1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 #if 0 36 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 37 #endif 38 static const char rcsid[] = 39 "$FreeBSD$"; 40 #endif /* not lint */ 41 42 #include <err.h> 43 #include <signal.h> 44 #include <string.h> 45 #include <stdio.h> 46 #include <unistd.h> 47 #include <sys/param.h> 48 #include <sys/time.h> 49 #include <sys/types.h> 50 #include <sys/wait.h> 51 #include <sys/resource.h> 52 #include <sys/stat.h> 53 #include <ufs/ufs/dinode.h> 54 #include <ufs/ufs/dir.h> 55 #include <ufs/ffs/fs.h> 56 #include <sys/disklabel.h> 57 #include <sys/file.h> 58 #include <sys/mman.h> 59 #include <sys/ioctl.h> 60 61 #ifndef STANDALONE 62 #include <stdlib.h> 63 #else 64 extern int atoi __P((char *)); 65 extern char * getenv __P((char *)); 66 #endif 67 68 #ifdef FSIRAND 69 extern long random __P((void)); 70 extern void srandomdev __P((void)); 71 #endif 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 77 /* 78 * We limit the size of the inode map to be no more than a 79 * third of the cylinder group space, since we must leave at 80 * least an equal amount of space for the block map. 81 * 82 * N.B.: MAXIPG must be a multiple of INOPB(fs). 83 */ 84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 85 86 #define UMASK 0755 87 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 88 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 89 90 /* 91 * variables set up by front end. 92 */ 93 extern int mfs; /* run as the memory based filesystem */ 94 extern char *mfs_mtpt; /* mount point for mfs */ 95 extern struct stat mfs_mtstat; /* stat prior to mount */ 96 extern int Nflag; /* run mkfs without writing file system */ 97 extern int Oflag; /* format as an 4.3BSD file system */ 98 extern int Uflag; /* enable soft updates for file system */ 99 extern int fssize; /* file system size */ 100 extern int ntracks; /* # tracks/cylinder */ 101 extern int nsectors; /* # sectors/track */ 102 extern int nphyssectors; /* # sectors/track including spares */ 103 extern int secpercyl; /* sectors per cylinder */ 104 extern int sectorsize; /* bytes/sector */ 105 extern int realsectorsize; /* bytes/sector in hardware*/ 106 extern int rpm; /* revolutions/minute of drive */ 107 extern int interleave; /* hardware sector interleave */ 108 extern int trackskew; /* sector 0 skew, per track */ 109 extern int fsize; /* fragment size */ 110 extern int bsize; /* block size */ 111 extern int cpg; /* cylinders/cylinder group */ 112 extern int cpgflg; /* cylinders/cylinder group flag was given */ 113 extern int minfree; /* free space threshold */ 114 extern int opt; /* optimization preference (space or time) */ 115 extern int density; /* number of bytes per inode */ 116 extern int maxcontig; /* max contiguous blocks to allocate */ 117 extern int rotdelay; /* rotational delay between blocks */ 118 extern int maxbpg; /* maximum blocks per file in a cyl group */ 119 extern int nrpos; /* # of distinguished rotational positions */ 120 extern int bbsize; /* boot block size */ 121 extern int sbsize; /* superblock size */ 122 extern int avgfilesize; /* expected average file size */ 123 extern int avgfilesperdir; /* expected number of files per directory */ 124 extern u_long memleft; /* virtual memory available */ 125 extern caddr_t membase; /* start address of memory based filesystem */ 126 extern char * filename; 127 128 union { 129 struct fs fs; 130 char pad[SBSIZE]; 131 } fsun; 132 #define sblock fsun.fs 133 struct csum *fscs; 134 135 union { 136 struct cg cg; 137 char pad[MAXBSIZE]; 138 } cgun; 139 #define acg cgun.cg 140 141 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 142 143 int fsi, fso; 144 #ifdef FSIRAND 145 int randinit; 146 #endif 147 daddr_t alloc(); 148 long calcipg(); 149 static int charsperline(); 150 void clrblock __P((struct fs *, unsigned char *, int)); 151 void fsinit __P((time_t)); 152 void initcg __P((int, time_t)); 153 int isblock __P((struct fs *, unsigned char *, int)); 154 void iput __P((struct dinode *, ino_t)); 155 int makedir __P((struct direct *, int)); 156 void rdfs __P((daddr_t, int, char *)); 157 void setblock __P((struct fs *, unsigned char *, int)); 158 void wtfs __P((daddr_t, int, char *)); 159 void wtfsflush __P((void)); 160 161 #ifndef STANDALONE 162 void get_memleft __P((void)); 163 void raise_data_limit __P((void)); 164 #else 165 void free __P((char *)); 166 char * calloc __P((u_long, u_long)); 167 caddr_t malloc __P((u_long)); 168 caddr_t realloc __P((char *, u_long)); 169 #endif 170 171 int mfs_ppid = 0; 172 173 void 174 mkfs(pp, fsys, fi, fo) 175 struct partition *pp; 176 char *fsys; 177 int fi, fo; 178 { 179 register long i, mincpc, mincpg, inospercg; 180 long cylno, rpos, blk, j, warn = 0; 181 long used, mincpgcnt, bpcg; 182 off_t usedb; 183 long mapcramped, inodecramped; 184 long postblsize, rotblsize, totalsbsize; 185 int status, fd; 186 time_t utime; 187 quad_t sizepb; 188 void started(); 189 int width; 190 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 191 192 #ifndef STANDALONE 193 time(&utime); 194 #endif 195 #ifdef FSIRAND 196 if (!randinit) { 197 randinit = 1; 198 srandomdev(); 199 } 200 #endif 201 if (mfs) { 202 mfs_ppid = getpid(); 203 (void) signal(SIGUSR1, started); 204 if ((i = fork())) { 205 if (i == -1) 206 err(10, "mfs"); 207 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 208 exit(WEXITSTATUS(status)); 209 exit(11); 210 /* NOTREACHED */ 211 } 