1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 void 105 mkfs(struct partition *pp, char *fsys) 106 { 107 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 108 long i, j, cylno, csfrags; 109 time_t utime; 110 quad_t sizepb; 111 int width; 112 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 113 union { 114 struct fs fdummy; 115 char cdummy[SBLOCKSIZE]; 116 } dummy; 117 #define fsdummy dummy.fdummy 118 #define chdummy dummy.cdummy 119 120 /* 121 * Our blocks == sector size, and the version of UFS we are using is 122 * specified by Oflag. 123 */ 124 disk.d_bsize = sectorsize; 125 disk.d_ufs = Oflag; 126 if (Rflag) { 127 utime = 1000000000; 128 } else { 129 time(&utime); 130 arc4random_stir(); 131 } 132 sblock.fs_old_flags = FS_FLAGS_UPDATED; 133 sblock.fs_flags = 0; 134 if (Uflag) 135 sblock.fs_flags |= FS_DOSOFTDEP; 136 if (Lflag) 137 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 138 if (lflag) 139 sblock.fs_flags |= FS_MULTILABEL; 140 /* 141 * Validate the given file system size. 142 * Verify that its last block can actually be accessed. 143 * Convert to file system fragment sized units. 144 */ 145 if (fssize <= 0) { 146 printf("preposterous size %jd\n", (intmax_t)fssize); 147 exit(13); 148 } 149 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 150 (char *)&sblock); 151 /* 152 * collect and verify the file system density info 153 */ 154 sblock.fs_avgfilesize = avgfilesize; 155 sblock.fs_avgfpdir = avgfilesperdir; 156 if (sblock.fs_avgfilesize <= 0) 157 printf("illegal expected average file size %d\n", 158 sblock.fs_avgfilesize), exit(14); 159 if (sblock.fs_avgfpdir <= 0) 160 printf("illegal expected number of files per directory %d\n", 161 sblock.fs_avgfpdir), exit(15); 162 /* 163 * collect and verify the block and fragment sizes 164 */ 165 sblock.fs_bsize = bsize; 166 sblock.fs_fsize = fsize; 167 if (!POWEROF2(sblock.fs_bsize)) { 168 printf("block size must be a power of 2, not %d\n", 169 sblock.fs_bsize); 170 exit(16); 171 } 172 if (!POWEROF2(sblock.fs_fsize)) { 173 printf("fragment size must be a power of 2, not %d\n", 174 sblock.fs_fsize); 175 exit(17); 176 } 177 if (sblock.fs_fsize < sectorsize) { 178 printf("increasing fragment size from %d to sector size (%d)\n", 179 sblock.fs_fsize, sectorsize); 180 sblock.fs_fsize = sectorsize; 181 } 182 if (sblock.fs_bsize > MAXBSIZE) { 183 printf("decreasing block size from %d to maximum (%d)\n", 184 sblock.fs_bsize, MAXBSIZE); 185 sblock.fs_bsize = MAXBSIZE; 186 } 187 if (sblock.fs_bsize < MINBSIZE) { 188 printf("increasing block size from %d to minimum (%d)\n", 189 sblock.fs_bsize, MINBSIZE); 190 sblock.fs_bsize = MINBSIZE; 191 } 192 if (sblock.fs_fsize > MAXBSIZE) { 193 printf("decreasing fragment size from %d to maximum (%d)\n", 194 sblock.fs_fsize, MAXBSIZE); 195 sblock.fs_fsize = MAXBSIZE; 196 } 197 if (sblock.fs_bsize < sblock.fs_fsize) { 198 printf("increasing block size from %d to fragment size (%d)\n", 199 sblock.fs_bsize, sblock.fs_fsize); 200 sblock.fs_bsize = sblock.fs_fsize; 201 } 202 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 203 printf( 204 "increasing fragment size from %d to block size / %d (%d)\n", 205 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 206 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 207 } 208 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 209 sblock.fs_maxbsize = sblock.fs_bsize; 210 printf("Extent size set to %d\n", sblock.fs_maxbsize); 211 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 212 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 213 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 214 } else { 215 sblock.fs_maxbsize = maxbsize; 216 } 217 sblock.fs_maxcontig = maxcontig; 218 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 