xref: /freebsd/sbin/newfs/mkfs.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
69 
70 /*
71  * make file system for cylinder-group style file systems
72  */
73 #define UMASK		0755
74 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75 
76 static struct	csum *fscs;
77 #define	sblock	disk.d_fs
78 #define	acg	disk.d_cg
79 
80 union dinode {
81 	struct ufs1_dinode dp1;
82 	struct ufs2_dinode dp2;
83 };
84 #define DIP(dp, field) \
85 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86 	(dp)->dp1.field : (dp)->dp2.field)
87 
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static u_int32_t newfs_random(void);
102 
103 static int
104 do_sbwrite(struct uufsd *disk)
105 {
106 	if (!disk->d_sblock)
107 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109 	    disk->d_sblock) * disk->d_bsize)));
110 }
111 
112 void
113 mkfs(struct partition *pp, char *fsys)
114 {
115 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116 	long i, j, csfrags;
117 	uint cg;
118 	time_t utime;
119 	quad_t sizepb;
120 	int width;
121 	ino_t maxinum;
122 	int minfragsperinode;	/* minimum ratio of frags to inodes */
123 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124 	struct fsrecovery fsr;
125 	union {
126 		struct fs fdummy;
127 		char cdummy[SBLOCKSIZE];
128 	} dummy;
129 #define fsdummy dummy.fdummy
130 #define chdummy dummy.cdummy
131 
132 	/*
133 	 * Our blocks == sector size, and the version of UFS we are using is
134 	 * specified by Oflag.
135 	 */
136 	disk.d_bsize = sectorsize;
137 	disk.d_ufs = Oflag;
138 	if (Rflag)
139 		utime = 1000000000;
140 	else
141 		time(&utime);
142 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
143 	sblock.fs_flags = 0;
144 	if (Uflag)
145 		sblock.fs_flags |= FS_DOSOFTDEP;
146 	if (Lflag)
147 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
148 	if (Jflag)
149 		sblock.fs_flags |= FS_GJOURNAL;
150 	if (lflag)
151 		sblock.fs_flags |= FS_MULTILABEL;
152 	if (tflag)
153 		sblock.fs_flags |= FS_TRIM;
154 	/*
155 	 * Validate the given file system size.
156 	 * Verify that its last block can actually be accessed.
157 	 * Convert to file system fragment sized units.
158 	 */
159 	if (fssize <= 0) {
160 		printf("preposterous size %jd\n", (intmax_t)fssize);
161 		exit(13);
162 	}
163 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
164 	    (char *)&sblock);
165 	/*
166 	 * collect and verify the file system density info
167 	 */
168 	sblock.fs_avgfilesize = avgfilesize;
169 	sblock.fs_avgfpdir = avgfilesperdir;
170 	if (sblock.fs_avgfilesize <= 0)
171 		printf("illegal expected average file size %d\n",
172 		    sblock.fs_avgfilesize), exit(14);
173 	if (sblock.fs_avgfpdir <= 0)
174 		printf("illegal expected number of files per directory %d\n",
175 		    sblock.fs_avgfpdir), exit(15);
176 
177 restart:
178 	/*
179 	 * collect and verify the block and fragment sizes
180 	 */
181 	sblock.fs_bsize = bsize;
182 	sblock.fs_fsize = fsize;
183 	if (!POWEROF2(sblock.fs_bsize)) {
184 		printf("block size must be a power of 2, not %d\n",
185 		    sblock.fs_bsize);
186 		exit(16);
187 	}
188 	if (!POWEROF2(sblock.fs_fsize)) {
189 		printf("fragment size must be a power of 2, not %d\n",
190 		    sblock.fs_fsize);
191 		exit(17);
192 	}
193 	if (sblock.fs_fsize < sectorsize) {
194 		printf("increasing fragment size from %d to sector size (%d)\n",
195 		    sblock.fs_fsize, sectorsize);
196 		sblock.fs_fsize = sectorsize;
197 	}
198 	if (sblock.fs_bsize > MAXBSIZE) {
199 		printf("decreasing block size from %d to maximum (%d)\n",
200 		    sblock.fs_bsize, MAXBSIZE);
201 		sblock.fs_bsize = MAXBSIZE;
202 	}
203 	if (sblock.fs_bsize < MINBSIZE) {
204 		printf("increasing block size from %d to minimum (%d)\n",
205 		    sblock.fs_bsize, MINBSIZE);
206 		sblock.fs_bsize = MINBSIZE;
207 	}
208 	if (sblock.fs_fsize > MAXBSIZE) {
209 		printf("decreasing fragment size from %d to maximum (%d)\n",
210 		    sblock.fs_fsize, MAXBSIZE);
211 		sblock.fs_fsize = MAXBSIZE;
212 	}
213 	if (sblock.fs_bsize < sblock.fs_fsize) {
214 		printf("increasing block size from %d to fragment size (%d)\n",
215 		    sblock.fs_bsize, sblock.fs_fsize);
216 		sblock.fs_bsize = sblock.fs_fsize;
217 	}
