xref: /freebsd/sbin/newfs/mkfs.c (revision 8a4217aacf57330755501a349d0ea662d4880386)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program.
12  *
13  * Copyright (c) 1980, 1989, 1993
14  *	The Regents of the University of California.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if 0
42 #ifndef lint
43 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
44 #endif /* not lint */
45 #endif
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #define	IN_RTLD			/* So we pickup the P_OSREL defines */
50 #include <sys/param.h>
51 #include <sys/disklabel.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/mman.h>
55 #include <sys/resource.h>
56 #include <sys/stat.h>
57 #include <sys/wait.h>
58 #include <err.h>
59 #include <grp.h>
60 #include <limits.h>
61 #include <signal.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <stdint.h>
65 #include <stdio.h>
66 #include <time.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ufs/dir.h>
70 #include <ufs/ffs/fs.h>
71 #include "newfs.h"
72 
73 /*
74  * make file system for cylinder-group style file systems
75  */
76 #define UMASK		0755
77 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
78 
79 static struct	csum *fscs;
80 #define	sblock	disk.d_fs
81 #define	acg	disk.d_cg
82 
83 union dinode {
84 	struct ufs1_dinode dp1;
85 	struct ufs2_dinode dp2;
86 };
87 #define DIP(dp, field) \
88 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
89 	(dp)->dp1.field : (dp)->dp2.field)
90 
91 static caddr_t iobuf;
92 static long iobufsize;
93 static ufs2_daddr_t alloc(int size, int mode);
94 static int charsperline(void);
95 static void clrblock(struct fs *, unsigned char *, int);
96 static void fsinit(time_t);
97 static int ilog2(int);
98 static void initcg(int, time_t);
99 static int isblock(struct fs *, unsigned char *, int);
100 static void iput(union dinode *, ino_t);
101 static int makedir(struct direct *, int);
102 static void setblock(struct fs *, unsigned char *, int);
103 static void wtfs(ufs2_daddr_t, int, char *);
104 static void cgckhash(struct cg *);
105 static u_int32_t newfs_random(void);
106 
107 static int
108 do_sbwrite(struct uufsd *disk)
109 {
110 	if (!disk->d_sblock)
111 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
112 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
113 	    disk->d_sblock) * disk->d_bsize)));
114 }
115 
116 void
117 mkfs(struct partition *pp, char *fsys)
118 {
119 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
120 	long i, j, csfrags;
121 	uint cg;
122 	time_t utime;
123 	quad_t sizepb;
124 	int width;
125 	ino_t maxinum;
126 	int minfragsperinode;	/* minimum ratio of frags to inodes */
127 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
128 	struct fsrecovery *fsr;
129 	char *fsrbuf;
130 	union {
131 		struct fs fdummy;
132 		char cdummy[SBLOCKSIZE];
133 	} dummy;
134 #define fsdummy dummy.fdummy
135 #define chdummy dummy.cdummy
136 
137 	/*
138 	 * Our blocks == sector size, and the version of UFS we are using is
139 	 * specified by Oflag.
140 	 */
141 	disk.d_bsize = sectorsize;
142 	disk.d_ufs = Oflag;
143 	if (Rflag)
144 		utime = 1000000000;
145 	else
146 		time(&utime);
147 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
148 	sblock.fs_flags = 0;
149 	if (Uflag)
150 		sblock.fs_flags |= FS_DOSOFTDEP;
151 	if (Lflag)
152 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
153 	if (Jflag)
154 		sblock.fs_flags |= FS_GJOURNAL;
155 	if (lflag)
156 		sblock.fs_flags |= FS_MULTILABEL;
157 	if (tflag)
158 		sblock.fs_flags |= FS_TRIM;
159 	/*
160 	 * Validate the given file system size.
161 	 * Verify that its last block can actually be accessed.
162 	 * Convert to file system fragment sized units.
