1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 struct fsrecovery fsr; 125 union { 126 struct fs fdummy; 127 char cdummy[SBLOCKSIZE]; 128 } dummy; 129 #define fsdummy dummy.fdummy 130 #define chdummy dummy.cdummy 131 132 /* 133 * Our blocks == sector size, and the version of UFS we are using is 134 * specified by Oflag. 135 */ 136 disk.d_bsize = sectorsize; 137 disk.d_ufs = Oflag; 138 if (Rflag) 139 utime = 1000000000; 140 else 141 time(&utime); 142 sblock.fs_old_flags = FS_FLAGS_UPDATED; 143 sblock.fs_flags = 0; 144 if (Uflag) 145 sblock.fs_flags |= FS_DOSOFTDEP; 146 if (Lflag) 147 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 148 if (Jflag) 149 sblock.fs_flags |= FS_GJOURNAL; 150 if (lflag) 151 sblock.fs_flags |= FS_MULTILABEL; 152 if (tflag) 153 sblock.fs_flags |= FS_TRIM; 154 /* 155 * Validate the given file system size. 156 * Verify that its last block can actually be accessed. 157 * Convert to file system fragment sized units. 158 */ 159 if (fssize <= 0) { 160 printf("preposterous size %jd\n", (intmax_t)fssize); 161 exit(13); 162 } 163 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 164 (char *)&sblock); 165 /* 166 * collect and verify the file system density info 167 */ 168 sblock.fs_avgfilesize = avgfilesize; 169 sblock.fs_avgfpdir = avgfilesperdir; 170 if (sblock.fs_avgfilesize <= 0) 171 printf("illegal expected average file size %d\n", 172 sblock.fs_avgfilesize), exit(14); 173 if (sblock.fs_avgfpdir <= 0) 174 printf("illegal expected number of files per directory %d\n", 175 sblock.fs_avgfpdir), exit(15); 176 177 restart: 178 /* 179 * collect and verify the block and fragment sizes 180 */ 181 sblock.fs_bsize = bsize; 182 sblock.fs_fsize = fsize; 183 if (!POWEROF2(sblock.fs_bsize)) { 184 printf("block size must be a power of 2, not %d\n", 185 sblock.fs_bsize); 186 exit(16); 187 } 188 if (!POWEROF2(sblock.fs_fsize)) { 189 printf("fragment size must be a power of 2, not %d\n", 190 sblock.fs_fsize); 191 exit(17); 192 } 193 if (sblock.fs_fsize < sectorsize) { 194 printf("increasing fragment size from %d to sector size (%d)\n", 195 sblock.fs_fsize, sectorsize); 196 sblock.fs_fsize = sectorsize; 197 } 198 if (sblock.fs_bsize > MAXBSIZE) { 199 printf("decreasing block size from %d to maximum (%d)\n", 200 sblock.fs_bsize, MAXBSIZE); 201 sblock.fs_bsize = MAXBSIZE; 202 } 203 if (sblock.fs_bsize < MINBSIZE) { 204 printf("increasing block size from %d to minimum (%d)\n", 205 sblock.fs_bsize, MINBSIZE); 206 sblock.fs_bsize = MINBSIZE; 207 } 208 if (sblock.fs_fsize > MAXBSIZE) { 209 printf("decreasing fragment size from %d to maximum (%d)\n", 210 sblock.fs_fsize, MAXBSIZE); 211 sblock.fs_fsize = MAXBSIZE; 212 } 213 if (sblock.fs_bsize < sblock.fs_fsize) { 214 printf("increasing block size from %d to fragment size (%d)\n", 215 sblock.fs_bsize, sblock.fs_fsize); 216 sblock.fs_bsize = sblock.fs_fsize; 217 } 218 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 219 printf( 220 "increasing fragment size from %d to block size / %d (%d)\n", 221 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 222 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 223 } 224 if (maxbsize == 0) 225 maxbsize = bsize; 226 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 227 sblock.fs_maxbsize = sblock.fs_bsize; 228 printf("Extent size set to %d\n", sblock.fs_maxbsize); 229 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 230 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 231 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 232 } else { 233 sblock.fs_maxbsize = maxbsize; 234 } 235 /* 236 * Maxcontig sets the default for the maximum number of blocks 237 * that may be allocated sequentially. With file system clustering 238 * it is possible to allocate contiguous blocks up to the maximum 239 * transfer size permitted by the controller or buffering. 