218 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
219 		printf(
220 		"increasing fragment size from %d to block size / %d (%d)\n",
221 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
222 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
223 	}
224 	if (maxbsize == 0)
225 		maxbsize = bsize;
226 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
227 		sblock.fs_maxbsize = sblock.fs_bsize;
228 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
229 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
230 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
231 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
232 	} else {
233 		sblock.fs_maxbsize = maxbsize;
234 	}
235 	/*
236 	 * Maxcontig sets the default for the maximum number of blocks
237 	 * that may be allocated sequentially. With file system clustering
238 	 * it is possible to allocate contiguous blocks up to the maximum
239 	 * transfer size permitted by the controller or buffering.
240 	 */
241 	if (maxcontig == 0)
242 		maxcontig = MAX(1, MAXPHYS / bsize);
243 	sblock.fs_maxcontig = maxcontig;
244 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
245 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
246 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
247 	}
248 	if (sblock.fs_maxcontig > 1)
249 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
250 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
251 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
252 	sblock.fs_qbmask = ~sblock.fs_bmask;
253 	sblock.fs_qfmask = ~sblock.fs_fmask;
254 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
255 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
256 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
257 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
258 	if (sblock.fs_frag > MAXFRAG) {
259 		printf("fragment size %d is still too small (can't happen)\n",
260 		    sblock.fs_bsize / MAXFRAG);
261 		exit(21);
262 	}
263 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
264 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
265 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
266 
267 	/*
268 	 * Before the filesystem is finally initialized, mark it
269 	 * as incompletely initialized.
270 	 */
271 	sblock.fs_magic = FS_BAD_MAGIC;
272 
273 	if (Oflag == 1) {
274 		sblock.fs_sblockloc = SBLOCK_UFS1;
275 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
276 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
277 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
278 		    sizeof(ufs1_daddr_t));
279 		sblock.fs_old_inodefmt = FS_44INODEFMT;
280 		sblock.fs_old_cgoffset = 0;
281 		sblock.fs_old_cgmask = 0xffffffff;
282 		sblock.fs_old_size = sblock.fs_size;
283 		sblock.fs_old_rotdelay = 0;
284 		sblock.fs_old_rps = 60;
285 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
286 		sblock.fs_old_cpg = 1;
287 		sblock.fs_old_interleave = 1;
288 		sblock.fs_old_trackskew = 0;
289 		sblock.fs_old_cpc = 0;
290 		sblock.fs_old_postblformat = 1;
291 		sblock.fs_old_nrpos = 1;
292 	} else {
293 		sblock.fs_sblockloc = SBLOCK_UFS2;
294 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
295 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
296 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
297 		    sizeof(ufs2_daddr_t));
298 	}
299 	sblock.fs_sblkno =
300 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
301 		sblock.fs_frag);
302 	sblock.fs_cblkno = sblock.fs_sblkno +
303 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
304 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
305 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
306 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
307 		sizepb *= NINDIR(&sblock);
308 		sblock.fs_maxfilesize += sizepb;
309 	}
310 
311 	/*
312 	 * It's impossible to create a snapshot in case that fs_maxfilesize
313 	 * is smaller than the fssize.
314 	 */
315 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
316 		warnx("WARNING: You will be unable to create snapshots on this "
317 		      "file system.  Correct by using a larger blocksize.");
318 	}
319 
320 	/*
321 	 * Calculate the number of blocks to put into each cylinder group.