212 #ifdef STANDALONE 213 (void)malloc(0); 214 #else 215 raise_data_limit(); 216 #endif 217 if(filename) { 218 unsigned char buf[BUFSIZ]; 219 unsigned long l,l1; 220 fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644); 221 if(fd < 0) 222 err(12, "%s", filename); 223 for(l=0;l< fssize * sectorsize;l += l1) { 224 l1 = fssize * sectorsize; 225 if (BUFSIZ < l1) 226 l1 = BUFSIZ; 227 if (l1 != write(fd,buf,l1)) 228 err(12, "%s", filename); 229 } 230 membase = mmap( 231 0, 232 fssize * sectorsize, 233 PROT_READ|PROT_WRITE, 234 MAP_SHARED, 235 fd, 236 0); 237 if(membase == MAP_FAILED) 238 err(12, "mmap"); 239 close(fd); 240 } else { 241 #ifndef STANDALONE 242 get_memleft(); 243 #endif 244 if (fssize * sectorsize > (memleft - 131072)) 245 fssize = (memleft - 131072) / sectorsize; 246 if ((membase = malloc(fssize * sectorsize)) == NULL) 247 errx(13, "malloc failed"); 248 } 249 } 250 fsi = fi; 251 fso = fo; 252 if (Oflag) { 253 sblock.fs_inodefmt = FS_42INODEFMT; 254 sblock.fs_maxsymlinklen = 0; 255 } else { 256 sblock.fs_inodefmt = FS_44INODEFMT; 257 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 258 } 259 if (Uflag) 260 sblock.fs_flags |= FS_DOSOFTDEP; 261 /* 262 * Validate the given file system size. 263 * Verify that its last block can actually be accessed. 264 */ 265 if (fssize <= 0) 266 printf("preposterous size %d\n", fssize), exit(13); 267 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 268 (char *)&sblock); 269 /* 270 * collect and verify the sector and track info 271 */ 272 sblock.fs_nsect = nsectors; 273 sblock.fs_ntrak = ntracks; 274 if (sblock.fs_ntrak <= 0) 275 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 276 if (sblock.fs_nsect <= 0) 277 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 278 /* 279 * collect and verify the filesystem density info 280 */ 281 sblock.fs_avgfilesize = avgfilesize; 282 sblock.fs_avgfpdir = avgfilesperdir; 283 if (sblock.fs_avgfilesize <= 0) 284 printf("illegal expected average file size %d\n", 285 sblock.fs_avgfilesize), exit(14); 286 if (sblock.fs_avgfpdir <= 0) 287 printf("illegal expected number of files per directory %d\n", 288 sblock.fs_avgfpdir), exit(15); 289 /* 290 * collect and verify the block and fragment sizes 291 */ 292 sblock.fs_bsize = bsize; 293 sblock.fs_fsize = fsize; 294 if (!POWEROF2(sblock.fs_bsize)) { 295 printf("block size must be a power of 2, not %d\n", 296 sblock.fs_bsize); 297 exit(16); 298 } 299 if (!POWEROF2(sblock.fs_fsize)) { 300 printf("fragment size must be a power of 2, not %d\n", 301 sblock.fs_fsize); 302 exit(17); 303 } 304 if (sblock.fs_fsize < sectorsize) { 305 printf("fragment size %d is too small, minimum is %d\n", 306 sblock.fs_fsize, sectorsize); 307 exit(18); 308 } 309 if (sblock.fs_bsize < MINBSIZE) { 310 printf("block size %d is too small, minimum is %d\n", 311 sblock.fs_bsize, MINBSIZE); 312 exit(19); 313 } 314 if (sblock.fs_bsize < sblock.fs_fsize) { 315 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 316 sblock.fs_bsize, sblock.fs_fsize); 317 exit(20); 318 } 319 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 320 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 321 sblock.fs_qbmask = ~sblock.fs_bmask; 322 sblock.fs_qfmask = ~sblock.fs_fmask; 323 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 324 sblock.fs_bshift++; 325 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 326 sblock.fs_fshift++; 327 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 328 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 329 sblock.fs_fragshift++; 330 if (sblock.fs_frag > MAXFRAG) { 331 printf("fragment size %d is too small, minimum with block size %d is %d\n", 332 sblock.fs_fsize, sblock.fs_bsize, 333 sblock.fs_bsize / MAXFRAG); 334 exit(21); 335 } 336 sblock.fs_nrpos = nrpos; 337 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 338 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 339 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 340 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 341 sblock.fs_fsbtodb++; 342 sblock.fs_sblkno = 343 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 344 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 345 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 346 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 347 sblock.fs_cgoffset = roundup( 348 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 349 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 350 sblock.fs_cgmask <<= 1; 351 if (!POWEROF2(sblock.fs_ntrak)) 352 sblock.fs_cgmask <<= 1; 353 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 354 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 355 sizepb *= NINDIR(&sblock); 356 sblock.fs_maxfilesize += sizepb; 357 } 358 /* 359 * Validate specified/determined secpercyl 360 * and calculate minimum cylinders per group. 