240 */ 241 if (maxcontig == 0) 242 maxcontig = MAX(1, MAXPHYS / bsize); 243 sblock.fs_maxcontig = maxcontig; 244 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 245 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 246 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 247 } 248 if (sblock.fs_maxcontig > 1) 249 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 250 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 251 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 252 sblock.fs_qbmask = ~sblock.fs_bmask; 253 sblock.fs_qfmask = ~sblock.fs_fmask; 254 sblock.fs_bshift = ilog2(sblock.fs_bsize); 255 sblock.fs_fshift = ilog2(sblock.fs_fsize); 256 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 257 sblock.fs_fragshift = ilog2(sblock.fs_frag); 258 if (sblock.fs_frag > MAXFRAG) { 259 printf("fragment size %d is still too small (can't happen)\n", 260 sblock.fs_bsize / MAXFRAG); 261 exit(21); 262 } 263 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 264 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 265 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 266 267 /* 268 * Before the filesystem is finally initialized, mark it 269 * as incompletely initialized. 270 */ 271 sblock.fs_magic = FS_BAD_MAGIC; 272 273 if (Oflag == 1) { 274 sblock.fs_sblockloc = SBLOCK_UFS1; 275 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 276 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 277 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 278 sizeof(ufs1_daddr_t)); 279 sblock.fs_old_inodefmt = FS_44INODEFMT; 280 sblock.fs_old_cgoffset = 0; 281 sblock.fs_old_cgmask = 0xffffffff; 282 sblock.fs_old_size = sblock.fs_size; 283 sblock.fs_old_rotdelay = 0; 284 sblock.fs_old_rps = 60; 285 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 286 sblock.fs_old_cpg = 1; 287 sblock.fs_old_interleave = 1; 288 sblock.fs_old_trackskew = 0; 289 sblock.fs_old_cpc = 0; 290 sblock.fs_old_postblformat = 1; 291 sblock.fs_old_nrpos = 1; 292 } else { 293 sblock.fs_sblockloc = SBLOCK_UFS2; 294 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 295 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 296 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 297 sizeof(ufs2_daddr_t)); 298 } 299 sblock.fs_sblkno = 300 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 301 sblock.fs_frag); 302 sblock.fs_cblkno = sblock.fs_sblkno + 303 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 304 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 305 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 306 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 307 sizepb *= NINDIR(&sblock); 308 sblock.fs_maxfilesize += sizepb; 309 } 310 311 /* 312 * It's impossible to create a snapshot in case that fs_maxfilesize 313 * is smaller than the fssize. 314 */ 315 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 316 warnx("WARNING: You will be unable to create snapshots on this " 317 "file system. Correct by using a larger blocksize."); 318 } 319 320 /* 321 * Calculate the number of blocks to put into each cylinder group. 322 * 323 * This algorithm selects the number of blocks per cylinder 324 * group. The first goal is to have at least enough data blocks 325 * in each cylinder group to meet the density requirement. Once 326 * this goal is achieved we try to expand to have at least 327 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 328 * pack as many blocks into each cylinder group map as will fit. 329 * 330 * We start by calculating the smallest number of blocks that we 331 * can put into each cylinder group. If this is too big, we reduce 332 * the density until it fits. 333 */ 334 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 335 minfragsperinode = 1 + fssize / maxinum; 336 if (density == 0) { 337 density = MAX(NFPI, minfragsperinode) * fsize; 338 } else if (density < minfragsperinode * fsize) { 339 origdensity = density; 340 density = minfragsperinode * fsize; 341 fprintf(stderr, "density increased from %d to %d\n", 342 origdensity, density); 343 } 344 origdensity = density; 345 for (;;) { 346 fragsperinode = MAX(numfrags(&sblock, density), 1); 347 if (fragsperinode < minfragsperinode) { 348 bsize <<= 1; 349 fsize <<= 1; 350 printf("Block size too small for a file system %s %d\n", 351 "of this size. Increasing blocksize to", bsize); 352 goto restart; 353 } 354 minfpg = fragsperinode * INOPB(&sblock); 355 if (minfpg > sblock.fs_size) 356 