322 	 *
323 	 * This algorithm selects the number of blocks per cylinder
324 	 * group. The first goal is to have at least enough data blocks
325 	 * in each cylinder group to meet the density requirement. Once
326 	 * this goal is achieved we try to expand to have at least
327 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
328 	 * pack as many blocks into each cylinder group map as will fit.
329 	 *
330 	 * We start by calculating the smallest number of blocks that we
331 	 * can put into each cylinder group. If this is too big, we reduce
332 	 * the density until it fits.
333 	 */
334 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
335 	minfragsperinode = 1 + fssize / maxinum;
336 	if (density == 0) {
337 		density = MAX(NFPI, minfragsperinode) * fsize;
338 	} else if (density < minfragsperinode * fsize) {
339 		origdensity = density;
340 		density = minfragsperinode * fsize;
341 		fprintf(stderr, "density increased from %d to %d\n",
342 		    origdensity, density);
343 	}
344 	origdensity = density;
345 	for (;;) {
346 		fragsperinode = MAX(numfrags(&sblock, density), 1);
347 		if (fragsperinode < minfragsperinode) {
348 			bsize <<= 1;
349 			fsize <<= 1;
350 			printf("Block size too small for a file system %s %d\n",
351 			     "of this size. Increasing blocksize to", bsize);
352 			goto restart;
353 		}
354 		minfpg = fragsperinode * INOPB(&sblock);
355 		if (minfpg > sblock.fs_size)
356 			minfpg = sblock.fs_size;
357 		sblock.fs_ipg = INOPB(&sblock);
358 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
359 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
360 		if (sblock.fs_fpg < minfpg)
361 			sblock.fs_fpg = minfpg;
362 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
363 		    INOPB(&sblock));
364 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
365 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
366 		if (sblock.fs_fpg < minfpg)
367 			sblock.fs_fpg = minfpg;
368 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
369 		    INOPB(&sblock));
370 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
371 			break;
372 		density -= sblock.fs_fsize;
373 	}
374 	if (density != origdensity)
375 		printf("density reduced from %d to %d\n", origdensity, density);
376 	/*
377 	 * Start packing more blocks into the cylinder group until
378 	 * it cannot grow any larger, the number of cylinder groups
379 	 * drops below MINCYLGRPS, or we reach the size requested.
380 	 * For UFS1 inodes per cylinder group are stored in an int16_t
381 	 * so fs_ipg is limited to 2^15 - 1.
382 	 */
383 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
384 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
385 		    INOPB(&sblock));
386 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
387 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
388 				break;
389 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
390 				continue;
391 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
392 				break;
393 		}
394 		sblock.fs_fpg -= sblock.fs_frag;
395 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
396 		    INOPB(&sblock));
397 		break;
398 	}
399 	/*
400 	 * Check to be sure that the last cylinder group has enough blocks
401 	 * to be viable. If it is too small, reduce the number of blocks
402 	 * per cylinder group which will have the effect of moving more
403 	 * blocks into the last cylinder group.