361 */ 362 sblock.fs_spc = secpercyl; 363 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 364 sblock.fs_cpc > 1 && (i & 1) == 0; 365 sblock.fs_cpc >>= 1, i >>= 1) 366 /* void */; 367 mincpc = sblock.fs_cpc; 368 bpcg = sblock.fs_spc * sectorsize; 369 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 370 if (inospercg > MAXIPG(&sblock)) 371 inospercg = MAXIPG(&sblock); 372 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 373 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 374 sblock.fs_spc); 375 mincpg = roundup(mincpgcnt, mincpc); 376 /* 377 * Ensure that cylinder group with mincpg has enough space 378 * for block maps. 379 */ 380 sblock.fs_cpg = mincpg; 381 sblock.fs_ipg = inospercg; 382 if (maxcontig > 1) 383 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 384 mapcramped = 0; 385 while (CGSIZE(&sblock) > sblock.fs_bsize) { 386 mapcramped = 1; 387 if (sblock.fs_bsize < MAXBSIZE) { 388 sblock.fs_bsize <<= 1; 389 if ((i & 1) == 0) { 390 i >>= 1; 391 } else { 392 sblock.fs_cpc <<= 1; 393 mincpc <<= 1; 394 mincpg = roundup(mincpgcnt, mincpc); 395 sblock.fs_cpg = mincpg; 396 } 397 sblock.fs_frag <<= 1; 398 sblock.fs_fragshift += 1; 399 if (sblock.fs_frag <= MAXFRAG) 400 continue; 401 } 402 if (sblock.fs_fsize == sblock.fs_bsize) { 403 printf("There is no block size that"); 404 printf(" can support this disk\n"); 405 exit(22); 406 } 407 sblock.fs_frag >>= 1; 408 sblock.fs_fragshift -= 1; 409 sblock.fs_fsize <<= 1; 410 sblock.fs_nspf <<= 1; 411 } 412 /* 413 * Ensure that cylinder group with mincpg has enough space for inodes. 414 */ 415 inodecramped = 0; 416 inospercg = calcipg(mincpg, bpcg, &usedb); 417 sblock.fs_ipg = inospercg; 418 while (inospercg > MAXIPG(&sblock)) { 419 inodecramped = 1; 420 if (mincpc == 1 || sblock.fs_frag == 1 || 421 sblock.fs_bsize == MINBSIZE) 422 break; 423 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 424 "minimum bytes per inode is", 425 (int)((mincpg * (off_t)bpcg - usedb) 426 / MAXIPG(&sblock) + 1)); 427 sblock.fs_bsize >>= 1; 428 sblock.fs_frag >>= 1; 429 sblock.fs_fragshift -= 1; 430 mincpc >>= 1; 431 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 432 if (CGSIZE(&sblock) > sblock.fs_bsize) { 433 sblock.fs_bsize <<= 1; 434 break; 435 } 436 mincpg = sblock.fs_cpg; 437 inospercg = calcipg(mincpg, bpcg, &usedb); 438 sblock.fs_ipg = inospercg; 439 } 440 if (inodecramped) { 441 if (inospercg > MAXIPG(&sblock)) { 442 printf("Minimum bytes per inode is %d\n", 443 (int)((mincpg * (off_t)bpcg - usedb) 444 / MAXIPG(&sblock) + 1)); 445 } else if (!mapcramped) { 446 printf("With %d bytes per inode, ", density); 447 printf("minimum cylinders per group is %ld\n", mincpg); 448 } 449 } 450 if (mapcramped) { 451 printf("With %d sectors per cylinder, ", sblock.fs_spc); 452 printf("minimum cylinders per group is %ld\n", mincpg); 453 } 454 if (inodecramped || mapcramped) { 455 if (sblock.fs_bsize != bsize) 456 printf("%s to be changed from %d to %d\n", 457 "This requires the block size", 458 bsize, sblock.fs_bsize); 459 if (sblock.fs_fsize != fsize) 460 printf("\t%s to be changed from %d to %d\n", 461 "and the fragment size", 462 fsize, sblock.fs_fsize); 463 exit(23); 464 } 465 /* 466 * Calculate the number of cylinders per group 467 */ 468 sblock.fs_cpg = cpg; 469 if (sblock.fs_cpg % mincpc != 0) { 470 printf("%s groups must have a multiple of %ld cylinders\n", 471 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 472 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 473 if (!cpgflg) 474 cpg = sblock.fs_cpg; 475 } 476 /* 477 * Must ensure there is enough space for inodes. 478 */ 479 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 480 while (sblock.fs_ipg > MAXIPG(&sblock)) { 481 inodecramped = 1; 482 sblock.fs_cpg -= mincpc; 483 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 484 } 485 /* 486 * Must ensure there is enough space to hold block map. 487 */ 488 while (CGSIZE(&sblock) > sblock.fs_bsize) { 489 mapcramped = 1; 490 sblock.fs_cpg -= mincpc; 491 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 492 } 493 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 494 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 495 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 496 exit(24); 497 } 498 if (sblock.fs_cpg < mincpg) { 499 printf("cylinder groups must have at least %ld cylinders\n", 500 mincpg); 501 exit(25); 502 } else if (sblock.fs_cpg != cpg) { 503 if (!cpgflg) 504 printf("Warning: "); 505 else if (!mapcramped && !inodecramped) 506 exit(26); 507 if (mapcramped && inodecramped) 508 printf("Block size and bytes per inode restrict"); 509 else if (mapcramped) 510 printf("Block size restricts"); 511 else 512 printf("Bytes per inode restrict"); 513 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 514 if (cpgflg) 515 exit(27); 516 } 517 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 518 /* 519 * Now have size for file system and nsect and ntrak. 520 * Determine number of cylinders and blocks in the file system. 521 */ 522 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 523 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 524 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 525 sblock.fs_ncyl++; 526 warn = 1; 527 } 528 if (sblock.fs_ncyl < 1) { 529 printf("file systems must have at least one cylinder\n"); 530 exit(28); 531 } 532 /* 533 * Determine feasability/values of rotational layout tables. 534 * 535 * The size of the rotational layout tables is limited by the 536 * size of the superblock, SBSIZE. The amount of space available 537 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 538 * The size of these tables is inversely proportional to the block 539 * size of the file system. The size increases if sectors per track 540 * are not powers of two, because more cylinders must be described 541 * by the tables before the rotational pattern repeats (fs_cpc). 