minfpg = sblock.fs_size; 357 sblock.fs_ipg = INOPB(&sblock); 358 sblock.fs_fpg = roundup(sblock.fs_iblkno + 359 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 360 if (sblock.fs_fpg < minfpg) 361 sblock.fs_fpg = minfpg; 362 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 363 INOPB(&sblock)); 364 sblock.fs_fpg = roundup(sblock.fs_iblkno + 365 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 366 if (sblock.fs_fpg < minfpg) 367 sblock.fs_fpg = minfpg; 368 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 369 INOPB(&sblock)); 370 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 371 break; 372 density -= sblock.fs_fsize; 373 } 374 if (density != origdensity) 375 printf("density reduced from %d to %d\n", origdensity, density); 376 /* 377 * Start packing more blocks into the cylinder group until 378 * it cannot grow any larger, the number of cylinder groups 379 * drops below MINCYLGRPS, or we reach the size requested. 380 * For UFS1 inodes per cylinder group are stored in an int16_t 381 * so fs_ipg is limited to 2^15 - 1. 382 */ 383 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 384 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 385 INOPB(&sblock)); 386 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 387 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 388 break; 389 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 390 continue; 391 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 392 break; 393 } 394 sblock.fs_fpg -= sblock.fs_frag; 395 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 396 INOPB(&sblock)); 397 break; 398 } 399 /* 400 * Check to be sure that the last cylinder group has enough blocks 401 * to be viable. If it is too small, reduce the number of blocks 402 * per cylinder group which will have the effect of moving more 403 * blocks into the last cylinder group. 404 */ 405 optimalfpg = sblock.fs_fpg; 406 for (;;) { 407 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 408 lastminfpg = roundup(sblock.fs_iblkno + 409 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 410 if (sblock.fs_size < lastminfpg) { 411 printf("Filesystem size %jd < minimum size of %d\n", 412 (intmax_t)sblock.fs_size, lastminfpg); 413 exit(28); 414 } 415 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 416 sblock.fs_size % sblock.fs_fpg == 0) 417 break; 418 sblock.fs_fpg -= sblock.fs_frag; 419 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 420 INOPB(&sblock)); 421 } 422 if (optimalfpg != sblock.fs_fpg) 423 printf("Reduced frags per cylinder group from %d to %d %s\n", 424 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 425 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 426 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 427 if (Oflag == 1) { 428 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 429 sblock.fs_old_nsect = sblock.fs_old_spc; 430 sblock.fs_old_npsect = sblock.fs_old_spc; 431 sblock.fs_old_ncyl = sblock.fs_ncg; 432 } 433 /* 434 * fill in remaining fields of the super block 435 */ 436 sblock.fs_csaddr = cgdmin(&sblock, 0); 437 sblock.fs_cssize = 438 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 439 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 440 if (fscs == NULL) 441 errx(31, "calloc failed"); 442 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 443 if (sblock.fs_sbsize > SBLOCKSIZE) 444 sblock.fs_sbsize = SBLOCKSIZE; 445 sblock.fs_minfree = minfree; 446 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 447 sblock.fs_metaspace = blknum(&sblock, metaspace); 448 else if (metaspace != -1) 449 /* reserve half of minfree for metadata blocks */ 450 sblock.fs_metaspace = blknum(&sblock, 451 (sblock.fs_fpg * minfree) / 200); 452 if (maxbpg == 0) 453 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 454 else 455 sblock.fs_maxbpg = maxbpg; 456 sblock.fs_optim = opt; 457 sblock.fs_cgrotor = 0; 458 sblock.fs_pendingblocks = 0; 459 sblock.fs_pendinginodes = 0; 460 sblock.fs_fmod = 0; 461 sblock.fs_ronly = 0; 462 sblock.fs_state = 0; 463 sblock.fs_clean = 1; 464 sblock.fs_id[0] = (long)utime; 465 sblock.fs_id[1] = newfs_random(); 466 sblock.fs_fsmnt[0] = '\0'; 467 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 468 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 469 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 470 sblock.fs_cstotal.cs_nbfree = 471 fragstoblks(&sblock, sblock.fs_dsize) - 472 howmany(csfrags, sblock.fs_frag); 473 sblock.fs_cstotal.cs_nffree = 474 fragnum(&sblock, sblock.fs_size) + 475 (fragnum(&sblock, csfrags) > 0 ? 