404 	 */
405 	optimalfpg = sblock.fs_fpg;
406 	for (;;) {
407 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
408 		lastminfpg = roundup(sblock.fs_iblkno +
409 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
410 		if (sblock.fs_size < lastminfpg) {
411 			printf("Filesystem size %jd < minimum size of %d\n",
412 			    (intmax_t)sblock.fs_size, lastminfpg);
413 			exit(28);
414 		}
415 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
416 		    sblock.fs_size % sblock.fs_fpg == 0)
417 			break;
418 		sblock.fs_fpg -= sblock.fs_frag;
419 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
420 		    INOPB(&sblock));
421 	}
422 	if (optimalfpg != sblock.fs_fpg)
423 		printf("Reduced frags per cylinder group from %d to %d %s\n",
424 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
425 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
426 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
427 	if (Oflag == 1) {
428 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
429 		sblock.fs_old_nsect = sblock.fs_old_spc;
430 		sblock.fs_old_npsect = sblock.fs_old_spc;
431 		sblock.fs_old_ncyl = sblock.fs_ncg;
432 	}
433 	/*
434 	 * fill in remaining fields of the super block
435 	 */
436 	sblock.fs_csaddr = cgdmin(&sblock, 0);
437 	sblock.fs_cssize =
438 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
439 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
440 	if (fscs == NULL)
441 		errx(31, "calloc failed");
442 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
443 	if (sblock.fs_sbsize > SBLOCKSIZE)
444 		sblock.fs_sbsize = SBLOCKSIZE;
445 	sblock.fs_minfree = minfree;
446 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
447 		sblock.fs_metaspace = blknum(&sblock, metaspace);
448 	else if (metaspace != -1)
449 		/* reserve half of minfree for metadata blocks */
450 		sblock.fs_metaspace = blknum(&sblock,
451 		    (sblock.fs_fpg * minfree) / 200);
452 	if (maxbpg == 0)
453 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
454 	else
455 		sblock.fs_maxbpg = maxbpg;
456 	sblock.fs_optim = opt;
457 	sblock.fs_cgrotor = 0;
458 	sblock.fs_pendingblocks = 0;
459 	sblock.fs_pendinginodes = 0;
460 	sblock.fs_fmod = 0;
461 	sblock.fs_ronly = 0;
462 	sblock.fs_state = 0;
463 	sblock.fs_clean = 1;
464 	sblock.fs_id[0] = (long)utime;
465 	sblock.fs_id[1] = newfs_random();
466 	sblock.fs_fsmnt[0] = '\0';
467 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
468 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
469 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
470 	sblock.fs_cstotal.cs_nbfree =
471 	    fragstoblks(&sblock, sblock.fs_dsize) -
472 	    howmany(csfrags, sblock.fs_frag);
473 	sblock.fs_cstotal.cs_nffree =
474 	    fragnum(&sblock, sblock.fs_size) +
475 	    (fragnum(&sblock, csfrags) > 0 ?
476 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
477 	sblock.fs_cstotal.cs_nifree =
478 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
479 	sblock.fs_cstotal.cs_ndir = 0;
480 	sblock.fs_dsize -= csfrags;
481 	sblock.fs_time = utime;
482 	if (Oflag == 1) {
483 		sblock.fs_old_time = utime;
484 		sblock.fs_old_dsize = sblock.fs_dsize;
485 		sblock.fs_old_csaddr = sblock.fs_csaddr;
486 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
487 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
488 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
489 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
490 	}
491 
492 	/*
493 	 * Dump out summary information about file system.
494 	 */
495 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
496 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
497 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
498 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
499 	    sblock.fs_fsize);
500 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
501 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
502 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
503 	if (sblock.fs_flags & FS_DOSOFTDEP)
504 		printf("\twith soft updates\n");
505 #	undef B2MBFACTOR
506 
507 	if (Eflag && !Nflag) {
508 		printf("Erasing sectors [%jd...%jd]\n",
509 		    sblock.fs_sblockloc / disk.d_bsize,
510 		    fsbtodb(&sblock, sblock.fs_size) - 1);
511 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
512 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
513 	}
514 	/*
515 	 * Wipe out old UFS1 superblock(s) if necessary.
516 	 */
517 	if (!Nflag && Oflag != 1) {
518 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
519 		if (i == -1)
520 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
521 
522 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
523 			fsdummy.fs_magic = 0;
524 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
525 			    chdummy, SBLOCKSIZE);
526 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
527 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
528 					break;
529 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
530 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
531 			}
532 		}
533 	}
534 	if (!Nflag)
535 		do_sbwrite(&disk);
536 	if (Xflag == 1) {
537 		printf("** Exiting on Xflag 1\n");
538 		exit(0);
539 	}
540 	if (Xflag == 2)
541 		printf("** Leaving BAD MAGIC on Xflag 2\n");
542 	else
543 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
544 
545 	/*
546 	 * Now build the cylinders group blocks and
547 	 * then print out indices of cylinder groups.
548 	 */
549 	printf("super-block backups (for fsck_ffs -b #) at:\n");
550 	i = 0;
551 	width = charsperline();
552 	/*
553 	 * allocate space for superblock, cylinder group map, and
554 	 * two sets of inode blocks.