542 */ 543 sblock.fs_interleave = interleave; 544 sblock.fs_trackskew = trackskew; 545 sblock.fs_npsect = nphyssectors; 546 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 547 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 548 if (sblock.fs_sbsize > SBSIZE) 549 sblock.fs_sbsize = SBSIZE; 550 if (sblock.fs_ntrak == 1) { 551 sblock.fs_cpc = 0; 552 goto next; 553 } 554 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 555 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 556 totalsbsize = sizeof(struct fs) + rotblsize; 557 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 558 /* use old static table space */ 559 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 560 (char *)(&sblock.fs_firstfield); 561 sblock.fs_rotbloff = &sblock.fs_space[0] - 562 (u_char *)(&sblock.fs_firstfield); 563 } else { 564 /* use dynamic table space */ 565 sblock.fs_postbloff = &sblock.fs_space[0] - 566 (u_char *)(&sblock.fs_firstfield); 567 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 568 totalsbsize += postblsize; 569 } 570 if (totalsbsize > SBSIZE || 571 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 572 printf("%s %s %d %s %d.%s", 573 "Warning: insufficient space in super block for\n", 574 "rotational layout tables with nsect", sblock.fs_nsect, 575 "and ntrak", sblock.fs_ntrak, 576 "\nFile system performance may be impaired.\n"); 577 sblock.fs_cpc = 0; 578 goto next; 579 } 580 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 581 if (sblock.fs_sbsize > SBSIZE) 582 sblock.fs_sbsize = SBSIZE; 583 /* 584 * calculate the available blocks for each rotational position 585 */ 586 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 587 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 588 fs_postbl(&sblock, cylno)[rpos] = -1; 589 for (i = (rotblsize - 1) * sblock.fs_frag; 590 i >= 0; i -= sblock.fs_frag) { 591 cylno = cbtocylno(&sblock, i); 592 rpos = cbtorpos(&sblock, i); 593 blk = fragstoblks(&sblock, i); 594 if (fs_postbl(&sblock, cylno)[rpos] == -1) 595 fs_rotbl(&sblock)[blk] = 0; 596 else 597 fs_rotbl(&sblock)[blk] = 598 fs_postbl(&sblock, cylno)[rpos] - blk; 599 fs_postbl(&sblock, cylno)[rpos] = blk; 600 } 601 next: 602 /* 603 * Compute/validate number of cylinder groups. 604 */ 605 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 606 if (sblock.fs_ncyl % sblock.fs_cpg) 607 sblock.fs_ncg++; 608 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 609 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 610 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 611 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 612 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 613 (long)(sblock.fs_fpg / sblock.fs_frag)); 614 printf("number of cylinders per cylinder group (%d) %s.\n", 615 sblock.fs_cpg, "must be increased"); 616 exit(29); 617 } 618 j = sblock.fs_ncg - 1; 619 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 620 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 621 if (j == 0) { 622 printf("Filesystem must have at least %d sectors\n", 623 NSPF(&sblock) * 624 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 625 exit(30); 626 } 627 printf( 628 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 629 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 630 i / sblock.fs_frag); 631 printf( 632 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 633 i * NSPF(&sblock)); 634 sblock.fs_ncg--; 635 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 636 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 637 NSPF(&sblock); 638 warn = 0; 639 } 640 if (warn && !mfs) { 641 printf("Warning: %d sector(s) in last cylinder unallocated\n", 642 sblock.fs_spc - 643 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 644 * sblock.fs_spc)); 645 } 646 /* 647 * fill in remaining fields of the super block 648 */ 649 sblock.fs_csaddr = cgdmin(&sblock, 0); 650 sblock.fs_cssize = 651 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 652 /* 653 * The superblock fields 'fs_csmask' and 'fs_csshift' are no 654 * longer used. However, we still initialise them so that the 655 * filesystem remains compatible with old kernels. 656 */ 657 i = sblock.fs_bsize / sizeof(struct csum); 658 sblock.fs_csmask = ~(i - 1); 659 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 660 sblock.fs_csshift++; 661 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 662 if (fscs == NULL) 663 errx(31, "calloc failed"); 664 sblock.fs_magic = FS_MAGIC; 665 sblock.fs_rotdelay = rotdelay; 666 sblock.fs_minfree = minfree; 667 sblock.fs_maxcontig = maxcontig; 668 sblock.fs_maxbpg = maxbpg; 669 sblock.fs_rps = rpm / 60; 670 sblock.fs_optim = opt; 671 sblock.fs_cgrotor = 0; 672 sblock.fs_cstotal.cs_ndir = 0; 673 sblock.fs_cstotal.cs_nbfree = 0; 674 sblock.fs_cstotal.cs_nifree = 0; 675 sblock.fs_cstotal.cs_nffree = 0; 676 sblock.fs_fmod = 0; 677 sblock.fs_ronly = 0; 678 sblock.fs_clean = 1; 679 #ifdef FSIRAND 680 sblock.fs_id[0] = (long)utime; 681 sblock.fs_id[1] = random(); 682 #endif 683 684 /* 685 * Dump out summary information about file system. 686 */ 687 if (!mfs) { 688 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 689 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 690 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 691 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 692 printf( 693 "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n", 694 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 695 sblock.fs_ncg, sblock.fs_cpg, 696 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 697 sblock.fs_ipg, 698 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : ""); 699 #undef B2MBFACTOR 700 } 701 /* 702 * Now build the cylinders group blocks and 703 * then print out indices of cylinder groups. 