1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define IN_RTLD /* So we pickup the P_OSREL defines */ 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 static struct csum *fscs; 80 #define sblock disk.d_fs 81 #define acg disk.d_cg 82 83 union dinode { 84 struct ufs1_dinode dp1; 85 struct ufs2_dinode dp2; 86 }; 87 #define DIP(dp, field) \ 88 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 89 (dp)->dp1.field : (dp)->dp2.field) 90 91 static caddr_t iobuf; 92 static long iobufsize; 93 static ufs2_daddr_t alloc(int size, int mode); 94 static int charsperline(void); 95 static void clrblock(struct fs *, unsigned char *, int); 96 static void fsinit(time_t); 97 static int ilog2(int); 98 static void initcg(int, time_t); 99 static int isblock(struct fs *, unsigned char *, int); 100 static void iput(union dinode *, ino_t); 101 static int makedir(struct direct *, int); 102 static void setblock(struct fs *, unsigned char *, int); 103 static void wtfs(ufs2_daddr_t, int, char *); 104 static void cgckhash(struct cg *); 105 static u_int32_t newfs_random(void); 106 107 static int 108 do_sbwrite(struct uufsd *disk) 109 { 110 if (!disk->d_sblock) 111 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 112 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 113 disk->d_sblock) * disk->d_bsize))); 114 } 115 116 void 117 mkfs(struct partition *pp, char *fsys) 118 { 119 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 120 long i, j, csfrags; 121 uint cg; 122 time_t utime; 123 quad_t sizepb; 124 int width; 125 ino_t maxinum; 126 int minfragsperinode; /* minimum ratio of frags to inodes */ 127 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 128 struct fsrecovery *fsr; 129 char *fsrbuf; 130 union { 131 struct fs fdummy; 132 char cdummy[SBLOCKSIZE]; 133 } dummy; 134 #define fsdummy dummy.fdummy 135 #define chdummy dummy.cdummy 136 137 /* 138 * Our blocks == sector size, and the version of UFS we are using is 139 * specified by Oflag. 140 */ 141 disk.d_bsize = sectorsize; 142 disk.d_ufs = Oflag; 143 if (Rflag) 144 utime = 1000000000; 145 else 146 time(&utime); 147 sblock.fs_old_flags = FS_FLAGS_UPDATED; 148 sblock.fs_flags = 0; 149 if (Uflag) 150 sblock.fs_flags |= FS_DOSOFTDEP; 151 if (Lflag) 152 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 153 if (Jflag) 154 sblock.fs_flags |= FS_GJOURNAL; 155 if (lflag) 156 sblock.fs_flags |= FS_MULTILABEL; 157 if (tflag) 158 sblock.fs_flags |= FS_TRIM; 159 /* 160 * Validate the given file system size. 161 * Verify that its last block can actually be accessed. 162 * Convert to file system fragment sized units. 163 */ 164 if (fssize <= 0) { 165 printf("preposterous size %jd\n", (intmax_t)fssize); 166 exit(13); 167 } 168 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 169 (char *)&sblock); 170 /* 171 * collect and verify the file system density info 172 */ 173 sblock.fs_avgfilesize = avgfilesize; 174 sblock.fs_avgfpdir = avgfilesperdir; 175 if (sblock.fs_avgfilesize <= 0) 176 printf("illegal expected average file size %d\n", 177 sblock.fs_avgfilesize), exit(14); 178 if (sblock.fs_avgfpdir <= 0) 179 printf("illegal expected number of files per directory %d\n", 180 sblock.fs_avgfpdir), exit(15); 181 182 restart: 183 /* 184 * collect and verify the block and fragment sizes 185 */ 186 sblock.fs_bsize = bsize; 187 sblock.fs_fsize = fsize; 188 if (!POWEROF2(sblock.fs_bsize)) { 189 printf("block size must be a power of 2, not %d\n", 190 sblock.fs_bsize); 191 exit(16); 192 } 193 if (!POWEROF2(sblock.fs_fsize)) { 194 printf("fragment size must be a power of 2, not %d\n", 195 sblock.fs_fsize); 196 exit(17); 197 } 198 if (sblock.fs_fsize < sectorsize) { 199 printf("increasing fragment size from %d to sector size (%d)\n", 200 sblock.fs_fsize, sectorsize); 201 sblock.fs_fsize = sectorsize; 202 } 203 if (sblock.fs_bsize > MAXBSIZE) { 204 printf("decreasing block size from %d to maximum (%d)\n", 205 sblock.fs_bsize, MAXBSIZE); 206 sblock.fs_bsize = MAXBSIZE; 207 } 208 if (sblock.fs_bsize < MINBSIZE) { 209 printf("increasing block size from %d to minimum (%d)\n", 210 sblock.fs_bsize, MINBSIZE); 211 sblock.fs_bsize = MINBSIZE; 212 } 213 if (sblock.fs_fsize > MAXBSIZE) { 214 printf("decreasing fragment size from %d to maximum (%d)\n", 215 sblock.fs_fsize, MAXBSIZE); 216 sblock.fs_fsize = MAXBSIZE; 217 } 218 if (sblock.fs_bsize < sblock.fs_fsize) { 219 printf("increasing block size from %d to fragment size (%d)\n", 220 