555 	 */
556 	if (sblock.fs_bsize < SBLOCKSIZE)
557 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
558 	else
559 		iobufsize = 4 * sblock.fs_bsize;
560 	if ((iobuf = calloc(1, iobufsize)) == 0) {
561 		printf("Cannot allocate I/O buffer\n");
562 		exit(38);
563 	}
564 	/*
565 	 * Make a copy of the superblock into the buffer that we will be
566 	 * writing out in each cylinder group.
567 	 */
568 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
569 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
570 		initcg(cg, utime);
571 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
572 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
573 		    cg < (sblock.fs_ncg-1) ? "," : "");
574 		if (j < 0)
575 			tmpbuf[j = 0] = '\0';
576 		if (i + j >= width) {
577 			printf("\n");
578 			i = 0;
579 		}
580 		i += j;
581 		printf("%s", tmpbuf);
582 		fflush(stdout);
583 	}
584 	printf("\n");
585 	if (Nflag)
586 		exit(0);
587 	/*
588 	 * Now construct the initial file system,
589 	 * then write out the super-block.
590 	 */
591 	fsinit(utime);
592 	if (Oflag == 1) {
593 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
594 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
595 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
596 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
597 	}
598 	if (Xflag == 3) {
599 		printf("** Exiting on Xflag 3\n");
600 		exit(0);
601 	}
602 	if (!Nflag) {
603 		do_sbwrite(&disk);
604 		/*
605 		 * For UFS1 filesystems with a blocksize of 64K, the first
606 		 * alternate superblock resides at the location used for
607 		 * the default UFS2 superblock. As there is a valid
608 		 * superblock at this location, the boot code will use
609 		 * it as its first choice. Thus we have to ensure that
610 		 * all of its statistcs on usage are correct.
611 		 */
612 		if (Oflag == 1 && sblock.fs_bsize == 65536)
613 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
614 			    sblock.fs_bsize, (char *)&sblock);
615 	}
616 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
617 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
618 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
619 			((char *)fscs) + i);
620 	/*
621 	 * Read the last sector of the boot block, replace the last
622 	 * 20 bytes with the recovery information, then write it back.
623 	 * The recovery information only works for UFS2 filesystems.
624 	 */
625 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
626 		i = bread(&disk,
627 		    part_ofs + (SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize,
628 		    (char *)&fsr, sizeof(fsr));
629 		if (i == -1)
630 			err(1, "can't read recovery area: %s", disk.d_error);
631 		fsr.fsr_magic = sblock.fs_magic;
632 		fsr.fsr_fpg = sblock.fs_fpg;
633 		fsr.fsr_fsbtodb = sblock.fs_fsbtodb;
634 		fsr.fsr_sblkno = sblock.fs_sblkno;
635 		fsr.fsr_ncg = sblock.fs_ncg;
636 		wtfs((SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, sizeof(fsr),
637 		    (char *)&fsr);
638 	}
639 	/*
640 	 * Update information about this partition in pack
641 	 * label, to that it may be updated on disk.
642 	 */
643 	if (pp != NULL) {
644 		pp->p_fstype = FS_BSDFFS;
645 		pp->p_fsize = sblock.fs_fsize;
646 		pp->p_frag = sblock.fs_frag;
647 		pp->p_cpg = sblock.fs_fpg;
648 	}
649 }
650 
651 /*
652  * Initialize a cylinder group.
653  */
654 void
655 initcg(int cylno, time_t utime)
656 {
657 	long blkno, start;
658 	uint i, j, d, dlower, dupper;
659 	ufs2_daddr_t cbase, dmax;
660 	struct ufs1_dinode *dp1;
661 	struct ufs2_dinode *dp2;
662 	struct csum *cs;
663 
664 	/*
665 	 * Determine block bounds for cylinder group.
666 	 * Allow space for super block summary information in first
667 	 * cylinder group.