704 */ 705 if (!mfs) 706 printf("super-block backups (for fsck -b #) at:\n"); 707 i = 0; 708 width = charsperline(); 709 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 710 initcg(cylno, utime); 711 if (mfs) 712 continue; 713 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s", 714 fsbtodb(&sblock, cgsblock(&sblock, cylno)), 715 cylno < (sblock.fs_ncg-1) ? "," : "" ); 716 if (i + j >= width) { 717 printf("\n"); 718 i = 0; 719 } 720 i += j; 721 printf("%s", tmpbuf); 722 fflush(stdout); 723 } 724 if (!mfs) 725 printf("\n"); 726 if (Nflag && !mfs) 727 exit(0); 728 /* 729 * Now construct the initial file system, 730 * then write out the super-block. 731 */ 732 fsinit(utime); 733 sblock.fs_time = utime; 734 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 735 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 736 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 737 sblock.fs_cssize - i < sblock.fs_bsize ? 738 sblock.fs_cssize - i : sblock.fs_bsize, 739 ((char *)fscs) + i); 740 /* 741 * Write out the duplicate super blocks 742 */ 743 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 744 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 745 sbsize, (char *)&sblock); 746 wtfsflush(); 747 /* 748 * Update information about this partion in pack 749 * label, to that it may be updated on disk. 750 */ 751 pp->p_fstype = FS_BSDFFS; 752 pp->p_fsize = sblock.fs_fsize; 753 pp->p_frag = sblock.fs_frag; 754 pp->p_cpg = sblock.fs_cpg; 755 /* 756 * Notify parent process of success. 757 * Dissociate from session and tty. 758 */ 759 if (mfs) { 760 kill(mfs_ppid, SIGUSR1); 761 (void) setsid(); 762 (void) close(0); 763 (void) close(1); 764 (void) close(2); 765 (void) chdir("/"); 766 } 767 } 768 769 /* 770 * Initialize a cylinder group. 771 */ 772 void 773 initcg(cylno, utime) 774 int cylno; 775 time_t utime; 776 { 777 daddr_t cbase, d, dlower, dupper, dmax, blkno; 778 long i; 779 register struct csum *cs; 780 #ifdef FSIRAND 781 long j; 782 #endif 783 784 /* 785 * Determine block bounds for cylinder group. 786 * Allow space for super block summary information in first 787 * cylinder group. 788 */ 789 cbase = cgbase(&sblock, cylno); 790 dmax = cbase + sblock.fs_fpg; 791 if (dmax > sblock.fs_size) 792 dmax = sblock.fs_size; 793 dlower = cgsblock(&sblock, cylno) - cbase; 794 dupper = cgdmin(&sblock, cylno) - cbase; 795 if (cylno == 0) 796 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 797 cs = fscs + cylno; 798 memset(&acg, 0, sblock.fs_cgsize); 799 acg.cg_time = utime; 800 acg.cg_magic = CG_MAGIC; 801 acg.cg_cgx = cylno; 802 if (cylno == sblock.fs_ncg - 1) 803 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 804 else 805 acg.cg_ncyl = sblock.fs_cpg; 806 acg.cg_niblk = sblock.fs_ipg; 807 acg.cg_ndblk = dmax - cbase; 808 if (sblock.fs_contigsumsize > 0) 809 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 810 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 811 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 812 acg.cg_iusedoff = acg.cg_boff + 813 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 814 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 815 if (sblock.fs_contigsumsize <= 0) { 816 acg.cg_nextfreeoff = acg.cg_freeoff + 817 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 818 } else { 819 acg.cg_clustersumoff = acg.cg_freeoff + howmany 820 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 821 sizeof(u_int32_t); 822 acg.cg_clustersumoff = 823 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 824 acg.cg_clusteroff = acg.cg_clustersumoff + 825 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 826 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 827 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 828 } 829 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 830 printf("Panic: cylinder group too big\n"); 831 exit(37); 832 } 833 acg.cg_cs.cs_nifree += sblock.fs_ipg; 834 if (cylno == 0) 835 for (i = 0; i < ROOTINO; i++) { 836 setbit(cg_inosused(&acg), i); 837 acg.cg_cs.cs_nifree--; 838 } 839 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 840 #ifdef FSIRAND 841 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) 842 zino[j].di_gen = random(); 843 #endif 844 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 845 sblock.fs_bsize, (char *)zino); 846 } 847 if (cylno > 0) { 848 /* 849 * In cylno 0, beginning space is reserved 850 * for boot and super blocks. 851 */ 852 for (d = 0; d < dlower; d += sblock.fs_frag) { 853 blkno = d / sblock.fs_frag; 854 setblock(&sblock, cg_blksfree(&acg), blkno); 855 if (sblock.fs_contigsumsize > 0) 856 setbit(cg_clustersfree(&acg), blkno); 857 acg.cg_cs.cs_nbfree++; 858 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 859 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 860 [cbtorpos(&sblock, d)]++; 861 } 862 sblock.fs_dsize += dlower; 863 } 864 sblock.fs_dsize += acg.cg_ndblk - dupper; 865 if ((i = dupper % sblock.fs_frag)) { 866 acg.cg_frsum[sblock.fs_frag - i]++; 867 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 868 setbit(cg_blksfree(&acg), dupper); 869 acg.cg_cs.cs_nffree++; 870 } 871 } 872 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 873 blkno = d / sblock.fs_frag; 874 setblock(&sblock, cg_blksfree(&acg), blkno); 875 if (sblock.fs_contigsumsize > 0) 876 setbit(cg_clustersfree(&acg), blkno); 877 acg.cg_cs.cs_nbfree++; 878 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 879 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 880 [cbtorpos(&sblock, d)]++; 881 d += sblock.fs_frag; 882 } 883 if (d < dmax - cbase) { 884 acg.cg_frsum[dmax - cbase - d]++; 885 for (; d < dmax - cbase; d++) { 886 setbit(cg_blksfree(&acg), d); 887 acg.cg_cs.cs_nffree++; 888 } 889 } 890 if (sblock.fs_contigsumsize > 0) { 891 int32_t *sump = cg_clustersum(&acg); 892 u_char *mapp = cg_clustersfree(&acg); 893 int map = *mapp++; 894 int bit = 1; 895 int run = 0; 896 897 for (i = 0; i < acg.cg_nclusterblks; i++) { 898 if ((map & bit) != 0) { 899 run++; 900 } else if (run != 0) { 901 if (run > sblock.fs_contigsumsize) 902 run = sblock.fs_contigsumsize; 903 sump[run]++; 904 run = 0; 905 } 906 if ((i & (NBBY - 1)) != (NBBY - 1)) { 907 bit <<= 1; 908 } else { 909 map = *mapp++; 910 bit = 1; 911 } 912 } 913 if (run != 0) { 914 if (run > sblock.fs_contigsumsize) 915 run = sblock.fs_contigsumsize; 916 sump[run]++; 917 } 918 } 919 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 920 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 921 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 922 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 923 *cs = acg.cg_cs; 924 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 925 sblock.fs_bsize, (char *)&acg); 926 } 927 928 /* 929 * initialize the file system 930 */ 931 struct dinode node; 932 933 #ifdef LOSTDIR 934 #define PREDEFDIR 3 935 #else 936 #define PREDEFDIR 2 937 #endif 938 939 struct direct root_dir[] = { 940 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 941 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 942 #ifdef LOSTDIR 943 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 944 #endif 945 }; 946 struct odirect { 947 u_long d_ino; 948 u_short d_reclen; 949 u_short d_namlen; 950 u_char d_name[MAXNAMLEN + 1]; 951 } oroot_dir[] = { 952 { ROOTINO, sizeof(struct direct), 1, "." }, 953 { ROOTINO, sizeof(struct direct), 2, ".." }, 954 #ifdef LOSTDIR 955 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 956 #endif 957 }; 958 #ifdef LOSTDIR 959 struct direct lost_found_dir[] = { 960 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 961 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 962 { 0, DIRBLKSIZ, 0, 0, 0 }, 963 }; 964 struct odirect olost_found_dir[] = { 965 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 966 { ROOTINO, sizeof(struct direct), 2, ".." }, 967 { 0, DIRBLKSIZ, 0, 0 }, 968 }; 969 #endif 970 char buf[MAXBSIZE]; 971 972 void 973 fsinit(utime) 974 time_t utime; 975 { 976 #ifdef LOSTDIR 977 int i; 978 #endif 979 980 /* 981 * initialize the node 982 */ 983 node.di_atime = utime; 984 node.di_mtime = utime; 985 node.di_ctime = utime; 986 #ifdef LOSTDIR 987 /* 988 * create the lost+found directory 989 */ 990 if (Oflag) { 991 (void)makedir((struct direct *)olost_found_dir, 2); 992 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 993 memmove(&buf[i], &olost_found_dir[2], 994 DIRSIZ(0, &olost_found_dir[2])); 995 } else { 996 (void)makedir(lost_found_dir, 2); 997 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 998 memmove(&buf[i], &lost_found_dir[2], 999 DIRSIZ(0, &lost_found_dir[2])); 1000 } 1001 node.di_mode = IFDIR | UMASK; 1002 node.di_nlink = 2; 1003 node.di_size = sblock.fs_bsize; 1004 node.di_db[0] = alloc(node.di_size, node.di_mode); 1005 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1006 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 1007 iput(&node, LOSTFOUNDINO); 1008 #endif 1009 /* 1010 * create the root directory 1011 */ 1012 if (mfs) 1013 node.di_mode = IFDIR | 01777; 1014 else 1015 node.di_mode = IFDIR | UMASK; 1016 node.di_nlink = PREDEFDIR; 1017 if (Oflag) 1018 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 1019 else 1020 node.di_size = makedir(root_dir, PREDEFDIR); 1021 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 1022 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1023 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 1024 iput(&node, ROOTINO); 1025 } 1026 1027 /* 1028 * construct a set of directory entries in "buf". 1029 * return size of directory. 1030 */ 1031 int 1032 makedir(protodir, entries) 1033 register struct direct *protodir; 1034 int entries; 1035 { 1036 char *cp; 1037 int i, spcleft; 1038 1039 spcleft = DIRBLKSIZ; 1040 for (cp = buf, i = 0; i < entries - 1; i++) { 1041 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1042 memmove(cp, &protodir[i], protodir[i].d_reclen); 1043 cp += protodir[i].d_reclen; 1044 spcleft -= protodir[i].d_reclen; 1045 } 1046 protodir[i].d_reclen = spcleft; 1047 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1048 return (DIRBLKSIZ); 1049 } 1050 1051 /* 1052 * allocate a block or frag 1053 */ 1054 daddr_t 1055 alloc(size, mode) 1056 int size; 1057 int mode; 1058 { 1059 int i, frag; 1060 daddr_t d, blkno; 1061 1062 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1063 (char *)&acg); 1064 if (acg.cg_magic != CG_MAGIC) { 1065 printf("cg 0: bad magic number\n"); 1066 return (0); 1067 } 1068 if (acg.cg_cs.cs_nbfree == 0) { 1069 printf("first cylinder group ran out of space\n"); 1070 return (0); 1071 } 1072 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1073 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1074 goto goth; 1075 printf("internal error: can't find