219 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 220 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 221 } 222 if (sblock.fs_maxcontig > 1) 223 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 224 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 225 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 226 sblock.fs_qbmask = ~sblock.fs_bmask; 227 sblock.fs_qfmask = ~sblock.fs_fmask; 228 sblock.fs_bshift = ilog2(sblock.fs_bsize); 229 sblock.fs_fshift = ilog2(sblock.fs_fsize); 230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 231 sblock.fs_fragshift = ilog2(sblock.fs_frag); 232 if (sblock.fs_frag > MAXFRAG) { 233 printf("fragment size %d is still too small (can't happen)\n", 234 sblock.fs_bsize / MAXFRAG); 235 exit(21); 236 } 237 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 238 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 239 240 /* 241 * Before the filesystem is finally initialized, mark it 242 * as incompletely initialized. 243 */ 244 sblock.fs_magic = FS_BAD_MAGIC; 245 246 if (Oflag == 1) { 247 sblock.fs_sblockloc = SBLOCK_UFS1; 248 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 249 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 250 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 251 sizeof(ufs1_daddr_t)); 252 sblock.fs_old_inodefmt = FS_44INODEFMT; 253 sblock.fs_old_cgoffset = 0; 254 sblock.fs_old_cgmask = 0xffffffff; 255 sblock.fs_old_size = sblock.fs_size; 256 sblock.fs_old_rotdelay = 0; 257 sblock.fs_old_rps = 60; 258 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 259 sblock.fs_old_cpg = 1; 260 sblock.fs_old_interleave = 1; 261 sblock.fs_old_trackskew = 0; 262 sblock.fs_old_cpc = 0; 263 sblock.fs_old_postblformat = 1; 264 sblock.fs_old_nrpos = 1; 265 } else { 266 sblock.fs_sblockloc = SBLOCK_UFS2; 267 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 268 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 269 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 270 sizeof(ufs2_daddr_t)); 271 } 272 sblock.fs_sblkno = 273 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 274 sblock.fs_frag); 275 sblock.fs_cblkno = sblock.fs_sblkno + 276 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 277 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 278 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 279 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 280 sizepb *= NINDIR(&sblock); 281 sblock.fs_maxfilesize += sizepb; 282 } 283 284 /* 285 * It's impossible to create a snapshot in case that fs_maxfilesize 286 * is smaller than the fssize. 287 */ 288 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 289 warnx("WARNING: You will be unable to create snapshots on this " 290 "file system. Correct by using a larger blocksize."); 291 } 292 293 /* 294 * Calculate the number of blocks to put into each cylinder group. 295 * 296 * This algorithm selects the number of blocks per cylinder 297 * group. The first goal is to have at least enough data blocks 298 * in each cylinder group to meet the density requirement. Once 299 * this goal is achieved we try to expand to have at least 300 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 301 * pack as many blocks into each cylinder group map as will fit. 302 * 303 * We start by calculating the smallest number of blocks that we 304 * can put into each cylinder group. If this is too big, we reduce 305 * the density until it fits. 306 */ 307 origdensity = density; 308 for (;;) { 309 fragsperinode = MAX(numfrags(&sblock, density), 1); 310 minfpg = fragsperinode * INOPB(&sblock); 311 if (minfpg > sblock.fs_size) 312 minfpg = sblock.fs_size; 313 sblock.fs_ipg = INOPB(&sblock); 314 sblock.fs_fpg = roundup(sblock.fs_iblkno + 315 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 316 if (sblock.fs_fpg < minfpg) 317 sblock.fs_fpg = minfpg; 318 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 319 INOPB(&sblock)); 320 sblock.fs_fpg = roundup(sblock.fs_iblkno + 321 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 322 if (sblock.fs_fpg < minfpg) 323 sblock.fs_fpg = minfpg; 324 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 325 INOPB(&sblock)); 326 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 327 break; 328 density -= sblock.fs_fsize; 329 } 330 if (density != origdensity) 331 printf("density reduced from %d to %d\n", origdensity, density); 332 /* 333 * Start packing more blocks into the cylinder group until 334 * it cannot grow any larger, the number of cylinder groups 335 * drops below MINCYLGRPS, or we reach the size requested. 336 */ 337 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 338 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 339 INOPB(&sblock)); 340 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 341 break; 342 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 343 continue; 344 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 345 break; 346 sblock.fs_fpg -= sblock.fs_frag; 347 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 348 INOPB(&sblock)); 349 break; 350 } 351 /* 352 * Check to be sure that the last cylinder group has enough blocks 353 * to be viable. If it is too small, reduce the number of blocks 354 * per cylinder group which will have the effect of moving more 355 * blocks into the last cylinder group. 356 */ 357 optimalfpg = sblock.fs_fpg; 358 for (;;) { 359 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 360 lastminfpg = roundup(sblock.fs_iblkno + 361 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 362 if (sblock.fs_size < lastminfpg) { 363 printf("Filesystem size %jd < minimum size of %d\n", 364 (intmax_t)sblock.fs_size, lastminfpg); 365 exit(28); 366 } 367 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 368 sblock.fs_size % sblock.fs_fpg == 0) 369 break; 370 sblock.fs_fpg -= sblock.fs_frag; 371 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 372 INOPB(&sblock)); 373 } 374 if (optimalfpg != sblock.fs_fpg) 375 printf("Reduced frags per cylinder group from %d to %d %s\n", 376 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 377 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 378 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 379 if (Oflag == 1) { 380 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 381 sblock.fs_old_nsect = sblock.fs_old_spc; 382 sblock.fs_old_npsect = sblock.fs_old_spc; 383 sblock.fs_old_ncyl = sblock.fs_ncg; 384 } 385 /* 386 * fill in remaining fields of the super block 387 */ 388 sblock.fs_csaddr = cgdmin(&sblock, 0); 389 sblock.fs_cssize = 390 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 391 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 392 if (fscs == NULL) 393 errx(31, "calloc failed"); 394 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 395 if (sblock.fs_sbsize > SBLOCKSIZE) 396 sblock.fs_sbsize = SBLOCKSIZE; 397 sblock.fs_minfree = minfree; 398 sblock.fs_maxbpg = maxbpg; 399 sblock.fs_optim = opt; 400 sblock.fs_cgrotor = 0; 401 sblock.fs_pendingblocks = 0; 402 sblock.fs_pendinginodes = 0; 403 sblock.fs_fmod = 0; 404 sblock.fs_ronly = 0; 405 sblock.fs_state = 0; 406 sblock.fs_clean = 1; 407 sblock.fs_id[0] = (long)utime; 408 sblock.fs_id[1] = newfs_random(); 409 sblock.fs_fsmnt[0] = '\0'; 410 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 411 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 412 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 413 sblock.fs_cstotal.cs_nbfree = 414 fragstoblks(&sblock, sblock.fs_dsize) - 415 howmany(csfrags, sblock.fs_frag); 416 sblock.fs_cstotal.cs_nffree = 417 fragnum(&sblock, sblock.fs_size) + 418 (fragnum(&sblock, csfrags) > 0 ? 