476 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 477 sblock.fs_cstotal.cs_nifree = 478 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 479 sblock.fs_cstotal.cs_ndir = 0; 480 sblock.fs_dsize -= csfrags; 481 sblock.fs_time = utime; 482 if (Oflag == 1) { 483 sblock.fs_old_time = utime; 484 sblock.fs_old_dsize = sblock.fs_dsize; 485 sblock.fs_old_csaddr = sblock.fs_csaddr; 486 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 487 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 488 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 489 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 490 } 491 492 /* 493 * Dump out summary information about file system. 494 */ 495 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 496 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 497 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 498 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 499 sblock.fs_fsize); 500 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 501 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 502 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 503 if (sblock.fs_flags & FS_DOSOFTDEP) 504 printf("\twith soft updates\n"); 505 # undef B2MBFACTOR 506 507 if (Eflag && !Nflag) { 508 printf("Erasing sectors [%jd...%jd]\n", 509 sblock.fs_sblockloc / disk.d_bsize, 510 fsbtodb(&sblock, sblock.fs_size) - 1); 511 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 512 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 513 } 514 /* 515 * Wipe out old UFS1 superblock(s) if necessary. 516 */ 517 if (!Nflag && Oflag != 1) { 518 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 519 if (i == -1) 520 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 521 522 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 523 fsdummy.fs_magic = 0; 524 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 525 chdummy, SBLOCKSIZE); 526 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 527 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 528 break; 529 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 530 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 531 } 532 } 533 } 534 if (!Nflag) 535 do_sbwrite(&disk); 536 if (Xflag == 1) { 537 printf("** Exiting on Xflag 1\n"); 538 exit(0); 539 } 540 if (Xflag == 2) 541 printf("** Leaving BAD MAGIC on Xflag 2\n"); 542 else 543 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 544 545 /* 546 * Now build the cylinders group blocks and 547 * then print out indices of cylinder groups. 548 */ 549 printf("super-block backups (for fsck_ffs -b #) at:\n"); 550 i = 0; 551 width = charsperline(); 552 /* 553 * allocate space for superblock, cylinder group map, and 554 * two sets of inode blocks. 555 */ 556 if (sblock.fs_bsize < SBLOCKSIZE) 557 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 558 else 559 iobufsize = 4 * sblock.fs_bsize; 560 if ((iobuf = calloc(1, iobufsize)) == 0) { 561 printf("Cannot allocate I/O buffer\n"); 562 exit(38); 563 } 564 /* 565 * Make a copy of the superblock into the buffer that we will be 566 * writing out in each cylinder group. 567 */ 568 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 569 for (cg = 0; cg < sblock.fs_ncg; cg++) { 570 initcg(cg, utime); 571 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 572 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 573 cg < (sblock.fs_ncg-1) ? "," : ""); 574 if (j < 0) 575 tmpbuf[j = 0] = '\0'; 576 if (i + j >= width) { 577 printf("\n"); 578 i = 0; 579 } 580 i += j; 581 printf("%s", tmpbuf); 582 fflush(stdout); 583 } 584 printf("\n"); 585 if (Nflag) 586 exit(0); 587 /* 588 * Now construct the initial file system, 589 * then write out the super-block. 