block in cyl 0\n"); 1076 return (0); 1077 goth: 1078 blkno = fragstoblks(&sblock, d); 1079 clrblock(&sblock, cg_blksfree(&acg), blkno); 1080 if (sblock.fs_contigsumsize > 0) 1081 clrbit(cg_clustersfree(&acg), blkno); 1082 acg.cg_cs.cs_nbfree--; 1083 sblock.fs_cstotal.cs_nbfree--; 1084 fscs[0].cs_nbfree--; 1085 if (mode & IFDIR) { 1086 acg.cg_cs.cs_ndir++; 1087 sblock.fs_cstotal.cs_ndir++; 1088 fscs[0].cs_ndir++; 1089 } 1090 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1091 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1092 if (size != sblock.fs_bsize) { 1093 frag = howmany(size, sblock.fs_fsize); 1094 fscs[0].cs_nffree += sblock.fs_frag - frag; 1095 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1096 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1097 acg.cg_frsum[sblock.fs_frag - frag]++; 1098 for (i = frag; i < sblock.fs_frag; i++) 1099 setbit(cg_blksfree(&acg), d + i); 1100 } 1101 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1102 (char *)&acg); 1103 return (d); 1104 } 1105 1106 /* 1107 * Calculate number of inodes per group. 1108 */ 1109 long 1110 calcipg(cpg, bpcg, usedbp) 1111 long cpg; 1112 long bpcg; 1113 off_t *usedbp; 1114 { 1115 int i; 1116 long ipg, new_ipg, ncg, ncyl; 1117 off_t usedb; 1118 1119 /* 1120 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1121 * Note that fssize is still in sectors, not filesystem blocks. 1122 */ 1123 ncyl = howmany(fssize, (u_int)secpercyl); 1124 ncg = howmany(ncyl, cpg); 1125 /* 1126 * Iterate a few times to allow for ipg depending on itself. 1127 */ 1128 ipg = 0; 1129 for (i = 0; i < 10; i++) { 1130 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1131 * NSPF(&sblock) * (off_t)sectorsize; 1132 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize 1133 / ncg / secpercyl / cpg; 1134 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1135 if (new_ipg == ipg) 1136 break; 1137 ipg = new_ipg; 1138 } 1139 *usedbp = usedb; 1140 return (ipg); 1141 } 1142 1143 /* 1144 * Allocate an inode on the disk 1145 */ 1146 void 1147 iput(ip, ino) 1148 register struct dinode *ip; 1149 register ino_t ino; 1150 { 1151 struct dinode buf[MAXINOPB]; 1152 daddr_t d; 1153 int c; 1154 1155 #ifdef FSIRAND 1156 ip->di_gen = random(); 1157 #endif 1158 c = ino_to_cg(&sblock, ino); 1159 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1160 (char *)&acg); 1161 if (acg.cg_magic != CG_MAGIC) { 1162 printf("cg 0: bad magic number\n"); 1163 exit(31); 1164 } 1165 acg.cg_cs.cs_nifree--; 1166 setbit(cg_inosused(&acg), ino); 1167 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1168 (char *)&acg); 1169 sblock.fs_cstotal.cs_nifree--; 1170 fscs[0].cs_nifree--; 1171 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 1172 printf("fsinit: inode value out of range (%d).\n", ino); 1173 exit(32); 1174 } 1175 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1176 rdfs(d, sblock.fs_bsize, (char *)buf); 1177 buf[ino_to_fsbo(&sblock, ino)] = *ip; 1178 wtfs(d, sblock.fs_bsize, (char *)buf); 1179 } 1180 1181 /* 1182 * Notify parent process that the filesystem has created itself successfully. 1183 * 1184 * We have to wait until the mount has actually completed! 1185 */ 1186 void 1187 started() 1188 { 1189 int retry = 100; /* 10 seconds, 100ms */ 1190 1191 while (mfs_ppid && retry) { 1192 struct stat st; 1193 1194 if ( 1195 stat(mfs_mtpt, &st) < 0 || 1196 st.st_dev != mfs_mtstat.st_dev 1197 ) { 1198 break; 1199 } 1200 usleep(100*1000); 1201 --retry; 1202 } 1203 if (retry == 0) { 1204 fatal("mfs mount failed waiting for mount to go active"); 1205 } 1206 exit(0); 1207 } 1208 1209 #ifdef STANDALONE 1210 /* 1211 * Replace libc function with one suited to our needs. 1212 */ 1213 caddr_t 1214 malloc(size) 1215 register u_long size; 1216 { 1217 char *base, *i; 1218 static u_long pgsz; 1219 struct rlimit rlp; 1220 1221 if (pgsz == 0) { 1222 base = sbrk(0); 1223 pgsz = getpagesize() - 1; 1224 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1225 base = sbrk(i - base); 1226 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1227 warn("getrlimit"); 1228 rlp.rlim_cur = rlp.rlim_max; 1229 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1230 warn("setrlimit"); 1231 memleft = rlp.rlim_max - (u_long)base; 1232 } 1233 size = (size + pgsz) &~ pgsz; 1234 if (size > memleft) 1235 size = memleft; 1236 memleft -= size; 1237 if (size == 0) 1238 return (0); 1239 return ((caddr_t)sbrk(size)); 1240 } 1241 1242 /* 1243 * Replace libc function with one suited to our needs. 1244 */ 1245 caddr_t 1246 realloc(ptr, size) 1247 char *ptr; 1248 u_long size; 1249 { 1250 void *p; 1251 1252 if ((p = malloc(size)) == NULL) 1253 return (NULL); 1254 memmove(p, ptr, size); 1255 free(ptr); 1256 return (p); 1257 } 1258 1259 /* 1260 * Replace libc function with one suited to our needs. 1261 */ 1262 char * 1263 calloc(size, numelm) 1264 u_long size, numelm; 1265 { 1266 caddr_t base; 1267 1268 size *= numelm; 1269 if ((base = malloc(size)) == NULL) 1270 return (NULL); 1271 memset(base, 0, size); 1272 return (base); 1273 } 1274 1275 /* 1276 * Replace libc function with one suited to our needs. 