163 	 */
164 	if (fssize <= 0) {
165 		printf("preposterous size %jd\n", (intmax_t)fssize);
166 		exit(13);
167 	}
168 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
169 	    (char *)&sblock);
170 	/*
171 	 * collect and verify the file system density info
172 	 */
173 	sblock.fs_avgfilesize = avgfilesize;
174 	sblock.fs_avgfpdir = avgfilesperdir;
175 	if (sblock.fs_avgfilesize <= 0)
176 		printf("illegal expected average file size %d\n",
177 		    sblock.fs_avgfilesize), exit(14);
178 	if (sblock.fs_avgfpdir <= 0)
179 		printf("illegal expected number of files per directory %d\n",
180 		    sblock.fs_avgfpdir), exit(15);
181 
182 restart:
183 	/*
184 	 * collect and verify the block and fragment sizes
185 	 */
186 	sblock.fs_bsize = bsize;
187 	sblock.fs_fsize = fsize;
188 	if (!POWEROF2(sblock.fs_bsize)) {
189 		printf("block size must be a power of 2, not %d\n",
190 		    sblock.fs_bsize);
191 		exit(16);
192 	}
193 	if (!POWEROF2(sblock.fs_fsize)) {
194 		printf("fragment size must be a power of 2, not %d\n",
195 		    sblock.fs_fsize);
196 		exit(17);
197 	}
198 	if (sblock.fs_fsize < sectorsize) {
199 		printf("increasing fragment size from %d to sector size (%d)\n",
200 		    sblock.fs_fsize, sectorsize);
201 		sblock.fs_fsize = sectorsize;
202 	}
203 	if (sblock.fs_bsize > MAXBSIZE) {
204 		printf("decreasing block size from %d to maximum (%d)\n",
205 		    sblock.fs_bsize, MAXBSIZE);
206 		sblock.fs_bsize = MAXBSIZE;
207 	}
208 	if (sblock.fs_bsize < MINBSIZE) {
209 		printf("increasing block size from %d to minimum (%d)\n",
210 		    sblock.fs_bsize, MINBSIZE);
211 		sblock.fs_bsize = MINBSIZE;
212 	}
213 	if (sblock.fs_fsize > MAXBSIZE) {
214 		printf("decreasing fragment size from %d to maximum (%d)\n",
215 		    sblock.fs_fsize, MAXBSIZE);
216 		sblock.fs_fsize = MAXBSIZE;
217 	}
218 	if (sblock.fs_bsize < sblock.fs_fsize) {
219 		printf("increasing block size from %d to fragment size (%d)\n",
220 		    sblock.fs_bsize, sblock.fs_fsize);
221 		sblock.fs_bsize = sblock.fs_fsize;
222 	}
223 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
224 		printf(
225 		"increasing fragment size from %d to block size / %d (%d)\n",
226 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
227 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
228 	}
229 	if (maxbsize == 0)
230 		maxbsize = bsize;
231 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
232 		sblock.fs_maxbsize = sblock.fs_bsize;
233 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
234 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
235 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
236 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
237 	} else {
238 		sblock.fs_maxbsize = maxbsize;
239 	}
240 	/*
241 	 * Maxcontig sets the default for the maximum number of blocks
242 	 * that may be allocated sequentially. With file system clustering
243 	 * it is possible to allocate contiguous blocks up to the maximum
244 	 * transfer size permitted by the controller or buffering.
245 	 */
246 	if (maxcontig == 0)
247 		maxcontig = MAX(1, MAXPHYS / bsize);
248 	sblock.fs_maxcontig = maxcontig;
249 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
250 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
251 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
252 	}
253 	if (sblock.fs_maxcontig > 1)
254 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
255 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
256 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
257 	sblock.fs_qbmask = ~sblock.fs_bmask;
258 	sblock.fs_qfmask = ~sblock.fs_fmask;
259 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
260 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
261 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
262 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
263 	if (sblock.fs_frag > MAXFRAG) {
264 		printf("fragment size %d is still too small (can't happen)\n",
265 		    sblock.fs_bsize / MAXFRAG);
266 		exit(21);
267 	}
268 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
269 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
270 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
271 
272 	/*
273 	 * Before the filesystem is finally initialized, mark it
274 	 * as incompletely initialized.
275 	 */
276 	sblock.fs_magic = FS_BAD_MAGIC;
277 
278 	if (Oflag == 1) {
279 		sblock.fs_sblockloc = SBLOCK_UFS1;
280 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
281 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
282 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
283 		    sizeof(ufs1_daddr_t));
284 		sblock.fs_old_inodefmt = FS_44INODEFMT;
285 		sblock.fs_old_cgoffset = 0;
286 		sblock.fs_old_cgmask = 0xffffffff;
287 		sblock.fs_old_size = sblock.fs_size;
288 		sblock.fs_old_rotdelay = 0;
289 		sblock.fs_old_rps = 60;
290 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
291 		sblock.fs_old_cpg = 1;
292 		sblock.fs_old_interleave = 1;
293 		sblock.fs_old_trackskew = 0;
294 		sblock.fs_old_cpc = 0;
295 		sblock.fs_old_postblformat = 1;
296 		sblock.fs_old_nrpos = 1;
297 	} else {
298 		sblock.fs_sblockloc = SBLOCK_UFS2;
299 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
300 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
301 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
302 		    sizeof(ufs2_daddr_t));
303 	}
304 	sblock.fs_sblkno =
305 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
306 		sblock.fs_frag);
307 	sblock.fs_cblkno = sblock.fs_sblkno +
308 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
309 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
310 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
311 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
312 		sizepb *= NINDIR(&sblock);
313 		sblock.fs_maxfilesize += sizepb;
314 	}
315 
316 	/*
317 	 * It's impossible to create a snapshot in case that fs_maxfilesize
318 	 * is smaller than the fssize.