590 */ 591 fsinit(utime); 592 if (Oflag == 1) { 593 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 594 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 595 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 596 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 597 } 598 if (Xflag == 3) { 599 printf("** Exiting on Xflag 3\n"); 600 exit(0); 601 } 602 if (!Nflag) { 603 do_sbwrite(&disk); 604 /* 605 * For UFS1 filesystems with a blocksize of 64K, the first 606 * alternate superblock resides at the location used for 607 * the default UFS2 superblock. As there is a valid 608 * superblock at this location, the boot code will use 609 * it as its first choice. Thus we have to ensure that 610 * all of its statistcs on usage are correct. 611 */ 612 if (Oflag == 1 && sblock.fs_bsize == 65536) 613 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 614 sblock.fs_bsize, (char *)&sblock); 615 } 616 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 617 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 618 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 619 ((char *)fscs) + i); 620 /* 621 * Read the last sector of the boot block, replace the last 622 * 20 bytes with the recovery information, then write it back. 623 * The recovery information only works for UFS2 filesystems. 624 */ 625 if (sblock.fs_magic == FS_UFS2_MAGIC) { 626 i = bread(&disk, 627 part_ofs + (SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, 628 (char *)&fsr, sizeof(fsr)); 629 if (i == -1) 630 err(1, "can't read recovery area: %s", disk.d_error); 631 fsr.fsr_magic = sblock.fs_magic; 632 fsr.fsr_fpg = sblock.fs_fpg; 633 fsr.fsr_fsbtodb = sblock.fs_fsbtodb; 634 fsr.fsr_sblkno = sblock.fs_sblkno; 635 fsr.fsr_ncg = sblock.fs_ncg; 636 wtfs((SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, sizeof(fsr), 637 (char *)&fsr); 638 } 639 /* 640 * Update information about this partition in pack 641 * label, to that it may be updated on disk. 642 */ 643 if (pp != NULL) { 644 pp->p_fstype = FS_BSDFFS; 645 pp->p_fsize = sblock.fs_fsize; 646 pp->p_frag = sblock.fs_frag; 647 pp->p_cpg = sblock.fs_fpg; 648 } 649 } 650 651 /* 652 * Initialize a cylinder group. 653 */ 654 void 655 initcg(int cylno, time_t utime) 656 { 657 long blkno, start; 658 uint i, j, d, dlower, dupper; 659 ufs2_daddr_t cbase, dmax; 660 struct ufs1_dinode *dp1; 661 struct ufs2_dinode *dp2; 662 struct csum *cs; 663 664 /* 665 * Determine block bounds for cylinder group. 666 * Allow space for super block summary information in first 667 * cylinder group. 668 */ 669 cbase = cgbase(&sblock, cylno); 670 dmax = cbase + sblock.fs_fpg; 671 if (dmax > sblock.fs_size) 672 dmax = sblock.fs_size; 673 dlower = cgsblock(&sblock, cylno) - cbase; 674 dupper = cgdmin(&sblock, cylno) - cbase; 675 if (cylno == 0) 676 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 677 cs = &fscs[cylno]; 678 memset(&acg, 0, sblock.fs_cgsize); 679 acg.cg_time = utime; 680 acg.cg_magic = CG_MAGIC; 681 acg.cg_cgx = cylno; 682 acg.cg_niblk = sblock.fs_ipg; 683 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 684 acg.cg_ndblk = dmax - cbase; 685 if (sblock.fs_contigsumsize > 0) 686 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 687 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 688 if (Oflag == 2) { 689 acg.cg_iusedoff = start; 690 } else { 691 acg.cg_old_ncyl = sblock.fs_old_cpg; 692 acg.cg_old_time = acg.cg_time; 693 acg.cg_time = 0; 694 acg.cg_old_niblk = acg.cg_niblk; 695 acg.cg_niblk = 0; 696 acg.cg_initediblk = 0; 697 acg.cg_old_btotoff = start; 698 acg.cg_old_boff = acg.cg_old_btotoff + 699 sblock.fs_old_cpg * sizeof(int32_t); 700 acg.cg_iusedoff = acg.cg_old_boff + 701 sblock.fs_old_cpg * sizeof(u_int16_t); 702 } 703 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 704 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 705 if (sblock.fs_contigsumsize > 0) { 706 acg.cg_clustersumoff = 707 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 708 acg.cg_clustersumoff -= sizeof(u_int32_t); 709 acg.cg_clusteroff = acg.cg_clustersumoff + 710 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 711 acg.cg_nextfreeoff = acg.cg_clusteroff + 712 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 713 } 714 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 715 printf("Panic: cylinder group too big\n"); 716 exit(37); 717 } 718 acg.cg_cs.cs_nifree += sblock.fs_ipg; 719 if (cylno == 0) 720 for (i = 0; i < (long)UFS_ROOTINO; i++) { 721 setbit(cg_inosused(&acg), i); 722 acg.cg_cs.cs_nifree--; 723 } 724 if (cylno > 0) { 725 /* 726 * In cylno 0, beginning space is reserved 727 * for boot and super blocks. 