419 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 420 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 421 sblock.fs_cstotal.cs_ndir = 0; 422 sblock.fs_dsize -= csfrags; 423 sblock.fs_time = utime; 424 if (Oflag == 1) { 425 sblock.fs_old_time = utime; 426 sblock.fs_old_dsize = sblock.fs_dsize; 427 sblock.fs_old_csaddr = sblock.fs_csaddr; 428 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 429 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 430 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 431 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 432 } 433 434 /* 435 * Dump out summary information about file system. 436 */ 437 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 438 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 439 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 440 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 441 sblock.fs_fsize); 442 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 443 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 444 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 445 if (sblock.fs_flags & FS_DOSOFTDEP) 446 printf("\twith soft updates\n"); 447 # undef B2MBFACTOR 448 449 /* 450 * Wipe out old UFS1 superblock(s) if necessary. 451 */ 452 if (!Nflag && Oflag != 1) { 453 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 454 if (i == -1) 455 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 456 457 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 458 fsdummy.fs_magic = 0; 459 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 460 for (i = 0; i < fsdummy.fs_ncg; i++) 461 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 462 chdummy, SBLOCKSIZE); 463 } 464 } 465 if (!Nflag) 466 sbwrite(&disk, 0); 467 if (Eflag == 1) { 468 printf("** Exiting on Eflag 1\n"); 469 exit(0); 470 } 471 if (Eflag == 2) 472 printf("** Leaving BAD MAGIC on Eflag 2\n"); 473 else 474 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 475 476 /* 477 * Now build the cylinders group blocks and 478 * then print out indices of cylinder groups. 479 */ 480 printf("super-block backups (for fsck -b #) at:\n"); 481 i = 0; 482 width = charsperline(); 483 /* 484 * allocate space for superblock, cylinder group map, and 485 * two sets of inode blocks. 486 */ 487 if (sblock.fs_bsize < SBLOCKSIZE) 488 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 489 else 490 iobufsize = 4 * sblock.fs_bsize; 491 if ((iobuf = malloc(iobufsize)) == 0) { 492 printf("Cannot allocate I/O buffer\n"); 493 exit(38); 494 } 495 bzero(iobuf, iobufsize); 496 /* 497 * Make a copy of the superblock into the buffer that we will be 498 * writing out in each cylinder group. 499 */ 500 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 501 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 502 initcg(cylno, utime); 503 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 504 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 505 cylno < (sblock.fs_ncg-1) ? "," : ""); 506 if (j < 0) 507 tmpbuf[j = 0] = '\0'; 508 if (i + j >= width) { 509 printf("\n"); 510 i = 0; 511 } 512 i += j; 513 printf("%s", tmpbuf); 514 fflush(stdout); 515 } 516 printf("\n"); 517 if (Nflag) 518 exit(0); 519 /* 520 * Now construct the initial file system, 521 * then write out the super-block. 