sblock.fs_bsize, sblock.fs_fsize); 221 sblock.fs_bsize = sblock.fs_fsize; 222 } 223 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 224 printf( 225 "increasing fragment size from %d to block size / %d (%d)\n", 226 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 227 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 228 } 229 if (maxbsize == 0) 230 maxbsize = bsize; 231 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 232 sblock.fs_maxbsize = sblock.fs_bsize; 233 printf("Extent size set to %d\n", sblock.fs_maxbsize); 234 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 235 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 236 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 237 } else { 238 sblock.fs_maxbsize = maxbsize; 239 } 240 /* 241 * Maxcontig sets the default for the maximum number of blocks 242 * that may be allocated sequentially. With file system clustering 243 * it is possible to allocate contiguous blocks up to the maximum 244 * transfer size permitted by the controller or buffering. 245 */ 246 if (maxcontig == 0) 247 maxcontig = MAX(1, MAXPHYS / bsize); 248 sblock.fs_maxcontig = maxcontig; 249 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 250 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 251 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 252 } 253 if (sblock.fs_maxcontig > 1) 254 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 255 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 256 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 257 sblock.fs_qbmask = ~sblock.fs_bmask; 258 sblock.fs_qfmask = ~sblock.fs_fmask; 259 sblock.fs_bshift = ilog2(sblock.fs_bsize); 260 sblock.fs_fshift = ilog2(sblock.fs_fsize); 261 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 262 sblock.fs_fragshift = ilog2(sblock.fs_frag); 263 if (sblock.fs_frag > MAXFRAG) { 264 printf("fragment size %d is still too small (can't happen)\n", 265 sblock.fs_bsize / MAXFRAG); 266 exit(21); 267 } 268 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 269 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 270 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 271 272 /* 273 * Before the filesystem is finally initialized, mark it 274 * as incompletely initialized. 275 */ 276 sblock.fs_magic = FS_BAD_MAGIC; 277 278 if (Oflag == 1) { 279 sblock.fs_sblockloc = SBLOCK_UFS1; 280 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 281 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 282 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 283 sizeof(ufs1_daddr_t)); 284 sblock.fs_old_inodefmt = FS_44INODEFMT; 285 sblock.fs_old_cgoffset = 0; 286 sblock.fs_old_cgmask = 0xffffffff; 287 sblock.fs_old_size = sblock.fs_size; 288 sblock.fs_old_rotdelay = 0; 289 sblock.fs_old_rps = 60; 290 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 291 sblock.fs_old_cpg = 1; 292 sblock.fs_old_interleave = 1; 293 sblock.fs_old_trackskew = 0; 294 sblock.fs_old_cpc = 0; 295 sblock.fs_old_postblformat = 1; 296 sblock.fs_old_nrpos = 1; 297 } else { 298 sblock.fs_sblockloc = SBLOCK_UFS2; 299 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 300 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 301 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 302 sizeof(ufs2_daddr_t)); 303 } 304 sblock.fs_sblkno = 305 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 306 sblock.fs_frag); 307 sblock.fs_cblkno = sblock.fs_sblkno + 308 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 309 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 310 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 311 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 312 sizepb *= NINDIR(&sblock); 313 sblock.fs_maxfilesize += sizepb; 314 } 315 316 /* 317 * It's impossible to create a snapshot in case that fs_maxfilesize 318 * is smaller than the fssize. 319 */ 320 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 321 warnx("WARNING: You will be unable to create snapshots on this " 322 "file system. Correct by using a larger blocksize."); 323 } 324 325 /* 326 * Calculate the number of blocks to put into each cylinder group. 