668 	 */
669 	cbase = cgbase(&sblock, cylno);
670 	dmax = cbase + sblock.fs_fpg;
671 	if (dmax > sblock.fs_size)
672 		dmax = sblock.fs_size;
673 	dlower = cgsblock(&sblock, cylno) - cbase;
674 	dupper = cgdmin(&sblock, cylno) - cbase;
675 	if (cylno == 0)
676 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
677 	cs = &fscs[cylno];
678 	memset(&acg, 0, sblock.fs_cgsize);
679 	acg.cg_time = utime;
680 	acg.cg_magic = CG_MAGIC;
681 	acg.cg_cgx = cylno;
682 	acg.cg_niblk = sblock.fs_ipg;
683 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
684 	acg.cg_ndblk = dmax - cbase;
685 	if (sblock.fs_contigsumsize > 0)
686 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
687 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
688 	if (Oflag == 2) {
689 		acg.cg_iusedoff = start;
690 	} else {
691 		acg.cg_old_ncyl = sblock.fs_old_cpg;
692 		acg.cg_old_time = acg.cg_time;
693 		acg.cg_time = 0;
694 		acg.cg_old_niblk = acg.cg_niblk;
695 		acg.cg_niblk = 0;
696 		acg.cg_initediblk = 0;
697 		acg.cg_old_btotoff = start;
698 		acg.cg_old_boff = acg.cg_old_btotoff +
699 		    sblock.fs_old_cpg * sizeof(int32_t);
700 		acg.cg_iusedoff = acg.cg_old_boff +
701 		    sblock.fs_old_cpg * sizeof(u_int16_t);
702 	}
703 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
704 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
705 	if (sblock.fs_contigsumsize > 0) {
706 		acg.cg_clustersumoff =
707 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
708 		acg.cg_clustersumoff -= sizeof(u_int32_t);
709 		acg.cg_clusteroff = acg.cg_clustersumoff +
710 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
711 		acg.cg_nextfreeoff = acg.cg_clusteroff +
712 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
713 	}
714 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
715 		printf("Panic: cylinder group too big\n");
716 		exit(37);
717 	}
718 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
719 	if (cylno == 0)
720 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
721 			setbit(cg_inosused(&acg), i);
722 			acg.cg_cs.cs_nifree--;
723 		}
724 	if (cylno > 0) {
725 		/*
726 		 * In cylno 0, beginning space is reserved
727 		 * for boot and super blocks.
728 		 */
729 		for (d = 0; d < dlower; d += sblock.fs_frag) {
730 			blkno = d / sblock.fs_frag;
731 			setblock(&sblock, cg_blksfree(&acg), blkno);
732 			if (sblock.fs_contigsumsize > 0)
733 				setbit(cg_clustersfree(&acg), blkno);
734 			acg.cg_cs.cs_nbfree++;
735 		}
736 	}
737 	if ((i = dupper % sblock.fs_frag)) {
738 		acg.cg_frsum[sblock.fs_frag - i]++;
739 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
740 			setbit(cg_blksfree(&acg), dupper);
741 			acg.cg_cs.cs_nffree++;
742 		}
743 	}
744 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
745 	     d += sblock.fs_frag) {
746 		blkno = d / sblock.fs_frag;
747 		setblock(&sblock, cg_blksfree(&acg), blkno);
748 		if (sblock.fs_contigsumsize > 0)
749 			setbit(cg_clustersfree(&acg), blkno);
750 		acg.cg_cs.cs_nbfree++;
751 	}
752 	if (d < acg.cg_ndblk) {
753 		acg.cg_frsum[acg.cg_ndblk - d]++;
754 		for (; d < acg.cg_ndblk; d++) {
755 			setbit(cg_blksfree(&acg), d);
756 			acg.cg_cs.cs_nffree++;
757 		}
758 	}
759 	if (sblock.fs_contigsumsize > 0) {
760 		int32_t *sump = cg_clustersum(&acg);
761 		u_char *mapp = cg_clustersfree(&acg);
762 		int map = *mapp++;
763 		int bit = 1;
764 		int run = 0;
765 
766 		for (i = 0; i < acg.cg_nclusterblks; i++) {
767 			if ((map & bit) != 0)
768 				run++;
769 			else if (run != 0) {
770 				if (run > sblock.fs_contigsumsize)
771 					run = sblock.fs_contigsumsize;
772 				sump[run]++;
773 				run = 0;
774 			}
775 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
776 				bit <<= 1;
777 			else {
778 				map = *mapp++;
779 				bit = 1;
780 			}
781 		}
782 		if (run != 0) {
783 			if (run > sblock.fs_contigsumsize)
784 				run = sblock.fs_contigsumsize;
785 			sump[run]++;
786 		}
787 	}
788 	*cs = acg.cg_cs;
789 	/*
790 	 * Write out the duplicate super block, the cylinder group map
791 	 * and two blocks worth of inodes in a single write.