522 */ 523 fsinit(utime); 524 if (Oflag == 1) { 525 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 526 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 527 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 528 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 529 } 530 if (Eflag == 3) { 531 printf("** Exiting on Eflag 3\n"); 532 exit(0); 533 } 534 if (!Nflag) 535 sbwrite(&disk, 0); 536 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 537 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 538 sblock.fs_cssize - i < sblock.fs_bsize ? 539 sblock.fs_cssize - i : sblock.fs_bsize, 540 ((char *)fscs) + i); 541 /* 542 * Update information about this partion in pack 543 * label, to that it may be updated on disk. 544 */ 545 if (pp != NULL) { 546 pp->p_fstype = FS_BSDFFS; 547 pp->p_fsize = sblock.fs_fsize; 548 pp->p_frag = sblock.fs_frag; 549 pp->p_cpg = sblock.fs_fpg; 550 } 551 } 552 553 /* 554 * Initialize a cylinder group. 555 */ 556 void 557 initcg(int cylno, time_t utime) 558 { 559 long i, j, d, dlower, dupper, blkno, start; 560 ufs2_daddr_t cbase, dmax; 561 struct ufs1_dinode *dp1; 562 struct ufs2_dinode *dp2; 563 struct csum *cs; 564 565 /* 566 * Determine block bounds for cylinder group. 567 * Allow space for super block summary information in first 568 * cylinder group. 569 */ 570 cbase = cgbase(&sblock, cylno); 571 dmax = cbase + sblock.fs_fpg; 572 if (dmax > sblock.fs_size) 573 dmax = sblock.fs_size; 574 dlower = cgsblock(&sblock, cylno) - cbase; 575 dupper = cgdmin(&sblock, cylno) - cbase; 576 if (cylno == 0) 577 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 578 cs = &fscs[cylno]; 579 memset(&acg, 0, sblock.fs_cgsize); 580 acg.cg_time = utime; 581 acg.cg_magic = CG_MAGIC; 582 acg.cg_cgx = cylno; 583 acg.cg_niblk = sblock.fs_ipg; 584 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 585 sblock.fs_ipg : 2 * INOPB(&sblock); 586 acg.cg_ndblk = dmax - cbase; 587 if (sblock.fs_contigsumsize > 0) 588 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 589 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 590 if (Oflag == 2) { 591 acg.cg_iusedoff = start; 592 } else { 593 acg.cg_old_ncyl = sblock.fs_old_cpg; 594 acg.cg_old_time = acg.cg_time; 595 acg.cg_time = 0; 596 acg.cg_old_niblk = acg.cg_niblk; 597 acg.cg_niblk = 0; 598 acg.cg_initediblk = 0; 599 acg.cg_old_btotoff = start; 600 acg.cg_old_boff = acg.cg_old_btotoff + 601 sblock.fs_old_cpg * sizeof(int32_t); 602 acg.cg_iusedoff = acg.cg_old_boff + 603 sblock.fs_old_cpg * sizeof(u_int16_t); 604 } 605 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 606 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 607 if (sblock.fs_contigsumsize > 0) { 608 acg.cg_clustersumoff = 609 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 610 acg.cg_clustersumoff -= sizeof(u_int32_t); 611 acg.cg_clusteroff = acg.cg_clustersumoff + 612 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 613 acg.cg_nextfreeoff = acg.cg_clusteroff + 614 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 615 } 616 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 617 printf("Panic: cylinder group too big\n"); 618 exit(37); 619 } 620 acg.cg_cs.cs_nifree += sblock.fs_ipg; 621 if (cylno == 0) 622 for (i = 0; i < (long)ROOTINO; i++) { 623 setbit(cg_inosused(&acg), i); 624 acg.cg_cs.cs_nifree--; 625 } 626 if (cylno > 0) { 627 /* 628 * In cylno 0, beginning space is reserved 629 * for boot and super blocks. 630 */ 631 for (d = 0; d < dlower; d += sblock.fs_frag) { 632 blkno = d / sblock.fs_frag; 633 setblock(&sblock, cg_blksfree(&acg), blkno); 634 if (sblock.fs_contigsumsize > 0) 635 setbit(cg_clustersfree(&acg), blkno); 636 acg.cg_cs.cs_nbfree++; 637 } 638 } 639 if ((i = dupper % sblock.fs_frag)) { 640 acg.cg_frsum[sblock.fs_frag - i]++; 641 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 642 setbit(cg_blksfree(&acg), dupper); 643 acg.cg_cs.cs_nffree++; 644 } 645 } 646 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 647 d += sblock.fs_frag) { 648 blkno = d / sblock.fs_frag; 649 setblock(&sblock, cg_blksfree(&acg), blkno); 650 if (sblock.fs_contigsumsize > 0) 651 setbit(cg_clustersfree(&acg), blkno); 652 acg.cg_cs.cs_nbfree++; 653 } 654 if (d < acg.cg_ndblk) { 655 acg.cg_frsum[acg.cg_ndblk - d]++; 656 for (; d < acg.cg_ndblk; d++) { 657 setbit(cg_blksfree(&acg), d); 658 acg.cg_cs.cs_nffree++; 659 } 660 } 661 if (sblock.fs_contigsumsize > 0) { 662 int32_t *sump = cg_clustersum(&acg); 663 u_char *mapp = cg_clustersfree(&acg); 664 int map = *mapp++; 665 int bit = 1; 666 int run = 0; 667 668 for (i = 0; i < acg.cg_nclusterblks; i++) { 669 if ((map & bit) != 0) 670 run++; 671 else if (run != 0) { 672 if (run > sblock.fs_contigsumsize) 673 run = sblock.fs_contigsumsize; 674 sump[run]++; 675 run = 0; 676 } 677 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 678 bit <<= 1; 679 else { 680 map = *mapp++; 681 bit = 1; 682 } 683 } 684 if (run != 0) { 685 if (run > sblock.fs_contigsumsize) 686 run = sblock.fs_contigsumsize; 687 sump[run]++; 688 } 689 } 690 *cs = acg.cg_cs; 691 /* 692 * Write out the duplicate super block, the cylinder group map 693 * and two blocks worth of inodes in a single write. 694 */ 695 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 696 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 697 start += sblock.fs_bsize; 698 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 699 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 700 for (i = 0; i < acg.cg_initediblk; i++) { 701 if (sblock.fs_magic == FS_UFS1_MAGIC) { 702 dp1->di_gen = newfs_random(); 703 dp1++; 704 } else { 705 dp2->di_gen = newfs_random(); 706 dp2++; 707 } 708 } 709 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 710 /* 711 * For the old file system, we have to initialize all the inodes. 712 */ 713 if (Oflag == 1) { 714 for (i = 2 * sblock.fs_frag; 715 i < sblock.fs_ipg / INOPF(&sblock); 716 i += sblock.fs_frag) { 717 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 718 for (j = 0; j < INOPB(&sblock); j++) { 719 dp1->di_gen = newfs_random(); 720 dp1++; 721 } 722 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 723 sblock.fs_bsize, &iobuf[start]); 724 } 725 } 726 } 727 728 /* 729 * initialize the file system 730 */ 731 #define ROOTLINKCNT 3 732 733 struct direct root_dir[] = { 734 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 735 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 736 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 737 }; 738 739 #define SNAPLINKCNT 2 740 741 struct direct snap_dir[] = { 742 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 743 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 744 }; 745 746 void 747 fsinit(time_t utime) 748 { 749 union dinode node; 750 struct group *grp; 751 gid_t gid; 752 int entries; 753 754 memset(&node, 0, sizeof node); 755 if ((grp = getgrnam("operator")) != NULL) { 756 gid = grp->gr_gid; 757 } else { 758 warnx("Cannot retrieve operator gid."); 759 gid = 0; 760 } 761 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 762 if (sblock.fs_magic == FS_UFS1_MAGIC) { 763 /* 764 * initialize the node 765 */ 766 node.dp1.di_atime = utime; 767 node.dp1.di_mtime = utime; 768 node.dp1.di_ctime = utime; 769 /* 770 * create the root directory 771 */ 772 node.dp1.di_mode = IFDIR | UMASK; 773 node.dp1.di_nlink = entries; 774 node.dp1.di_size = makedir(root_dir, entries); 775 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 776 node.dp1.di_blocks = 777 btodb(fragroundup(&sblock, node.dp1.di_size)); 778 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 779 iobuf); 780 iput(&node, ROOTINO); 781 if (!nflag) { 782 /* 783 * create the .snap directory 784 */ 785 node.dp1.di_mode |= 020; 786 node.dp1.di_gid = gid; 787 node.dp1.di_nlink = SNAPLINKCNT; 