319 	 */
320 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
321 		warnx("WARNING: You will be unable to create snapshots on this "
322 		      "file system.  Correct by using a larger blocksize.");
323 	}
324 
325 	/*
326 	 * Calculate the number of blocks to put into each cylinder group.
327 	 *
328 	 * This algorithm selects the number of blocks per cylinder
329 	 * group. The first goal is to have at least enough data blocks
330 	 * in each cylinder group to meet the density requirement. Once
331 	 * this goal is achieved we try to expand to have at least
332 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
333 	 * pack as many blocks into each cylinder group map as will fit.
334 	 *
335 	 * We start by calculating the smallest number of blocks that we
336 	 * can put into each cylinder group. If this is too big, we reduce
337 	 * the density until it fits.
338 	 */
339 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
340 	minfragsperinode = 1 + fssize / maxinum;
341 	if (density == 0) {
342 		density = MAX(NFPI, minfragsperinode) * fsize;
343 	} else if (density < minfragsperinode * fsize) {
344 		origdensity = density;
345 		density = minfragsperinode * fsize;
346 		fprintf(stderr, "density increased from %d to %d\n",
347 		    origdensity, density);
348 	}
349 	origdensity = density;
350 	for (;;) {
351 		fragsperinode = MAX(numfrags(&sblock, density), 1);
352 		if (fragsperinode < minfragsperinode) {
353 			bsize <<= 1;
354 			fsize <<= 1;
355 			printf("Block size too small for a file system %s %d\n",
356 			     "of this size. Increasing blocksize to", bsize);
357 			goto restart;
358 		}
359 		minfpg = fragsperinode * INOPB(&sblock);
360 		if (minfpg > sblock.fs_size)
361 			minfpg = sblock.fs_size;
362 		sblock.fs_ipg = INOPB(&sblock);
363 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
364 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
365 		if (sblock.fs_fpg < minfpg)
366 			sblock.fs_fpg = minfpg;
367 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
368 		    INOPB(&sblock));
369 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
370 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
371 		if (sblock.fs_fpg < minfpg)
372 			sblock.fs_fpg = minfpg;
373 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
374 		    INOPB(&sblock));
375 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
376 			break;
377 		density -= sblock.fs_fsize;
378 	}
379 	if (density != origdensity)
380 		printf("density reduced from %d to %d\n", origdensity, density);
381 	/*
382 	 * Start packing more blocks into the cylinder group until
383 	 * it cannot grow any larger, the number of cylinder groups
384 	 * drops below MINCYLGRPS, or we reach the size requested.
385 	 * For UFS1 inodes per cylinder group are stored in an int16_t
386 	 * so fs_ipg is limited to 2^15 - 1.
387 	 */
388 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
389 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
390 		    INOPB(&sblock));
391 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
392 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
393 				break;
394 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
395 				continue;
396 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
397 				break;
398 		}
399 		sblock.fs_fpg -= sblock.fs_frag;
400 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
401 		    INOPB(&sblock));
402 		break;
403 	}
404 	/*
405 	 * Check to be sure that the last cylinder group has enough blocks
406 	 * to be viable. If it is too small, reduce the number of blocks
407 	 * per cylinder group which will have the effect of moving more
408 	 * blocks into the last cylinder group.
409 	 */
410 	optimalfpg = sblock.fs_fpg;
411 	for (;;) {
412 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
413 		lastminfpg = roundup(sblock.fs_iblkno +
414 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
415 		if (sblock.fs_size < lastminfpg) {
416 			printf("Filesystem size %jd < minimum size of %d\n",
417 			    (intmax_t)sblock.fs_size, lastminfpg);
418 			exit(28);
419 		}
420 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
421 		    sblock.fs_size % sblock.fs_fpg == 0)
422 			break;
423 		sblock.fs_fpg -= sblock.fs_frag;
424 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
425 		    INOPB(&sblock));
426 	}
427 	if (optimalfpg != sblock.fs_fpg)
428 		printf("Reduced frags per cylinder group from %d to %d %s\n",
429 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
430 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
431 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
432 	if (Oflag == 1) {
433 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
434 		sblock.fs_old_nsect = sblock.fs_old_spc;
435 		sblock.fs_old_npsect = sblock.fs_old_spc;
436 		sblock.fs_old_ncyl = sblock.fs_ncg;
437 	}
438 	/*
439 	 * fill in remaining fields of the super block
440 	 */
441 	sblock.fs_csaddr = cgdmin(&sblock, 0);
442 	sblock.fs_cssize =
443 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
444 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
445 	if (fscs == NULL)
446 		errx(31, "calloc failed");
447 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
448 	if (sblock.fs_sbsize > SBLOCKSIZE)
449 		sblock.fs_sbsize = SBLOCKSIZE;
450 	if (sblock.fs_sbsize < realsectorsize)