792 	 */
793 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
794 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
795 	start += sblock.fs_bsize;
796 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
797 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
798 	for (i = 0; i < acg.cg_initediblk; i++) {
799 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
800 			dp1->di_gen = newfs_random();
801 			dp1++;
802 		} else {
803 			dp2->di_gen = newfs_random();
804 			dp2++;
805 		}
806 	}
807 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
808 	/*
809 	 * For the old file system, we have to initialize all the inodes.
810 	 */
811 	if (Oflag == 1) {
812 		for (i = 2 * sblock.fs_frag;
813 		     i < sblock.fs_ipg / INOPF(&sblock);
814 		     i += sblock.fs_frag) {
815 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
816 			for (j = 0; j < INOPB(&sblock); j++) {
817 				dp1->di_gen = newfs_random();
818 				dp1++;
819 			}
820 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
821 			    sblock.fs_bsize, &iobuf[start]);
822 		}
823 	}
824 }
825 
826 /*
827  * initialize the file system
828  */
829 #define ROOTLINKCNT 3
830 
831 static struct direct root_dir[] = {
832 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
833 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
834 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
835 };
836 
837 #define SNAPLINKCNT 2
838 
839 static struct direct snap_dir[] = {
840 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
841 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
842 };
843 
844 void
845 fsinit(time_t utime)
846 {
847 	union dinode node;
848 	struct group *grp;
849 	gid_t gid;
850 	int entries;
851 
852 	memset(&node, 0, sizeof node);
853 	if ((grp = getgrnam("operator")) != NULL) {
854 		gid = grp->gr_gid;
855 	} else {
856 		warnx("Cannot retrieve operator gid, using gid 0.");
857 		gid = 0;
858 	}
859 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
860 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
861 		/*
862 		 * initialize the node
863 		 */
864 		node.dp1.di_atime = utime;
865 		node.dp1.di_mtime = utime;
866 		node.dp1.di_ctime = utime;
867 		/*
868 		 * create the root directory
869 		 */
870 		node.dp1.di_mode = IFDIR | UMASK;
871 		node.dp1.di_nlink = entries;
872 		node.dp1.di_size = makedir(root_dir, entries);
873 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
874 		node.dp1.di_blocks =
875 		    btodb(fragroundup(&sblock, node.dp1.di_size));
876 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
877 		    iobuf);
878 		iput(&node, UFS_ROOTINO);
879 		if (!nflag) {
880 			/*
881 			 * create the .snap directory
882 			 */
883 			node.dp1.di_mode |= 020;
884 			node.dp1.di_gid = gid;
885 			node.dp1.di_nlink = SNAPLINKCNT;
886 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
887 				node.dp1.di_db[0] =
888 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
889 			node.dp1.di_blocks =
890 			    btodb(fragroundup(&sblock, node.dp1.di_size));
891 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
892 				    sblock.fs_fsize, iobuf);
893 			iput(&node, UFS_ROOTINO + 1);
894 		}
895 	} else {
896 		/*
897 		 * initialize the node
898 		 */
899 		node.dp2.di_atime = utime;
900 		node.dp2.di_mtime = utime;
901 		node.dp2.di_ctime = utime;
902 		node.dp2.di_birthtime = utime;
903 		/*
904 		 * create the root directory
905 		 */
906 		node.dp2.di_mode = IFDIR | UMASK;
907 		node.dp2.di_nlink = entries;
908 		node.dp2.di_size = makedir(root_dir, entries);
909 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
910 		node.dp2.di_blocks =
911 		    btodb(fragroundup(&sblock, node.dp2.di_size));
912 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
913 		    iobuf);
914 		iput(&node, UFS_ROOTINO);
915 		if (!nflag) {
916 			/*
917 			 * create the .snap directory
918 			 */
919 			node.dp2.di_mode |= 020;
920 			node.dp2.di_gid = gid;
921 			node.dp2.di_nlink = SNAPLINKCNT;
922 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
923 				node.dp2.di_db[0] =
924 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
925 			node.dp2.di_blocks =
926 			    btodb(fragroundup(&sblock, node.dp2.di_size));
927 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
928 				    sblock.fs_fsize, iobuf);
929 			iput(&node, UFS_ROOTINO + 1);
930 		}
931 	}
932 }
933 
934 /*
935  * construct a set of directory entries in "iobuf".