728 */ 729 for (d = 0; d < dlower; d += sblock.fs_frag) { 730 blkno = d / sblock.fs_frag; 731 setblock(&sblock, cg_blksfree(&acg), blkno); 732 if (sblock.fs_contigsumsize > 0) 733 setbit(cg_clustersfree(&acg), blkno); 734 acg.cg_cs.cs_nbfree++; 735 } 736 } 737 if ((i = dupper % sblock.fs_frag)) { 738 acg.cg_frsum[sblock.fs_frag - i]++; 739 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 740 setbit(cg_blksfree(&acg), dupper); 741 acg.cg_cs.cs_nffree++; 742 } 743 } 744 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 745 d += sblock.fs_frag) { 746 blkno = d / sblock.fs_frag; 747 setblock(&sblock, cg_blksfree(&acg), blkno); 748 if (sblock.fs_contigsumsize > 0) 749 setbit(cg_clustersfree(&acg), blkno); 750 acg.cg_cs.cs_nbfree++; 751 } 752 if (d < acg.cg_ndblk) { 753 acg.cg_frsum[acg.cg_ndblk - d]++; 754 for (; d < acg.cg_ndblk; d++) { 755 setbit(cg_blksfree(&acg), d); 756 acg.cg_cs.cs_nffree++; 757 } 758 } 759 if (sblock.fs_contigsumsize > 0) { 760 int32_t *sump = cg_clustersum(&acg); 761 u_char *mapp = cg_clustersfree(&acg); 762 int map = *mapp++; 763 int bit = 1; 764 int run = 0; 765 766 for (i = 0; i < acg.cg_nclusterblks; i++) { 767 if ((map & bit) != 0) 768 run++; 769 else if (run != 0) { 770 if (run > sblock.fs_contigsumsize) 771 run = sblock.fs_contigsumsize; 772 sump[run]++; 773 run = 0; 774 } 775 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 776 bit <<= 1; 777 else { 778 map = *mapp++; 779 bit = 1; 780 } 781 } 782 if (run != 0) { 783 if (run > sblock.fs_contigsumsize) 784 run = sblock.fs_contigsumsize; 785 sump[run]++; 786 } 787 } 788 *cs = acg.cg_cs; 789 /* 790 * Write out the duplicate super block, the cylinder group map 791 * and two blocks worth of inodes in a single write. 792 */ 793 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 794 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 795 start += sblock.fs_bsize; 796 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 797 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 798 for (i = 0; i < acg.cg_initediblk; i++) { 799 if (sblock.fs_magic == FS_UFS1_MAGIC) { 800 dp1->di_gen = newfs_random(); 801 dp1++; 802 } else { 803 dp2->di_gen = newfs_random(); 804 dp2++; 805 } 806 } 807 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 808 /* 809 * For the old file system, we have to initialize all the inodes. 810 */ 811 if (Oflag == 1) { 812 for (i = 2 * sblock.fs_frag; 813 i < sblock.fs_ipg / INOPF(&sblock); 814 i += sblock.fs_frag) { 815 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 816 for (j = 0; j < INOPB(&sblock); j++) { 817 dp1->di_gen = newfs_random(); 818 dp1++; 819 } 820 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 821 sblock.fs_bsize, &iobuf[start]); 822 } 823 } 824 } 825 826 /* 827 * initialize the file system 828 */ 829 #define ROOTLINKCNT 3 830 831 static struct direct root_dir[] = { 832 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 833 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 834 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 835 }; 836 837 #define SNAPLINKCNT 2 838 839 static struct direct snap_dir[] = { 840 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 841 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 842 }; 843 844 void 845 fsinit(time_t utime) 846 { 847 union dinode node; 848 struct group *grp; 849 gid_t gid; 850 int entries; 851 852 memset(&node, 0, sizeof node); 853 if ((grp = getgrnam("operator")) != NULL) { 854 gid = grp->gr_gid; 855 } else { 856 warnx("Cannot retrieve operator gid, using gid 0."); 857 gid = 0; 858 } 859 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 860 if (sblock.fs_magic == FS_UFS1_MAGIC) { 861 /* 862 * initialize the node 863 */ 864 node.dp1.di_atime = utime; 865 node.dp1.di_mtime = utime; 866 node.dp1.di_ctime = utime; 867 /* 868 * create the root directory 869 */ 870 node.dp1.di_mode = IFDIR | UMASK; 871 node.dp1.di_nlink = entries; 872 node.dp1.di_size = makedir(root_dir, entries); 873 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 874 node.dp1.di_blocks = 875 btodb(fragroundup(&sblock, node.dp1.di_size)); 876 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 877 iobuf); 878 iput(&node, UFS_ROOTINO); 879 if (!nflag) { 880 /* 881 * create the .snap directory 882 */ 883 node.dp1.di_mode |= 020; 884 node.dp1.di_gid = gid; 885 node.dp1.di_nlink = SNAPLINKCNT; 886 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 887 node.dp1.di_db[0] = 888 alloc(sblock.fs_fsize, node.dp1.di_mode); 889 node.dp1.di_blocks = 890 btodb(fragroundup(&sblock, node.dp1.di_size)); 891 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 892 sblock.fs_fsize, iobuf); 893 iput(&node, UFS_ROOTINO + 1); 894 } 895 } else { 896 /* 897 * initialize the node 898 */ 899 node.dp2.di_atime = utime; 900 node.dp2.di_mtime = utime; 901 node.dp2.di_ctime = utime; 902 node.dp2.di_birthtime = utime; 903 /* 904 * create the root directory 905 */ 906 node.dp2.di_mode = IFDIR | UMASK; 907 node.dp2.di_nlink = entries; 908 node.dp2.di_size = makedir(root_dir, entries); 909 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 910 node.dp2.di_blocks = 911 btodb(fragroundup(&sblock, node.dp2.di_size)); 912 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 913 iobuf); 914 iput(&node, UFS_ROOTINO); 915 if (!nflag) { 916 /* 917 * create the .snap directory 918 */ 919 node.dp2.di_mode |= 020; 920 node.dp2.di_gid = gid; 921 node.dp2.di_nlink = SNAPLINKCNT; 922 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 923 node.dp2.di_db[0] = 924 alloc(sblock.fs_fsize, node.dp2.di_mode); 925 node.dp2.di_blocks = 926 btodb(fragroundup(&sblock, node.dp2.di_size)); 927 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 928 sblock.fs_fsize, iobuf); 929 iput(&node, UFS_ROOTINO + 1); 930 } 931 } 932 } 933 934 /* 935 * construct a set of directory entries in "iobuf". 936 * return size of directory. 937 */ 938 int 939 makedir(struct direct *protodir, int entries) 940 { 941 char *cp; 942 int i, spcleft; 943 944 spcleft = DIRBLKSIZ; 945 memset(iobuf, 0, DIRBLKSIZ); 946 for (cp = iobuf, i = 0; i < entries - 1; i++) { 947 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 948 memmove(cp, &protodir[i], protodir[i].d_reclen); 949 cp += protodir[i].d_reclen; 950 spcleft -= protodir[i].d_reclen; 951 } 952 protodir[i].d_reclen = spcleft; 953 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 954 return (DIRBLKSIZ); 955 } 956 957 /* 958 * allocate a block or frag 959 */ 960 ufs2_daddr_t 961 alloc(int size, int mode) 962 { 963 int i, blkno, frag; 964 uint d; 965 966 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 967 sblock.fs_cgsize); 968 if (acg.cg_magic != CG_MAGIC) { 969 printf("cg 0: bad magic number\n"); 970 exit(38); 971 } 972 if (acg.cg_cs.cs_nbfree == 0) { 973 printf("first cylinder group ran out of space\n"); 974 exit(39); 975 } 976 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 977 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 978 goto goth; 979 printf("internal error: can't find block in cyl 0\n"); 980 exit(40); 981 goth: 982 blkno = fragstoblks(&sblock, d); 983 clrblock(&sblock, cg_blksfree(&acg), blkno); 984 if (sblock.fs_contigsumsize > 0) 985 clrbit(cg_clustersfree(&acg), blkno); 986 acg.cg_cs.cs_nbfree--; 987 sblock.fs_cstotal.cs_nbfree--; 988 fscs[0].cs_nbfree--; 989 if (mode & IFDIR) { 990 acg.cg_cs.cs_ndir++; 991 sblock.fs_cstotal.cs_ndir++; 992 fscs[0].cs_ndir++; 993 } 994 if (size != sblock.fs_bsize) { 995 frag = howmany(size, sblock.fs_fsize); 996 fscs[0].cs_nffree += sblock.fs_frag - frag; 997 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 998 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 999 acg.cg_frsum[sblock.fs_frag - frag]++; 1000 for (i = frag; i < sblock.fs_frag; i++) 1001 setbit(cg_blksfree(&acg), d + i); 1002 } 1003 /* XXX cgwrite(&disk, 0)??? */ 1004 