451 		sblock.fs_sbsize = realsectorsize;
452 	sblock.fs_minfree = minfree;
453 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
454 		sblock.fs_metaspace = blknum(&sblock, metaspace);
455 	else if (metaspace != -1)
456 		/* reserve half of minfree for metadata blocks */
457 		sblock.fs_metaspace = blknum(&sblock,
458 		    (sblock.fs_fpg * minfree) / 200);
459 	if (maxbpg == 0)
460 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
461 	else
462 		sblock.fs_maxbpg = maxbpg;
463 	sblock.fs_optim = opt;
464 	sblock.fs_cgrotor = 0;
465 	sblock.fs_pendingblocks = 0;
466 	sblock.fs_pendinginodes = 0;
467 	sblock.fs_fmod = 0;
468 	sblock.fs_ronly = 0;
469 	sblock.fs_state = 0;
470 	sblock.fs_clean = 1;
471 	sblock.fs_id[0] = (long)utime;
472 	sblock.fs_id[1] = newfs_random();
473 	sblock.fs_fsmnt[0] = '\0';
474 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
475 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
476 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
477 	sblock.fs_cstotal.cs_nbfree =
478 	    fragstoblks(&sblock, sblock.fs_dsize) -
479 	    howmany(csfrags, sblock.fs_frag);
480 	sblock.fs_cstotal.cs_nffree =
481 	    fragnum(&sblock, sblock.fs_size) +
482 	    (fragnum(&sblock, csfrags) > 0 ?
483 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
484 	sblock.fs_cstotal.cs_nifree =
485 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
486 	sblock.fs_cstotal.cs_ndir = 0;
487 	sblock.fs_dsize -= csfrags;
488 	sblock.fs_time = utime;
489 	if (Oflag == 1) {
490 		sblock.fs_old_time = utime;
491 		sblock.fs_old_dsize = sblock.fs_dsize;
492 		sblock.fs_old_csaddr = sblock.fs_csaddr;
493 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
494 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
495 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
496 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
497 	}
498 	/*
499 	 * Set flags for metadata that is being check-hashed.
500 	 */
501 	if (Oflag > 1 && getosreldate() >= P_OSREL_CK_CYLGRP)
502 		sblock.fs_metackhash = CK_CYLGRP;
503 
504 	/*
505 	 * Dump out summary information about file system.
506 	 */
507 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
508 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
509 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
510 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
511 	    sblock.fs_fsize);
512 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
513 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
514 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
515 	if (sblock.fs_flags & FS_DOSOFTDEP)
516 		printf("\twith soft updates\n");
517 #	undef B2MBFACTOR
518 
519 	if (Eflag && !Nflag) {
520 		printf("Erasing sectors [%jd...%jd]\n",
521 		    sblock.fs_sblockloc / disk.d_bsize,
522 		    fsbtodb(&sblock, sblock.fs_size) - 1);
523 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
524 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
525 	}
526 	/*
527 	 * Wipe out old UFS1 superblock(s) if necessary.
528 	 */
529 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
530 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
531 		if (i == -1)
532 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
533 
534 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
535 			fsdummy.fs_magic = 0;
536 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
537 			    chdummy, SBLOCKSIZE);
538 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
539 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
540 					break;
541 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
542 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
543 			}
544 		}
545 	}
546 	if (!Nflag)
547 		do_sbwrite(&disk);
548 	if (Xflag == 1) {
549 		printf("** Exiting on Xflag 1\n");
550 		exit(0);
551 	}
552 	if (Xflag == 2)
553 		printf("** Leaving BAD MAGIC on Xflag 2\n");
554 	else
555 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
556 
557 	/*
558 	 * Now build the cylinders group blocks and
559 	 * then print out indices of cylinder groups.
560 	 */
561 	printf("super-block backups (for fsck_ffs -b #) at:\n");
562 	i = 0;
563 	width = charsperline();
564 	/*
565 	 * allocate space for superblock, cylinder group map, and
566 	 * two sets of inode blocks.
567 	 */
568 	if (sblock.fs_bsize < SBLOCKSIZE)
569 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
570 	else
571 		iobufsize = 4 * sblock.fs_bsize;
572 	if ((iobuf = calloc(1, iobufsize)) == 0) {
573 		printf("Cannot allocate I/O buffer\n");
574 		exit(38);
575 	}
576 	/*
577 	 * Make a copy of the superblock into the buffer that we will be
578 	 * writing out in each cylinder group.
579 	 */
580 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
581 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
582 		initcg(cg, utime);
583 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
584 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
585 		    cg < (sblock.fs_ncg-1) ? "," : "");
586 		if (j < 0)
587 			tmpbuf[j = 0] = '\0';
588 		if (i + j >= width) {
589 			printf("\n");
590 			i = 0;
591 		}
592 		i += j;
593 		printf("%s", tmpbuf);
594 		fflush(stdout);
595 	}
596 	printf("\n");
597 	if (Nflag)
598 		exit(0);
599 	/*
600 	 * Now construct the initial file system,
601 	 * then write out the super-block.