788 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 789 node.dp1.di_db[0] = 790 alloc(sblock.fs_fsize, node.dp1.di_mode); 791 node.dp1.di_blocks = 792 btodb(fragroundup(&sblock, node.dp1.di_size)); 793 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 794 sblock.fs_fsize, iobuf); 795 iput(&node, ROOTINO + 1); 796 } 797 } else { 798 /* 799 * initialize the node 800 */ 801 node.dp2.di_atime = utime; 802 node.dp2.di_mtime = utime; 803 node.dp2.di_ctime = utime; 804 node.dp2.di_birthtime = utime; 805 /* 806 * create the root directory 807 */ 808 node.dp2.di_mode = IFDIR | UMASK; 809 node.dp2.di_nlink = entries; 810 node.dp2.di_size = makedir(root_dir, entries); 811 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 812 node.dp2.di_blocks = 813 btodb(fragroundup(&sblock, node.dp2.di_size)); 814 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 815 iobuf); 816 iput(&node, ROOTINO); 817 if (!nflag) { 818 /* 819 * create the .snap directory 820 */ 821 node.dp2.di_mode |= 020; 822 node.dp2.di_gid = gid; 823 node.dp2.di_nlink = SNAPLINKCNT; 824 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 825 node.dp2.di_db[0] = 826 alloc(sblock.fs_fsize, node.dp2.di_mode); 827 node.dp2.di_blocks = 828 btodb(fragroundup(&sblock, node.dp2.di_size)); 829 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 830 sblock.fs_fsize, iobuf); 831 iput(&node, ROOTINO + 1); 832 } 833 } 834 } 835 836 /* 837 * construct a set of directory entries in "iobuf". 838 * return size of directory. 839 */ 840 int 841 makedir(struct direct *protodir, int entries) 842 { 843 char *cp; 844 int i, spcleft; 845 846 spcleft = DIRBLKSIZ; 847 memset(iobuf, 0, DIRBLKSIZ); 848 for (cp = iobuf, i = 0; i < entries - 1; i++) { 849 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 850 memmove(cp, &protodir[i], protodir[i].d_reclen); 851 cp += protodir[i].d_reclen; 852 spcleft -= protodir[i].d_reclen; 853 } 854 protodir[i].d_reclen = spcleft; 855 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 856 return (DIRBLKSIZ); 857 } 858 859 /* 860 * allocate a block or frag 861 */ 862 ufs2_daddr_t 863 alloc(int size, int mode) 864 { 865 int i, d, blkno, frag; 866 867 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 868 sblock.fs_cgsize); 869 if (acg.cg_magic != CG_MAGIC) { 870 printf("cg 0: bad magic number\n"); 871 exit(38); 872 } 873 if (acg.cg_cs.cs_nbfree == 0) { 874 printf("first cylinder group ran out of space\n"); 875 exit(39); 876 } 877 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 878 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 879 goto goth; 880 printf("internal error: can't find block in cyl 0\n"); 881 exit(40); 882 goth: 883 blkno = fragstoblks(&sblock, d); 884 clrblock(&sblock, cg_blksfree(&acg), blkno); 885 if (sblock.fs_contigsumsize > 0) 886 clrbit(cg_clustersfree(&acg), blkno); 887 acg.cg_cs.cs_nbfree--; 888 sblock.fs_cstotal.cs_nbfree--; 889 fscs[0].cs_nbfree--; 890 if (mode & IFDIR) { 891 acg.cg_cs.cs_ndir++; 892 sblock.fs_cstotal.cs_ndir++; 893 fscs[0].cs_ndir++; 894 } 895 if (size != sblock.fs_bsize) { 896 frag = howmany(size, sblock.fs_fsize); 897 fscs[0].cs_nffree += sblock.fs_frag - frag; 898 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 899 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 900 acg.cg_frsum[sblock.fs_frag - frag]++; 901 for (i = frag; i < sblock.fs_frag; i++) 902 setbit(cg_blksfree(&acg), d + i); 903 } 904 /* XXX cgwrite(&disk, 0)??? */ 905 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 906 (char *)&acg); 907 return ((ufs2_daddr_t)d); 908 } 909 910 /* 911 * Allocate an inode on the disk 912 */ 913 void 914 iput(union dinode *ip, ino_t ino) 915 { 916 ufs2_daddr_t d; 917 int c; 918 919 c = ino_to_cg(&sblock, ino); 920 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 921 sblock.fs_cgsize); 922 if (acg.cg_magic != CG_MAGIC) { 923 printf("cg 0: bad magic number\n"); 924 exit(31); 925 } 926 acg.cg_cs.cs_nifree--; 927 setbit(cg_inosused(&acg), ino); 928 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 929 (char *)&acg); 930 sblock.fs_cstotal.cs_nifree--; 931 fscs[0].cs_nifree--; 932 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 933 printf("fsinit: inode value out of range (%d).