327 * 328 * This algorithm selects the number of blocks per cylinder 329 * group. The first goal is to have at least enough data blocks 330 * in each cylinder group to meet the density requirement. Once 331 * this goal is achieved we try to expand to have at least 332 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 333 * pack as many blocks into each cylinder group map as will fit. 334 * 335 * We start by calculating the smallest number of blocks that we 336 * can put into each cylinder group. If this is too big, we reduce 337 * the density until it fits. 338 */ 339 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 340 minfragsperinode = 1 + fssize / maxinum; 341 if (density == 0) { 342 density = MAX(NFPI, minfragsperinode) * fsize; 343 } else if (density < minfragsperinode * fsize) { 344 origdensity = density; 345 density = minfragsperinode * fsize; 346 fprintf(stderr, "density increased from %d to %d\n", 347 origdensity, density); 348 } 349 origdensity = density; 350 for (;;) { 351 fragsperinode = MAX(numfrags(&sblock, density), 1); 352 if (fragsperinode < minfragsperinode) { 353 bsize <<= 1; 354 fsize <<= 1; 355 printf("Block size too small for a file system %s %d\n", 356 "of this size. Increasing blocksize to", bsize); 357 goto restart; 358 } 359 minfpg = fragsperinode * INOPB(&sblock); 360 if (minfpg > sblock.fs_size) 361 minfpg = sblock.fs_size; 362 sblock.fs_ipg = INOPB(&sblock); 363 sblock.fs_fpg = roundup(sblock.fs_iblkno + 364 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 365 if (sblock.fs_fpg < minfpg) 366 sblock.fs_fpg = minfpg; 367 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 368 INOPB(&sblock)); 369 sblock.fs_fpg = roundup(sblock.fs_iblkno + 370 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 371 if (sblock.fs_fpg < minfpg) 372 sblock.fs_fpg = minfpg; 373 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 374 INOPB(&sblock)); 375 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 376 break; 377 density -= sblock.fs_fsize; 378 } 379 if (density != origdensity) 380 printf("density reduced from %d to %d\n", origdensity, density); 381 /* 382 * Start packing more blocks into the cylinder group until 383 * it cannot grow any larger, the number of cylinder groups 384 * drops below MINCYLGRPS, or we reach the size requested. 385 * For UFS1 inodes per cylinder group are stored in an int16_t 386 * so fs_ipg is limited to 2^15 - 1. 387 */ 388 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 389 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 390 INOPB(&sblock)); 391 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 392 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 393 break; 394 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 395 continue; 396 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 397 break; 398 } 399 sblock.fs_fpg -= sblock.fs_frag; 400 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 401 INOPB(&sblock)); 402 break; 403 } 404 /* 405 * Check to be sure that the last cylinder group has enough blocks 406 * to be viable. If it is too small, reduce the number of blocks 407 * per cylinder group which will have the effect of moving more 408 * blocks into the last cylinder group. 409 */ 410 optimalfpg = sblock.fs_fpg; 411 for (;;) { 412 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 413 lastminfpg = roundup(sblock.fs_iblkno + 414 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 415 if (sblock.fs_size < lastminfpg) { 416 printf("Filesystem size %jd < minimum size of %d\n", 417 (intmax_t)sblock.fs_size, lastminfpg); 418 exit(28); 419 } 420 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 421 sblock.fs_size % sblock.fs_fpg == 0) 422 break; 423 sblock.fs_fpg -= sblock.fs_frag; 424 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 425 INOPB(&sblock)); 426 } 427 if (optimalfpg != sblock.fs_fpg) 428 printf("Reduced frags per cylinder group from %d to %d %s\n", 429 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 430 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 431 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 432 if (Oflag == 1) { 433 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 434 sblock.fs_old_nsect = sblock.fs_old_spc; 435 sblock.fs_old_npsect = sblock.fs_old_spc; 436 sblock.fs_old_ncyl = sblock.fs_ncg; 437 } 438 /* 439 * fill in remaining fields of the super block 440 */ 441 sblock.fs_csaddr = cgdmin(&sblock, 0); 442 sblock.fs_cssize = 443 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 444 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 445 if (fscs == NULL) 446 errx(31, "calloc failed"); 447 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 448 if (sblock.fs_sbsize > SBLOCKSIZE) 449 sblock.fs_sbsize = SBLOCKSIZE; 450 if (sblock.fs_sbsize < realsectorsize) 451 sblock.fs_sbsize = realsectorsize; 452 sblock.fs_minfree = minfree; 453 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 454 sblock.fs_metaspace = blknum(&sblock, metaspace); 455 else if (metaspace != -1) 456 /* reserve half of minfree for metadata blocks */ 457 sblock.fs_metaspace = blknum(&sblock, 458 (sblock.fs_fpg * minfree) / 200); 459 if (maxbpg == 0) 460 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 461 else 462 sblock.fs_maxbpg = maxbpg; 463 sblock.fs_optim = opt; 464 sblock.fs_cgrotor = 0; 465 sblock.fs_pendingblocks = 0; 466 sblock.fs_pendinginodes = 0; 467 sblock.fs_fmod = 0; 468 sblock.fs_ronly = 0; 469 sblock.fs_state = 0; 470 sblock.fs_clean = 1; 471 sblock.fs_id[0] = (long)utime; 472 sblock.fs_id[1] = newfs_random(); 473 sblock.fs_fsmnt[0] = '\0'; 474 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 475 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 476 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 477 sblock.fs_cstotal.cs_nbfree = 478 fragstoblks(&sblock, sblock.fs_dsize) - 479 howmany(csfrags, sblock.fs_frag); 480 sblock.fs_cstotal.cs_nffree = 481 fragnum(&sblock, sblock.fs_size) + 482 (fragnum(&sblock, csfrags) > 0 ? 483 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 484 sblock.fs_cstotal.cs_nifree = 485 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 486 sblock.fs_cstotal.cs_ndir = 0; 487 sblock.fs_dsize -= csfrags; 488 sblock.fs_time = utime; 489 if (Oflag == 1) { 490 sblock.fs_old_time = utime; 491 sblock.fs_old_dsize = sblock.fs_dsize; 492 sblock.fs_old_csaddr = sblock.fs_csaddr; 493 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 494 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 495 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 496 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 497 } 498 /* 499 * Set flags for metadata that is being check-hashed. 500 */ 501 if (Oflag > 1 && getosreldate() >= P_OSREL_CK_CYLGRP) 502 sblock.fs_metackhash = CK_CYLGRP; 503 504 /* 505 * Dump out summary information about file system. 506 */ 507 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 508 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 509 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 510 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 511 sblock.fs_fsize); 512 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 513 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 514 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 515 if (sblock.fs_flags & FS_DOSOFTDEP) 516 printf("\twith soft updates\n"); 517 # undef B2MBFACTOR 518 519 if (Eflag && !Nflag) { 520 printf("Erasing sectors [%jd...%jd]\n", 521 sblock.fs_sblockloc / disk.d_bsize, 522 fsbtodb(&sblock, sblock.fs_size) - 1); 523 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 524 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 525 } 526 /* 527 * Wipe out old UFS1 superblock(s) if necessary. 528 */ 529 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 530 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 531 if (i == -1) 532 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 533 534 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 535 fsdummy.fs_magic = 0; 536 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 537 chdummy, SBLOCKSIZE); 538 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 539 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 540 break; 541 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 542 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 543 } 544 } 545 } 546 if (!Nflag) 547 do_sbwrite(&disk); 548 if (Xflag == 1) { 549 printf("** Exiting on Xflag 1\n"); 550 exit(0); 551 } 552 if (Xflag == 2) 553 printf("** Leaving BAD MAGIC on Xflag 2\n"); 554 else 555 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 556 557 /* 558 * Now build the cylinders group blocks and 559 * then print out indices of cylinder groups. 560 */ 561 printf("super-block backups (for fsck_ffs -b #) at:\n"); 562 i = 0; 563 width = charsperline(); 564 /* 565 * allocate space for superblock, cylinder group map, and 566 * two sets of inode blocks. 567 */ 568 if (sblock.fs_bsize < SBLOCKSIZE) 569 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 570 else 571 iobufsize = 4 * sblock.fs_bsize; 572 if ((iobuf = calloc(1, iobufsize)) == 0) { 573 printf("Cannot allocate I/O buffer\n"); 574 exit(38); 575 } 576 /* 577 * Make a copy of the superblock into the buffer that we will be 578 * writing out in each cylinder group. 