602 	 */
603 	fsinit(utime);
604 	if (Oflag == 1) {
605 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
606 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
607 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
608 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
609 	}
610 	if (Xflag == 3) {
611 		printf("** Exiting on Xflag 3\n");
612 		exit(0);
613 	}
614 	if (!Nflag) {
615 		do_sbwrite(&disk);
616 		/*
617 		 * For UFS1 filesystems with a blocksize of 64K, the first
618 		 * alternate superblock resides at the location used for
619 		 * the default UFS2 superblock. As there is a valid
620 		 * superblock at this location, the boot code will use
621 		 * it as its first choice. Thus we have to ensure that
622 		 * all of its statistcs on usage are correct.
623 		 */
624 		if (Oflag == 1 && sblock.fs_bsize == 65536)
625 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
626 			    sblock.fs_bsize, (char *)&sblock);
627 	}
628 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
629 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
630 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
631 			((char *)fscs) + i);
632 	/*
633 	 * Read the last sector of the boot block, replace the last
634 	 * 20 bytes with the recovery information, then write it back.
635 	 * The recovery information only works for UFS2 filesystems.
636 	 */
637 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
638 		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
639 		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
640 		    fsrbuf, realsectorsize) == -1)
641 			err(1, "can't read recovery area: %s", disk.d_error);
642 		fsr =
643 		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
644 		fsr->fsr_magic = sblock.fs_magic;
645 		fsr->fsr_fpg = sblock.fs_fpg;
646 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
647 		fsr->fsr_sblkno = sblock.fs_sblkno;
648 		fsr->fsr_ncg = sblock.fs_ncg;
649 		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
650 		    realsectorsize, fsrbuf);
651 		free(fsrbuf);
652 	}
653 	/*
654 	 * Update information about this partition in pack
655 	 * label, to that it may be updated on disk.
656 	 */
657 	if (pp != NULL) {
658 		pp->p_fstype = FS_BSDFFS;
659 		pp->p_fsize = sblock.fs_fsize;
660 		pp->p_frag = sblock.fs_frag;
661 		pp->p_cpg = sblock.fs_fpg;
662 	}
663 }
664 
665 /*
666  * Initialize a cylinder group.
667  */
668 void
669 initcg(int cylno, time_t utime)
670 {
671 	long blkno, start;
672 	uint i, j, d, dlower, dupper;
673 	ufs2_daddr_t cbase, dmax;
674 	struct ufs1_dinode *dp1;
675 	struct ufs2_dinode *dp2;
676 	struct csum *cs;
677 
678 	/*
679 	 * Determine block bounds for cylinder group.
680 	 * Allow space for super block summary information in first
681 	 * cylinder group.
682 	 */
683 	cbase = cgbase(&sblock, cylno);
684 	dmax = cbase + sblock.fs_fpg;
685 	if (dmax > sblock.fs_size)
686 		dmax = sblock.fs_size;
687 	dlower = cgsblock(&sblock, cylno) - cbase;
688 	dupper = cgdmin(&sblock, cylno) - cbase;
689 	if (cylno == 0)
690 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
691 	cs = &fscs[cylno];
692 	memset(&acg, 0, sblock.fs_cgsize);
693 	acg.cg_time = utime;
694 	acg.cg_magic = CG_MAGIC;
695 	acg.cg_cgx = cylno;
696 	acg.cg_niblk = sblock.fs_ipg;
697 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
698 	acg.cg_ndblk = dmax - cbase;
699 	if (sblock.fs_contigsumsize > 0)
700 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
701 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
702 	if (Oflag == 2) {
703 		acg.cg_iusedoff = start;
704 	} else {
705 		acg.cg_old_ncyl = sblock.fs_old_cpg;
706 		acg.cg_old_time = acg.cg_time;
707 		acg.cg_time = 0;
708 		acg.cg_old_niblk = acg.cg_niblk;
709 		acg.cg_niblk = 0;
710 		acg.cg_initediblk = 0;
711 		acg.cg_old_btotoff = start;
712 		acg.cg_old_boff = acg.cg_old_btotoff +
713 		    sblock.fs_old_cpg * sizeof(int32_t);
714 		acg.cg_iusedoff = acg.cg_old_boff +
715 		    sblock.fs_old_cpg * sizeof(u_int16_t);
716 	}
717 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
718 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
719 	if (sblock.fs_contigsumsize > 0) {
720 		acg.cg_clustersumoff =
721 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
722 		acg.cg_clustersumoff -= sizeof(u_int32_t);
723 		acg.cg_clusteroff = acg.cg_clustersumoff +
724 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
725 		acg.cg_nextfreeoff = acg.cg_clusteroff +
726 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
727 	}
728 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
729 		printf("Panic: cylinder group too big\n");
730 		exit(37);
731 	}
732 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
733 	if (cylno == 0)
734 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
735 			setbit(cg_inosused(&acg), i);
736 			acg.cg_cs.cs_nifree--;
737 		}
738 	if (cylno > 0) {
739 		/*
740 		 * In cylno 0, beginning space is reserved
741 		 * for boot and super blocks.