\n", ino); 934 exit(32); 935 } 936 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 937 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 938 if (sblock.fs_magic == FS_UFS1_MAGIC) 939 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 940 ip->dp1; 941 else 942 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 943 ip->dp2; 944 wtfs(d, sblock.fs_bsize, (char *)iobuf); 945 } 946 947 /* 948 * possibly write to disk 949 */ 950 static void 951 wtfs(ufs2_daddr_t bno, int size, char *bf) 952 { 953 if (Nflag) 954 return; 955 if (bwrite(&disk, bno, bf, size) < 0) 956 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 957 } 958 959 /* 960 * check if a block is available 961 */ 962 static int 963 isblock(struct fs *fs, unsigned char *cp, int h) 964 { 965 unsigned char mask; 966 967 switch (fs->fs_frag) { 968 case 8: 969 return (cp[h] == 0xff); 970 case 4: 971 mask = 0x0f << ((h & 0x1) << 2); 972 return ((cp[h >> 1] & mask) == mask); 973 case 2: 974 mask = 0x03 << ((h & 0x3) << 1); 975 return ((cp[h >> 2] & mask) == mask); 976 case 1: 977 mask = 0x01 << (h & 0x7); 978 return ((cp[h >> 3] & mask) == mask); 979 default: 980 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 981 return (0); 982 } 983 } 984 985 /* 986 * take a block out of the map 987 */ 988 static void 989 clrblock(struct fs *fs, unsigned char *cp, int h) 990 { 991 switch ((fs)->fs_frag) { 992 case 8: 993 cp[h] = 0; 994 return; 995 case 4: 996 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 997 return; 998 case 2: 999 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1000 return; 1001 case 1: 1002 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1003 return; 1004 default: 1005 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * put a block into the map 1012 */ 1013 static void 1014 setblock(struct fs *fs, unsigned char *cp, int h) 1015 { 1016 switch (fs->fs_frag) { 1017 case 8: 1018 cp[h] = 0xff; 1019 return; 1020 case 4: 1021 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1022 return; 1023 case 2: 1024 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1025 return; 1026 case 1: 1027 cp[h >> 3] |= (0x01 << (h & 0x7)); 1028 return; 1029 default: 1030 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1031 return; 1032 } 1033 } 1034 1035 /* 1036 * Determine the number of characters in a 1037 * single line. 1038 */ 1039 1040 static int 1041 charsperline(void) 1042 { 1043 int columns; 1044 char *cp; 1045 struct winsize ws; 1046 1047 columns = 0; 1048 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1049 columns = ws.ws_col; 1050 if (columns == 0 && (cp = getenv("COLUMNS"))) 1051 columns = atoi(cp); 1052 if (columns == 0) 1053 columns = 80; /* last resort */ 1054 return (columns); 1055 } 1056 1057 static int 1058 ilog2(int val) 1059 { 1060 u_int n; 1061 1062 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1063 if (1 << n == val) 1064 return (n); 1065 errx(1, "ilog2: %d is not a power of 2\n", val); 1066 } 1067 1068 /* 1069 * For the regression test, return predictable random values. 1070 * Otherwise use a true random number generator. 1071 */ 1072 static u_int32_t 1073 newfs_random(void) 1074 { 1075 static int nextnum = 1; 1076 1077 if (Rflag) 1078 return (nextnum++); 1079 return (arc4random()); 1080 } 1081