579 */ 580 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 581 for (cg = 0; cg < sblock.fs_ncg; cg++) { 582 initcg(cg, utime); 583 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 584 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 585 cg < (sblock.fs_ncg-1) ? "," : ""); 586 if (j < 0) 587 tmpbuf[j = 0] = '\0'; 588 if (i + j >= width) { 589 printf("\n"); 590 i = 0; 591 } 592 i += j; 593 printf("%s", tmpbuf); 594 fflush(stdout); 595 } 596 printf("\n"); 597 if (Nflag) 598 exit(0); 599 /* 600 * Now construct the initial file system, 601 * then write out the super-block. 602 */ 603 fsinit(utime); 604 if (Oflag == 1) { 605 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 606 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 607 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 608 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 609 } 610 if (Xflag == 3) { 611 printf("** Exiting on Xflag 3\n"); 612 exit(0); 613 } 614 if (!Nflag) { 615 do_sbwrite(&disk); 616 /* 617 * For UFS1 filesystems with a blocksize of 64K, the first 618 * alternate superblock resides at the location used for 619 * the default UFS2 superblock. As there is a valid 620 * superblock at this location, the boot code will use 621 * it as its first choice. Thus we have to ensure that 622 * all of its statistcs on usage are correct. 623 */ 624 if (Oflag == 1 && sblock.fs_bsize == 65536) 625 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 626 sblock.fs_bsize, (char *)&sblock); 627 } 628 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 629 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 630 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 631 ((char *)fscs) + i); 632 /* 633 * Read the last sector of the boot block, replace the last 634 * 20 bytes with the recovery information, then write it back. 635 * The recovery information only works for UFS2 filesystems. 636 */ 637 if (sblock.fs_magic == FS_UFS2_MAGIC) { 638 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 639 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 640 fsrbuf, realsectorsize) == -1) 641 err(1, "can't read recovery area: %s", disk.d_error); 642 fsr = 643 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 644 fsr->fsr_magic = sblock.fs_magic; 645 fsr->fsr_fpg = sblock.fs_fpg; 646 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 647 fsr->fsr_sblkno = sblock.fs_sblkno; 648 fsr->fsr_ncg = sblock.fs_ncg; 649 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 650 realsectorsize, fsrbuf); 651 free(fsrbuf); 652 } 653 /* 654 * Update information about this partition in pack 655 * label, to that it may be updated on disk. 656 */ 657 if (pp != NULL) { 658 pp->p_fstype = FS_BSDFFS; 659 pp->p_fsize = sblock.fs_fsize; 660 pp->p_frag = sblock.fs_frag; 661 pp->p_cpg = sblock.fs_fpg; 662 } 663 } 664 665 /* 666 * Initialize a cylinder group. 667 */ 668 void 669 initcg(int cylno, time_t utime) 670 { 671 long blkno, start; 672 uint i, j, d, dlower, dupper; 673 ufs2_daddr_t cbase, dmax; 674 struct ufs1_dinode *dp1; 675 struct ufs2_dinode *dp2; 676 struct csum *cs; 677 678 /* 679 * Determine block bounds for cylinder group. 680 * Allow space for super block summary information in first 681 * cylinder group. 682 */ 683 cbase = cgbase(&sblock, cylno); 684 dmax = cbase + sblock.fs_fpg; 685 if (dmax > sblock.fs_size) 686 dmax = sblock.fs_size; 687 dlower = cgsblock(&sblock, cylno) - cbase; 688 dupper = cgdmin(&sblock, cylno) - cbase; 689 if (cylno == 0) 690 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 691 cs = &fscs[cylno]; 692 memset(&acg, 0, sblock.fs_cgsize); 693 acg.cg_time = utime; 694 acg.cg_magic = CG_MAGIC; 695 acg.cg_cgx = cylno; 696 acg.cg_niblk = sblock.fs_ipg; 697 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 698 acg.cg_ndblk = dmax - cbase; 699 if (sblock.fs_contigsumsize > 0) 700 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 701 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 702 if (Oflag == 2) { 703 acg.cg_iusedoff = start; 704 } else { 705 acg.cg_old_ncyl = sblock.fs_old_cpg; 706 acg.cg_old_time = acg.cg_time; 707 acg.cg_time = 0; 708 acg.cg_old_niblk = acg.cg_niblk; 709 acg.cg_niblk = 0; 710 acg.cg_initediblk = 0; 711 acg.cg_old_btotoff = start; 712 acg.cg_old_boff = acg.cg_old_btotoff + 713 sblock.fs_old_cpg * sizeof(int32_t); 714 acg.cg_iusedoff = acg.cg_old_boff + 715 sblock.fs_old_cpg * sizeof(u_int16_t); 716 } 717 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 718 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 719 if (sblock.fs_contigsumsize > 0) { 720 acg.cg_clustersumoff = 721 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 722 acg.cg_clustersumoff -= sizeof(u_int32_t); 723 acg.cg_clusteroff = acg.cg_clustersumoff + 724 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 725 acg.cg_nextfreeoff = acg.cg_clusteroff + 726 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 727 } 728 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 729 printf("Panic: cylinder group too big\n"); 730 exit(37); 731 } 732 acg.cg_cs.cs_nifree += sblock.fs_ipg; 733 if (cylno == 0) 734 for (i = 0; i < (long)UFS_ROOTINO; i++) { 735 setbit(cg_inosused(&acg), i); 736 acg.cg_cs.cs_nifree--; 737 } 738 if (cylno > 0) { 739 /* 740 * In cylno 0, beginning space is reserved 741 * for boot and super blocks. 742 */ 743 for (d = 0; d < dlower; d += sblock.fs_frag) { 744 blkno = d / sblock.fs_frag; 745 setblock(&sblock, cg_blksfree(&acg), blkno); 746 if (sblock.fs_contigsumsize > 0) 747 setbit(cg_clustersfree(&acg), blkno); 748 acg.cg_cs.cs_nbfree++; 749 } 750 } 751 if ((i = dupper % sblock.fs_frag)) { 752 acg.cg_frsum[sblock.fs_frag - i]++; 753 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 754 setbit(cg_blksfree(&acg), dupper); 755 acg.cg_cs.cs_nffree++; 756 } 757 } 758 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 759 d += sblock.fs_frag) { 760 blkno = d / sblock.fs_frag; 761 setblock(&sblock, cg_blksfree(&acg), blkno); 762 if (sblock.fs_contigsumsize > 0) 763 setbit(cg_clustersfree(&acg), blkno); 764 acg.cg_cs.cs_nbfree++; 765 } 766 if (d < acg.cg_ndblk) { 767 acg.cg_frsum[acg.cg_ndblk - d]++; 768 for (; d < acg.cg_ndblk; d++) { 769 setbit(cg_blksfree(&acg), d); 770 acg.cg_cs.cs_nffree++; 771 } 772 } 773 if (sblock.fs_contigsumsize > 0) { 774 int32_t *sump = cg_clustersum(&acg); 775 u_char *mapp = cg_clustersfree(&acg); 776 int map = *mapp++; 777 int bit = 1; 778 int run = 0; 779 780 for (i = 0; i < acg.cg_nclusterblks; i++) { 781 if ((map & bit) != 0) 782 run++; 783 else if (run != 0) { 784 if (run > sblock.fs_contigsumsize) 785 run = sblock.fs_contigsumsize; 786 sump[run]++; 787 run = 0; 788 } 789 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 790 bit <<= 1; 791 else { 792 map = *mapp++; 793 bit = 1; 794 } 795 } 796 if (run != 0) { 797 if (run > sblock.fs_contigsumsize) 798 run = sblock.fs_contigsumsize; 799 sump[run]++; 800 } 801 } 802 *cs = acg.cg_cs; 803 cgckhash(&acg); 804 /* 805 * Write out the duplicate super block, the cylinder group map 806 * and two blocks worth of inodes in a single write. 807 */ 808 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 809 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 810 start += sblock.fs_bsize; 811 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 812 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 813 for (i = 0; i < acg.cg_initediblk; i++) { 814 if (sblock.fs_magic == FS_UFS1_MAGIC) { 815 dp1->di_gen = newfs_random(); 816 dp1++; 817 } else { 818 dp2->di_gen = newfs_random(); 819 dp2++; 820 } 821 } 822 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 823 /* 824 * For the old file system, we have to initialize all the inodes. 825 */ 826 if (Oflag == 1) { 827 for (i = 2 * sblock.fs_frag; 828 i < sblock.fs_ipg / INOPF(&sblock); 829 i += sblock.fs_frag) { 830 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 831 for (j = 0; j < INOPB(&sblock); j++) { 832 dp1->di_gen = newfs_random(); 833 dp1++; 834 } 835 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 836 sblock.fs_bsize, &iobuf[start]); 837 } 838 } 839 } 840 841 /* 842 * initialize the file system 843 */ 844 #define ROOTLINKCNT 3 845 846 static struct direct root_dir[] = { 847 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 848 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 849 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 850 }; 851 852 #define SNAPLINKCNT 2 853 854 static struct direct snap_dir[] = { 855 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 856 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 857 }; 858 859 void 860 fsinit(time_t utime) 861 { 862 union dinode node; 863 struct group *grp; 864 gid_t gid; 865 int entries; 866 867 memset(&node, 0, sizeof node); 868 if ((grp = getgrnam("operator")) != NULL) { 869 gid = grp->gr_gid; 870 } else { 871 warnx("Cannot retrieve operator gid, using gid 0."); 872 gid = 0; 873 } 874 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 875 if (sblock.fs_magic == FS_UFS1_MAGIC) { 876 /* 877 * initialize the node 878 */ 879 node.dp1.di_atime = utime; 880 node.dp1.di_mtime = utime; 881 node.dp1.di_ctime = utime; 882 /* 883 * create the root directory 884 */ 885 node.dp1.di_mode = IFDIR | UMASK; 886 node.dp1.di_nlink = entries; 887 node.dp1.di_size = makedir(root_dir, entries); 888 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 889 node.dp1.di_blocks = 890 btodb(fragroundup(&sblock, node.dp1.di_size)); 891 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 892 iobuf); 893 iput(&node, UFS_ROOTINO); 894 if (!nflag) { 895 /* 896 * create the .snap directory 897 */ 898 node.dp1.di_mode |= 020; 899 node.dp1.di_gid = gid; 900 node.dp1.di_nlink = SNAPLINKCNT; 901 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 902 node.dp1.di_db[0] = 903 alloc(sblock.fs_fsize, node.dp1.di_mode); 904 node.dp1.di_blocks = 905 btodb(fragroundup(&sblock, node.dp1.di_size)); 906 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 907 sblock.fs_fsize, iobuf); 908 iput(&node, UFS_ROOTINO + 1); 909 } 910 } else { 911 /* 912 * initialize the node 913 */ 914 node.dp2.di_atime = utime; 915 node.dp2.di_mtime = utime; 916 node.dp2.di_ctime = utime; 917 node.dp2.di_birthtime = utime; 918 /* 919 * create the root directory 920 */ 921 node.dp2.di_mode = IFDIR | UMASK; 922 node.dp2.di_nlink = entries; 923 node.dp2.di_size = makedir(root_dir, entries); 924 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 925 node.dp2.di_blocks = 926 btodb(fragroundup(&sblock, node.dp2.di_size)); 927 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 928 iobuf); 929 iput(&node, UFS_ROOTINO); 930 if (!nflag) { 931 /* 932 * create the .snap directory 933 */ 934 node.dp2.di_mode |= 020; 935 node.dp2.di_gid = gid; 936 node.dp2.di_nlink = SNAPLINKCNT; 937 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 938 node.dp2.di_db[0] = 939 alloc(sblock.fs_fsize, node.dp2.di_mode); 940 node.dp2.di_blocks = 941 btodb(fragroundup(&sblock, node.dp2.di_size)); 942 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 943 sblock.fs_fsize, iobuf); 944 iput(&node, UFS_ROOTINO + 1); 945 } 946 } 947 } 948 949 /* 950 * construct a set of directory entries in "iobuf". 951 * return size of directory. 952 */ 953 int 954 makedir(struct direct *protodir, int entries) 955 { 956 char *cp; 957 int i, spcleft; 958 959 spcleft = DIRBLKSIZ; 960 memset(iobuf, 0, DIRBLKSIZ); 961 for (cp = iobuf, i = 0; i < entries - 1; i++) { 962 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 963 memmove(cp, &protodir[i], protodir[i].d_reclen); 964 cp += protodir[i].d_reclen; 965 spcleft -= protodir[i].d_reclen; 966 } 967 protodir[i].d_reclen = spcleft; 968 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 969 return (DIRBLKSIZ); 970 } 971 972 /* 973 * allocate a block or frag 974 */ 975 ufs2_daddr_t 976 alloc(int size, int mode) 977 { 978 int i, blkno, frag; 979 uint d; 980 981 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 982 sblock.fs_cgsize); 983 if (acg.cg_magic != CG_MAGIC) { 984 printf("cg 0: bad magic number\n"); 985 exit(38); 986 } 987 if (acg.cg_cs.cs_nbfree == 0) { 988 printf("first cylinder group ran out of space\n"); 989 exit(39); 990 } 991 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 992 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 993 goto goth; 994 printf("internal error: can't find block in cyl 0\n"); 995 exit(40); 996 goth: 997 blkno = fragstoblks(&sblock, d); 998 clrblock(&sblock, cg_blksfree(&acg), blkno); 999 if (sblock.fs_contigsumsize > 0) 1000 clrbit(cg_clustersfree(&acg), blkno); 1001 acg.cg_cs.cs_nbfree--; 1002 sblock.fs_cstotal.cs_nbfree--; 1003 fscs[0].cs_nbfree--; 1004 if (mode & IFDIR) { 1005 acg.cg_cs.cs_ndir++; 1006 sblock.fs_cstotal.cs_ndir++; 1007 fscs[0].cs_ndir++; 1008 } 1009 if (size != sblock.fs_bsize) { 1010 frag = howmany(size, sblock.fs_fsize); 1011 fscs[0].cs_nffree += sblock.fs_frag - frag; 1012 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1013 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1014 acg.cg_frsum[sblock.fs_frag - frag]++; 1015 for (i = frag; i < sblock.fs_frag; i++) 1016 setbit(cg_blksfree(&acg), d + i); 1017 } 1018 /* XXX cgwrite(&disk, 0)??? */ 1019 cgckhash(&acg); 1020 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1021 (char *)&acg); 1022 return ((ufs2_daddr_t)d); 1023 } 1024 1025 /* 1026 * Allocate an inode on the disk 1027 */ 1028 void 1029 iput(union dinode *ip, ino_t ino) 1030 { 1031 ufs2_daddr_t d; 1032 1033 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1034 sblock.fs_cgsize); 1035 if (acg.cg_magic != CG_MAGIC) { 1036 printf("cg 0: bad magic number\n"); 1037 exit(31); 1038 } 1039 acg.cg_cs.cs_nifree--; 1040 setbit(cg_inosused(&acg), ino); 1041 cgckhash(&acg); 1042 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1043 (char *)&acg); 1044 sblock.fs_cstotal.cs_nifree--; 1045 fscs[0].cs_nifree--; 1046 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1047 printf("fsinit: inode value out of range (%ju).\n", 1048 (uintmax_t)ino); 1049 exit(32); 1050 } 1051 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1052 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1053 if (sblock.fs_magic == FS_UFS1_MAGIC) 1054 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1055 ip->dp1; 1056 else 1057 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1058 ip->dp2; 1059 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1060 } 1061 1062 /* 1063 * possibly write to disk 1064 */ 1065 static void 1066 wtfs(ufs2_daddr_t bno, int size, char *bf) 1067 { 1068 if (Nflag) 1069 return; 1070 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1071 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1072 } 1073 1074 /* 1075 * Calculate the check-hash of the cylinder group. 1076 */ 1077 static void 1078 cgckhash(cgp) 1079 struct cg *cgp; 1080 { 1081 1082 if ((sblock.fs_metackhash & CK_CYLGRP) == 0) 1083 return; 1084 cgp->cg_ckhash = 0; 1085 cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); 1086 } 1087 1088 /* 1089 * check if a block is available 1090 */ 1091 static int 1092 isblock(struct fs *fs, unsigned char *cp, int h) 1093 { 1094 unsigned char mask; 1095 1096 switch (fs->fs_frag) { 1097 case 8: 1098 return (cp[h] == 0xff); 1099 case 4: 1100 mask = 0x0f << ((h & 0x1) << 2); 1101 return ((cp[h >> 1] & mask) == mask); 1102 case 2: 1103 mask = 0x03 << ((h & 0x3) << 1); 1104 return ((cp[h >> 2] & mask) == mask); 1105 case 1: 1106 mask = 0x01 << (h & 0x7); 1107 return ((cp[h >> 3] & mask) == mask); 1108 default: 1109 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1110 return (0); 1111 } 1112 } 1113 1114 /* 1115 * take a block out of the map 1116 */ 1117 static void 1118 clrblock(struct fs *fs, unsigned char *cp, int h) 1119 { 1120 switch ((fs)->fs_frag) { 1121 case 8: 1122 cp[h] = 0; 1123 return; 1124 case 4: 1125 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1126 return; 1127 case 2: 1128 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1129 return; 1130 case 1: 1131 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1132 return; 1133 default: 1134 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1135 return; 1136 } 1137 } 1138 1139 /* 1140 * put a block into the map 1141 */ 1142 static void 1143 setblock(struct fs *fs, unsigned char *cp, int h) 1144 { 1145 switch (fs->fs_frag) { 1146 case 8: 1147 cp[h] = 0xff; 1148 return; 1149 case 4: 1150 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1151 return; 1152 case 2: 1153 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1154 return; 1155 case 1: 1156 cp[h >> 3] |= (0x01 << (h & 0x7)); 1157 return; 1158 default: 1159 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1160 return; 1161 } 1162 } 1163 1164 /* 1165 * Determine the number of characters in a 1166 * single line. 1167 */ 1168 1169 static int 1170 charsperline(void) 1171 { 1172 int columns; 1173 char *cp; 1174 struct winsize ws; 1175 1176 columns = 0; 1177 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1178 columns = ws.ws_col; 1179 if (columns == 0 && (cp = getenv("COLUMNS"))) 1180 columns = atoi(cp); 1181 if (columns == 0) 1182 columns = 80; /* last resort */ 1183 return (columns); 1184 } 1185 1186 static int 1187 ilog2(int val) 1188 { 1189 u_int n; 1190 1191 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1192 if (1 << n == val) 1193 return (n); 1194 errx(1, "ilog2: %d is not a power of 2\n", val); 1195 } 1196 1197 /* 1198 * For the regression test, return predictable random values. 1199 * Otherwise use a true random number generator. 1200 */ 1201 static u_int32_t 1202 newfs_random(void) 1203 { 1204 static int nextnum = 1; 1205 1206 if (Rflag) 1207 return (nextnum++); 1208 return (arc4random()); 1209 } 1210