742 		 */
743 		for (d = 0; d < dlower; d += sblock.fs_frag) {
744 			blkno = d / sblock.fs_frag;
745 			setblock(&sblock, cg_blksfree(&acg), blkno);
746 			if (sblock.fs_contigsumsize > 0)
747 				setbit(cg_clustersfree(&acg), blkno);
748 			acg.cg_cs.cs_nbfree++;
749 		}
750 	}
751 	if ((i = dupper % sblock.fs_frag)) {
752 		acg.cg_frsum[sblock.fs_frag - i]++;
753 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
754 			setbit(cg_blksfree(&acg), dupper);
755 			acg.cg_cs.cs_nffree++;
756 		}
757 	}
758 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
759 	     d += sblock.fs_frag) {
760 		blkno = d / sblock.fs_frag;
761 		setblock(&sblock, cg_blksfree(&acg), blkno);
762 		if (sblock.fs_contigsumsize > 0)
763 			setbit(cg_clustersfree(&acg), blkno);
764 		acg.cg_cs.cs_nbfree++;
765 	}
766 	if (d < acg.cg_ndblk) {
767 		acg.cg_frsum[acg.cg_ndblk - d]++;
768 		for (; d < acg.cg_ndblk; d++) {
769 			setbit(cg_blksfree(&acg), d);
770 			acg.cg_cs.cs_nffree++;
771 		}
772 	}
773 	if (sblock.fs_contigsumsize > 0) {
774 		int32_t *sump = cg_clustersum(&acg);
775 		u_char *mapp = cg_clustersfree(&acg);
776 		int map = *mapp++;
777 		int bit = 1;
778 		int run = 0;
779 
780 		for (i = 0; i < acg.cg_nclusterblks; i++) {
781 			if ((map & bit) != 0)
782 				run++;
783 			else if (run != 0) {
784 				if (run > sblock.fs_contigsumsize)
785 					run = sblock.fs_contigsumsize;
786 				sump[run]++;
787 				run = 0;
788 			}
789 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
790 				bit <<= 1;
791 			else {
792 				map = *mapp++;
793 				bit = 1;
794 			}
795 		}
796 		if (run != 0) {
797 			if (run > sblock.fs_contigsumsize)
798 				run = sblock.fs_contigsumsize;
799 			sump[run]++;
800 		}
801 	}
802 	*cs = acg.cg_cs;
803 	cgckhash(&acg);
804 	/*
805 	 * Write out the duplicate super block, the cylinder group map
806 	 * and two blocks worth of inodes in a single write.
807 	 */
808 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
809 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
810 	start += sblock.fs_bsize;
811 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
812 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
813 	for (i = 0; i < acg.cg_initediblk; i++) {
814 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
815 			dp1->di_gen = newfs_random();
816 			dp1++;
817 		} else {
818 			dp2->di_gen = newfs_random();
819 			dp2++;
820 		}
821 	}
822 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
823 	/*
824 	 * For the old file system, we have to initialize all the inodes.