1277 */ 1278 void 1279 free(ptr) 1280 char *ptr; 1281 { 1282 1283 /* do not worry about it for now */ 1284 } 1285 1286 #else /* !STANDALONE */ 1287 1288 void 1289 raise_data_limit() 1290 { 1291 struct rlimit rlp; 1292 1293 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1294 warn("getrlimit"); 1295 rlp.rlim_cur = rlp.rlim_max; 1296 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1297 warn("setrlimit"); 1298 } 1299 1300 #ifdef __ELF__ 1301 extern char *_etext; 1302 #define etext _etext 1303 #else 1304 extern char *etext; 1305 #endif 1306 1307 void 1308 get_memleft() 1309 { 1310 static u_long pgsz; 1311 struct rlimit rlp; 1312 u_long freestart; 1313 u_long dstart; 1314 u_long memused; 1315 1316 pgsz = getpagesize() - 1; 1317 dstart = ((u_long)&etext) &~ pgsz; 1318 freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz); 1319 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1320 warn("getrlimit"); 1321 memused = freestart - dstart; 1322 memleft = rlp.rlim_cur - memused; 1323 } 1324 #endif /* STANDALONE */ 1325 1326 /* 1327 * read a block from the file system 1328 */ 1329 void 1330 rdfs(bno, size, bf) 1331 daddr_t bno; 1332 int size; 1333 char *bf; 1334 { 1335 int n; 1336 1337 wtfsflush(); 1338 if (mfs) { 1339 memmove(bf, membase + bno * sectorsize, size); 1340 return; 1341 } 1342 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1343 printf("seek error: %ld\n", (long)bno); 1344 err(33, "rdfs"); 1345 } 1346 n = read(fsi, bf, size); 1347 if (n != size) { 1348 printf("read error: %ld\n", (long)bno); 1349 err(34, "rdfs"); 1350 } 1351 } 1352 1353 #define WCSIZE (128 * 1024) 1354 daddr_t wc_sect; /* units of sectorsize */ 1355 int wc_end; /* bytes */ 1356 static char wc[WCSIZE]; /* bytes */ 1357 1358 /* 1359 * Flush dirty write behind buffer. 1360 */ 1361 void 1362 wtfsflush() 1363 { 1364 int n; 1365 if (wc_end) { 1366 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) { 1367 printf("seek error: %ld\n", (long)wc_sect); 1368 err(35, "wtfs - writecombine"); 1369 } 1370 n = write(fso, wc, wc_end); 1371 if (n != wc_end) { 1372 printf("write error: %ld\n", (long)wc_sect); 1373 err(36, "wtfs - writecombine"); 1374 } 1375 wc_end = 0; 1376 } 1377 } 1378 1379 /* 1380 * write a block to the file system 1381 */ 1382 void 1383 wtfs(bno, size, bf) 1384 daddr_t bno; 1385 int size; 1386 char *bf; 1387 { 1388 int n; 1389 int done; 1390 1391 if (mfs) { 1392 memmove(membase + bno * sectorsize, bf, size); 1393 return; 1394 } 1395 if (Nflag) 1396 return; 1397 done = 0; 1398 if (wc_end == 0 && size <= WCSIZE) { 1399 wc_sect = bno; 1400 bcopy(bf, wc, size); 1401 wc_end = size; 1402 if (wc_end < WCSIZE) 1403 return; 1404 done = 1; 1405 } 1406 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize && 1407 wc_end + size <= WCSIZE) { 1408 bcopy(bf, wc + wc_end, size); 1409 wc_end += size; 1410 if (wc_end < WCSIZE) 1411 return; 1412 done = 1; 1413 } 1414 wtfsflush(); 1415 if (done) 1416 return; 1417 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1418 printf("seek error: %ld\n", (long)bno); 1419 err(35, "wtfs"); 1420 } 1421 n = write(fso, bf, size); 1422 if (n != size) { 1423 printf("write error: %ld\n", (long)bno); 1424 err(36, "wtfs"); 1425 } 1426 } 1427 1428 /* 1429 * check if a block is available 1430 */ 1431 int 1432 isblock(fs, cp, h) 1433 struct fs *fs; 1434 unsigned char *cp; 1435 int h; 1436 { 1437 unsigned char mask; 1438 1439 switch (fs->fs_frag) { 1440 case 8: 1441 return (cp[h] == 0xff); 1442 case 4: 1443 mask = 0x0f << ((h & 0x1) << 2); 1444 return ((cp[h >> 1] & mask) == mask); 1445 case 2: 1446 mask = 0x03 << ((h & 0x3) << 1); 1447 return ((cp[h >> 2] & mask) == mask); 1448 case 1: 1449 mask = 0x01 << (h & 0x7); 1450 return ((cp[h >> 3] & mask) == mask); 1451 default: 1452 #ifdef STANDALONE 1453 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1454 #else 1455 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1456 #endif 1457 return (0); 1458 } 1459 } 1460 1461 /* 1462 * take a block out of the map 1463 */ 1464 void 1465 clrblock(fs, cp, h) 1466 struct fs *fs; 1467 unsigned char *cp; 1468 int h; 1469 { 1470 switch ((fs)->fs_frag) { 1471 case 8: 1472 cp[h] = 0; 1473 return; 1474 case 4: 1475 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1476 return; 1477 case 2: 1478 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1479 return; 1480 case 1: 1481 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1482 return; 1483 default: 1484 #ifdef STANDALONE 1485 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1486 #else 1487 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1488 #endif 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * put a block into the map 1495 */ 1496 void 1497 setblock(fs, cp, h) 1498 struct fs *fs; 1499 unsigned char *cp; 1500 int h; 1501 { 1502 switch (fs->fs_frag) { 1503 case 8: 1504 cp[h] = 0xff; 1505 return; 1506 case 4: 1507 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1508 return; 1509 case 2: 1510 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1511 return; 1512 case 1: 1513 cp[h >> 3] |= (0x01 << (h & 0x7)); 1514 return; 1515 default: 1516 #ifdef STANDALONE 1517 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1518 #else 1519 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1520 #endif 1521 return; 1522 } 1523 } 1524 1525 /* 1526 * Determine the number of characters in a 1527 * single line. 1528 */ 1529 1530 static int 1531 charsperline() 1532 { 1533 int columns; 1534 char *cp; 1535 struct winsize ws; 1536 1537 columns = 0; 1538 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1539 columns = ws.ws_col; 1540 if (columns == 0 && (cp = getenv("COLUMNS"))) 1541 columns = atoi(cp); 1542 if (columns == 0) 1543 columns = 80; /* last resort */ 1544 return columns; 1545 } 1546