1001 * construct a set of directory entries in "iobuf". 1002 * return size of directory. 1003 */ 1004 int 1005 makedir(struct direct *protodir, int entries) 1006 { 1007 char *cp; 1008 int i, spcleft; 1009 1010 spcleft = DIRBLKSIZ; 1011 memset(iobuf, 0, DIRBLKSIZ); 1012 for (cp = iobuf, i = 0; i < entries - 1; i++) { 1013 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1014 memmove(cp, &protodir[i], protodir[i].d_reclen); 1015 cp += protodir[i].d_reclen; 1016 spcleft -= protodir[i].d_reclen; 1017 } 1018 protodir[i].d_reclen = spcleft; 1019 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1020 return (DIRBLKSIZ); 1021 } 1022 1023 /* 1024 * allocate a block or frag 1025 */ 1026 ufs2_daddr_t 1027 alloc(int size, int mode) 1028 { 1029 int i, blkno, frag; 1030 uint d; 1031 1032 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1033 sblock.fs_cgsize); 1034 if (acg.cg_magic != CG_MAGIC) { 1035 printf("cg 0: bad magic number\n"); 1036 exit(38); 1037 } 1038 if (acg.cg_cs.cs_nbfree == 0) { 1039 printf("first cylinder group ran out of space\n"); 1040 exit(39); 1041 } 1042 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1043 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1044 goto goth; 1045 printf("internal error: can't find block in cyl 0\n"); 1046 exit(40); 1047 goth: 1048 blkno = fragstoblks(&sblock, d); 1049 clrblock(&sblock, cg_blksfree(&acg), blkno); 1050 if (sblock.fs_contigsumsize > 0) 1051 clrbit(cg_clustersfree(&acg), blkno); 1052 acg.cg_cs.cs_nbfree--; 1053 sblock.fs_cstotal.cs_nbfree--; 1054 fscs[0].cs_nbfree--; 1055 if (mode & IFDIR) { 1056 acg.cg_cs.cs_ndir++; 1057 sblock.fs_cstotal.cs_ndir++; 1058 fscs[0].cs_ndir++; 1059 } 1060 if (size != sblock.fs_bsize) { 1061 frag = howmany(size, sblock.fs_fsize); 1062 fscs[0].cs_nffree += sblock.fs_frag - frag; 1063 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1064 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1065 acg.cg_frsum[sblock.fs_frag - frag]++; 1066 for (i = frag; i < sblock.fs_frag; i++) 1067 setbit(cg_blksfree(&acg), d + i); 1068 } 1069 if (cgwrite(&disk) != 0) 1070 err(1, "alloc: cgwrite: %s", disk.d_error); 1071 return ((ufs2_daddr_t)d); 1072 } 1073 1074 /* 1075 * Allocate an inode on the disk 1076 */ 1077 void 1078 iput(union dinode *ip, ino_t ino) 1079 { 1080 union dinodep dp; 1081 1082 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1083 sblock.fs_cgsize); 1084 if (acg.cg_magic != CG_MAGIC) { 1085 printf("cg 0: bad magic number\n"); 1086 exit(31); 1087 } 1088 acg.cg_cs.cs_nifree--; 1089 setbit(cg_inosused(&acg), ino); 1090 if (cgwrite(&disk) != 0) 1091 err(1, "iput: cgwrite: %s", disk.d_error); 1092 sblock.fs_cstotal.cs_nifree--; 1093 fscs[0].cs_nifree--; 1094 if (getinode(&disk, &dp, ino) == -1) { 1095 printf("iput: %s\n", disk.d_error); 1096 exit(32); 1097 } 1098 if (sblock.fs_magic == FS_UFS1_MAGIC) 1099 *dp.dp1 = ip->dp1; 1100 else 1101 *dp.dp2 = ip->dp2; 1102 putinode(&disk); 1103 } 1104 1105 /* 1106 * possibly write to disk 1107 */ 1108 static void 1109 wtfs(ufs2_daddr_t bno, int size, char *bf) 1110 { 1111 if (Nflag) 1112 return; 1113 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1114 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1115 } 1116 1117 /* 1118 * check if a block is available 1119 */ 1120 static int 1121 isblock(struct fs *fs, unsigned char *cp, int h) 1122 { 1123 unsigned char mask; 1124 1125 switch (fs->fs_frag) { 1126 case 8: 1127 return (cp[h] == 0xff); 1128 case 4: 1129 mask = 0x0f << ((h & 0x1) << 2); 1130 return ((cp[h >> 1] & mask) == mask); 1131 case 2: 1132 mask = 0x03 << ((h & 0x3) << 1); 1133 return ((cp[h >> 2] & mask) == mask); 1134 case 1: 1135 mask = 0x01 << (h & 0x7); 1136 return ((cp[h >> 3] & mask) == mask); 1137 default: 1138 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1139 return (0); 1140 } 1141 } 1142 1143 /* 1144 * take a block out of the map 1145 */ 1146 static void 1147 clrblock(struct fs *fs, unsigned char *cp, int h) 1148 { 1149 switch ((fs)->fs_frag) { 1150 case 8: 1151 cp[h] = 0; 1152 return; 1153 case 4: 1154 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1155 return; 1156 case 2: 1157 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1158 return; 1159 case 1: 1160 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1161 return; 1162 default: 1163 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1164 return; 1165 } 1166 } 1167 1168 /* 1169 * put a block into the map 1170 */ 1171 static void 1172 setblock(struct fs *fs, unsigned char *cp, int h) 1173 { 1174 switch (fs->fs_frag) { 1175 case 8: 1176 cp[h] = 0xff; 1177 return; 1178 case 4: 1179 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1180 return; 1181 case 2: 1182 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1183 return; 1184 case 1: 1185 cp[h >> 3] |= (0x01 << (h & 0x7)); 1186 return; 1187 default: 1188 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1189 return; 1190 } 1191 } 1192 1193 /* 1194 * Determine the number of characters in a 1195 * single line. 1196 */ 1197 1198 static int 1199 charsperline(void) 1200 { 1201 int columns; 1202 char *cp; 1203 struct winsize ws; 1204 1205 columns = 0; 1206 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1207 columns = ws.ws_col; 1208 if (columns == 0 && (cp = getenv("COLUMNS"))) 1209 columns = atoi(cp); 1210 if (columns == 0) 1211 columns = 80; /* last resort */ 1212 return (columns); 1213 } 1214 1215 static int 1216 ilog2(int val) 1217 { 1218 u_int n; 1219 1220 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1221 if (1 << n == val) 1222 return (n); 1223 errx(1, "ilog2: %d is not a power of 2\n", val); 1224 } 1225 1226 /* 1227 * For the regression test, return predictable random values. 1228 * Otherwise use a true random number generator. 1229 */ 1230 static u_int32_t 1231 newfs_random(void) 1232 { 1233 static int nextnum = 1; 1234 1235 if (Rflag) 1236 return (nextnum++); 1237 return (arc4random()); 1238 } 1239