825 	 */
826 	if (Oflag == 1) {
827 		for (i = 2 * sblock.fs_frag;
828 		     i < sblock.fs_ipg / INOPF(&sblock);
829 		     i += sblock.fs_frag) {
830 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
831 			for (j = 0; j < INOPB(&sblock); j++) {
832 				dp1->di_gen = newfs_random();
833 				dp1++;
834 			}
835 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
836 			    sblock.fs_bsize, &iobuf[start]);
837 		}
838 	}
839 }
840 
841 /*
842  * initialize the file system
843  */
844 #define ROOTLINKCNT 3
845 
846 static struct direct root_dir[] = {
847 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
848 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
849 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
850 };
851 
852 #define SNAPLINKCNT 2
853 
854 static struct direct snap_dir[] = {
855 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
856 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
857 };
858 
859 void
860 fsinit(time_t utime)
861 {
862 	union dinode node;
863 	struct group *grp;
864 	gid_t gid;
865 	int entries;
866 
867 	memset(&node, 0, sizeof node);
868 	if ((grp = getgrnam("operator")) != NULL) {
869 		gid = grp->gr_gid;
870 	} else {
871 		warnx("Cannot retrieve operator gid, using gid 0.");
872 		gid = 0;
873 	}
874 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
875 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
876 		/*
877 		 * initialize the node
878 		 */
879 		node.dp1.di_atime = utime;
880 		node.dp1.di_mtime = utime;
881 		node.dp1.di_ctime = utime;
882 		/*
883 		 * create the root directory
884 		 */
885 		node.dp1.di_mode = IFDIR | UMASK;
886 		node.dp1.di_nlink = entries;
887 		node.dp1.di_size = makedir(root_dir, entries);
888 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
889 		node.dp1.di_blocks =
890 		    btodb(fragroundup(&sblock, node.dp1.di_size));
891 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
892 		    iobuf);
893 		iput(&node, UFS_ROOTINO);
894 		if (!nflag) {
895 			/*
896 			 * create the .snap directory
897 			 */
898 			node.dp1.di_mode |= 020;
899 			node.dp1.di_gid = gid;
900 			node.dp1.di_nlink = SNAPLINKCNT;
901 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
902 				node.dp1.di_db[0] =
903 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
904 			node.dp1.di_blocks =
905 			    btodb(fragroundup(&sblock, node.dp1.di_size));
906 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
907 				    sblock.fs_fsize, iobuf);
908 			iput(&node, UFS_ROOTINO + 1);
909 		}
910 	} else {
911 		/*
912 		 * initialize the node
913 		 */
914 		node.dp2.di_atime = utime;
915 		node.dp2.di_mtime = utime;
916 		node.dp2.di_ctime = utime;
917 		node.dp2.di_birthtime = utime;
918 		/*
919 		 * create the root directory
920 		 */
921 		node.dp2.di_mode = IFDIR | UMASK;
922 		node.dp2.di_nlink = entries;
923 		node.dp2.di_size = makedir(root_dir, entries);
924 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
925 		node.dp2.di_blocks =
926 		    btodb(fragroundup(&sblock, node.dp2.di_size));
927 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
928 		    iobuf);
929 		iput(&node, UFS_ROOTINO);
930 		if (!nflag) {
931 			/*
932 			 * create the .snap directory
933 			 */
934 			node.dp2.di_mode |= 020;
935 			node.dp2.di_gid = gid;
936 			node.dp2.di_nlink = SNAPLINKCNT;
937 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
938 				node.dp2.di_db[0] =
939 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
940 			node.dp2.di_blocks =
941 			    btodb(fragroundup(&sblock, node.dp2.di_size));
942 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
943 				    sblock.fs_fsize, iobuf);
944 			iput(&node, UFS_ROOTINO + 1);
945 		}
946 	}
947 }
948 
949 /*
950  * construct a set of directory entries in "iobuf".
951  * return size of directory.
952  */
953 int
954 makedir(struct direct *protodir, int entries)
955 {
956 	char *cp;
957 	int i, spcleft;
958 
959 	spcleft = DIRBLKSIZ;
960 	memset(iobuf, 0, DIRBLKSIZ);
961 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
962 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
963 		memmove(cp, &protodir[i], protodir[i].d_reclen);
964 		cp += protodir[i].d_reclen;
965 		spcleft -= protodir[i].d_reclen;
966 	}
967 	protodir[i].d_reclen = spcleft;
968 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
969 	return (DIRBLKSIZ);
970 }
971 
972 /*
973  * allocate a block or frag
974  */
975 ufs2_daddr_t
976 alloc(int size, int mode)
977 {
978 	int i, blkno, frag;
979 	uint d;
980 
981 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
982 	    sblock.fs_cgsize);
983 	if (acg.cg_magic != CG_MAGIC) {
984 		printf("cg 0: bad magic number\n");
985 		exit(38);
986 	}
987 	if (acg.cg_cs.cs_nbfree == 0) {
988 		printf("first cylinder group ran out of space\n");
989 		exit(39);
990 	}
991 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
992 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
993 			goto goth;
994 	printf("internal error: can't find block in cyl 0\n");
995 	exit(40);
996 goth:
997 	blkno = fragstoblks(&sblock, d);
998 	clrblock(&sblock, cg_blksfree(&acg), blkno);
999 	if (sblock.fs_contigsumsize > 0)
1000 		clrbit(cg_clustersfree(&acg), blkno);
1001 	acg.cg_cs.cs_nbfree--;
1002 	sblock.fs_cstotal.cs_nbfree--;
1003 	fscs[0].cs_nbfree--;