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1005 (char *)&acg); 1006 return ((ufs2_daddr_t)d); 1007 } 1008 1009 /* 1010 * Allocate an inode on the disk 1011 */ 1012 void 1013 iput(union dinode *ip, ino_t ino) 1014 { 1015 ufs2_daddr_t d; 1016 1017 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1018 sblock.fs_cgsize); 1019 if (acg.cg_magic != CG_MAGIC) { 1020 printf("cg 0: bad magic number\n"); 1021 exit(31); 1022 } 1023 acg.cg_cs.cs_nifree--; 1024 setbit(cg_inosused(&acg), ino); 1025 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1026 (char *)&acg); 1027 sblock.fs_cstotal.cs_nifree--; 1028 fscs[0].cs_nifree--; 1029 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1030 printf("fsinit: inode value out of range (%ju).\n", 1031 (uintmax_t)ino); 1032 exit(32); 1033 } 1034 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1035 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1036 if (sblock.fs_magic == FS_UFS1_MAGIC) 1037 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1038 ip->dp1; 1039 else 1040 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1041 ip->dp2; 1042 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1043 } 1044 1045 /* 1046 * possibly write to disk 1047 */ 1048 static void 1049 wtfs(ufs2_daddr_t bno, int size, char *bf) 1050 { 1051 if (Nflag) 1052 return; 1053 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1054 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1055 } 1056 1057 /* 1058 * check if a block is available 1059 */ 1060 static int 1061 isblock(struct fs *fs, unsigned char *cp, int h) 1062 { 1063 unsigned char mask; 1064 1065 switch (fs->fs_frag) { 1066 case 8: 1067 return (cp[h] == 0xff); 1068 case 4: 1069 mask = 0x0f << ((h & 0x1) << 2); 1070 return ((cp[h >> 1] & mask) == mask); 1071 case 2: 1072 mask = 0x03 << ((h & 0x3) << 1); 1073 return ((cp[h >> 2] & mask) == mask); 1074 case 1: 1075 mask = 0x01 << (h & 0x7); 1076 return ((cp[h >> 3] & mask) == mask); 1077 default: 1078 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1079 return (0); 1080 } 1081 } 1082 1083 /* 1084 * take a block out of the map 1085 */ 1086 static void 1087 clrblock(struct fs *fs, unsigned char *cp, int h) 1088 { 1089 switch ((fs)->fs_frag) { 1090 case 8: 1091 cp[h] = 0; 1092 return; 1093 case 4: 1094 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1095 return; 1096 case 2: 1097 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1098 return; 1099 case 1: 1100 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1101 return; 1102 default: 1103 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1104 return; 1105 } 1106 } 1107 1108 /* 1109 * put a block into the map 1110 */ 1111 static void 1112 setblock(struct fs *fs, unsigned char *cp, int h) 1113 { 1114 switch (fs->fs_frag) { 1115 case 8: 1116 cp[h] = 0xff; 1117 return; 1118 case 4: 1119 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1120 return; 1121 case 2: 1122 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1123 return; 1124 case 1: 1125 cp[h >> 3] |= (0x01 << (h & 0x7)); 1126 return; 1127 default: 1128 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1129 return; 1130 } 1131 } 1132 1133 /* 1134 * Determine the number of characters in a 1135 * single line. 1136 */ 1137 1138 static int 1139 charsperline(void) 1140 { 1141 int columns; 1142 char *cp; 1143 struct winsize ws; 1144 1145 columns = 0; 1146 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1147 columns = ws.ws_col; 1148 if (columns == 0 && (cp = getenv("COLUMNS"))) 1149 columns = atoi(cp); 1150 if (columns == 0) 1151 columns = 80; /* last resort */ 1152 return (columns); 1153 } 1154 1155 static int 1156 ilog2(int val) 1157 { 1158 u_int n; 1159 1160 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1161 if (1 << n == val) 1162 return (n); 1163 errx(1, "ilog2: %d is not a power of 2\n", val); 1164 } 1165 1166 /* 1167 * For the regression test, return predictable random values. 1168 * Otherwise use a true random number generator. 1169 */ 1170 static u_int32_t 1171 newfs_random(void) 1172 { 1173 static int nextnum = 1; 1174 1175 if (Rflag) 1176 return (nextnum++); 1177 return (arc4random()); 1178 } 1179