1004 	if (mode & IFDIR) {
1005 		acg.cg_cs.cs_ndir++;
1006 		sblock.fs_cstotal.cs_ndir++;
1007 		fscs[0].cs_ndir++;
1008 	}
1009 	if (size != sblock.fs_bsize) {
1010 		frag = howmany(size, sblock.fs_fsize);
1011 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1012 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1013 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1014 		acg.cg_frsum[sblock.fs_frag - frag]++;
1015 		for (i = frag; i < sblock.fs_frag; i++)
1016 			setbit(cg_blksfree(&acg), d + i);
1017 	}
1018 	/* XXX cgwrite(&disk, 0)??? */
1019 	cgckhash(&acg);
1020 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1021 	    (char *)&acg);
1022 	return ((ufs2_daddr_t)d);
1023 }
1024 
1025 /*
1026  * Allocate an inode on the disk
1027  */
1028 void
1029 iput(union dinode *ip, ino_t ino)
1030 {
1031 	ufs2_daddr_t d;
1032 
1033 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1034 	    sblock.fs_cgsize);
1035 	if (acg.cg_magic != CG_MAGIC) {
1036 		printf("cg 0: bad magic number\n");
1037 		exit(31);
1038 	}
1039 	acg.cg_cs.cs_nifree--;
1040 	setbit(cg_inosused(&acg), ino);
1041 	cgckhash(&acg);
1042 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1043 	    (char *)&acg);
1044 	sblock.fs_cstotal.cs_nifree--;
1045 	fscs[0].cs_nifree--;
1046 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1047 		printf("fsinit: inode value out of range (%ju).\n",
1048 		    (uintmax_t)ino);
1049 		exit(32);
1050 	}
1051 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1052 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1053 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1054 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1055 		    ip->dp1;
1056 	else
1057 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1058 		    ip->dp2;
1059 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1060 }
1061 
1062 /*
1063  * possibly write to disk
1064  */
1065 static void
1066 wtfs(ufs2_daddr_t bno, int size, char *bf)
1067 {
1068 	if (Nflag)
1069 		return;
1070 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1071 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1072 }
1073 
1074 /*
1075  * Calculate the check-hash of the cylinder group.
1076  */
1077 static void
1078 cgckhash(cgp)
1079 	struct cg *cgp;
1080 {
1081 
1082 	if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
1083 		return;
1084 	cgp->cg_ckhash = 0;
1085 	cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
1086 }
1087 
1088 /*
1089  * check if a block is available
1090  */
1091 static int
1092 isblock(struct fs *fs, unsigned char *cp, int h)
1093 {
1094 	unsigned char mask;
1095 
1096 	switch (fs->fs_frag) {
1097 	case 8:
1098 		return (cp[h] == 0xff);
1099 	case 4:
1100 		mask = 0x0f << ((h & 0x1) << 2);
1101 		return ((cp[h >> 1] & mask) == mask);
1102 	case 2:
1103 		mask = 0x03 << ((h & 0x3) << 1);
1104 		return ((cp[h >> 2] & mask) == mask);
1105 	case 1:
1106 		mask = 0x01 << (h & 0x7);
1107 		return ((cp[h >> 3] & mask) == mask);
1108 	default:
1109 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1110 		return (0);
1111 	}
1112 }
1113 
1114 /*
1115  * take a block out of the map
1116  */
1117 static void
1118 clrblock(struct fs *fs, unsigned char *cp, int h)
1119 {
1120 	switch ((fs)->fs_frag) {
1121 	case 8:
1122 		cp[h] = 0;
1123 		return;
1124 	case 4:
1125 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1126 		return;
1127 	case 2:
1128 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1129 		return;
1130 	case 1:
1131 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1132 		return;
1133 	default:
1134 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1135 		return;
1136 	}
1137 }
1138 
1139 /*
1140  * put a block into the map
1141  */
1142 static void
1143 setblock(struct fs *fs, unsigned char *cp, int h)
1144 {
1145 	switch (fs->fs_frag) {
1146 	case 8:
1147 		cp[h] = 0xff;
1148 		return;
1149 	case 4:
1150 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1151 		return;
1152 	case 2:
1153 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1154 		return;
1155 	case 1:
1156 		cp[h >> 3] |= (0x01 << (h & 0x7));
1157 		return;
1158 	default:
1159 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1160 		return;
1161 	}
1162 }
1163 
1164 /*
1165  * Determine the number of characters in a
1166  * single line.
1167  */
1168 
1169 static int
1170 charsperline(void)
1171 {
1172 	int columns;
1173 	char *cp;
1174 	struct winsize ws;
1175 
1176 	columns = 0;
1177 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1178 		columns = ws.ws_col;
1179 	if (columns == 0 && (cp = getenv("COLUMNS")))
1180 		columns = atoi(cp);
1181 	if (columns == 0)
1182 		columns = 80;	/* last resort */
1183 	return (columns);
1184 }
1185 
1186 static int
1187 ilog2(int val)
1188 {
1189 	u_int n;
1190 
1191 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1192 		if (1 << n == val)
1193 			return (n);
1194 	errx(1, "ilog2: %d is not a power of 2\n", val);
1195 }
1196 
1197 /*
1198  * For the regression test, return predictable random values.
1199  * Otherwise use a true random number generator.
1200  */
1201 static u_int32_t
1202 newfs_random(void)
1203 {
1204 	static int nextnum = 1;
1205 
1206 	if (Rflag)
1207 		return (nextnum++);
1208 	return (arc4random());
1209 }
1210