936  * return size of directory.
937  */
938 int
939 makedir(struct direct *protodir, int entries)
940 {
941 	char *cp;
942 	int i, spcleft;
943 
944 	spcleft = DIRBLKSIZ;
945 	memset(iobuf, 0, DIRBLKSIZ);
946 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
947 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
948 		memmove(cp, &protodir[i], protodir[i].d_reclen);
949 		cp += protodir[i].d_reclen;
950 		spcleft -= protodir[i].d_reclen;
951 	}
952 	protodir[i].d_reclen = spcleft;
953 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
954 	return (DIRBLKSIZ);
955 }
956 
957 /*
958  * allocate a block or frag
959  */
960 ufs2_daddr_t
961 alloc(int size, int mode)
962 {
963 	int i, blkno, frag;
964 	uint d;
965 
966 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
967 	    sblock.fs_cgsize);
968 	if (acg.cg_magic != CG_MAGIC) {
969 		printf("cg 0: bad magic number\n");
970 		exit(38);
971 	}
972 	if (acg.cg_cs.cs_nbfree == 0) {
973 		printf("first cylinder group ran out of space\n");
974 		exit(39);
975 	}
976 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
977 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
978 			goto goth;
979 	printf("internal error: can't find block in cyl 0\n");
980 	exit(40);
981 goth:
982 	blkno = fragstoblks(&sblock, d);
983 	clrblock(&sblock, cg_blksfree(&acg), blkno);
984 	if (sblock.fs_contigsumsize > 0)
985 		clrbit(cg_clustersfree(&acg), blkno);
986 	acg.cg_cs.cs_nbfree--;
987 	sblock.fs_cstotal.cs_nbfree--;
988 	fscs[0].cs_nbfree--;
989 	if (mode & IFDIR) {
990 		acg.cg_cs.cs_ndir++;
991 		sblock.fs_cstotal.cs_ndir++;
992 		fscs[0].cs_ndir++;
993 	}
994 	if (size != sblock.fs_bsize) {
995 		frag = howmany(size, sblock.fs_fsize);
996 		fscs[0].cs_nffree += sblock.fs_frag - frag;
997 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
998 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
999 		acg.cg_frsum[sblock.fs_frag - frag]++;
1000 		for (i = frag; i < sblock.fs_frag; i++)
1001 			setbit(cg_blksfree(&acg), d + i);
1002 	}
1003 	/* XXX cgwrite(&disk, 0)??? */
1004 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1005 	    (char *)&acg);
1006 	return ((ufs2_daddr_t)d);
1007 }
1008 
1009 /*
1010  * Allocate an inode on the disk
1011  */
1012 void
1013 iput(union dinode *ip, ino_t ino)
1014 {
1015 	ufs2_daddr_t d;
1016 
1017 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1018 	    sblock.fs_cgsize);
1019 	if (acg.cg_magic != CG_MAGIC) {
1020 		printf("cg 0: bad magic number\n");
1021 		exit(31);
1022 	}
1023 	acg.cg_cs.cs_nifree--;
1024 	setbit(cg_inosused(&acg), ino);
1025 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1026 	    (char *)&acg);
1027 	sblock.fs_cstotal.cs_nifree--;
1028 	fscs[0].cs_nifree--;
1029 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1030 		printf("fsinit: inode value out of range (%ju).\n",
1031 		    (uintmax_t)ino);
1032 		exit(32);
1033 	}
1034 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1035 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1036 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1037 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1038 		    ip->dp1;
1039 	else
1040 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1041 		    ip->dp2;
1042 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1043 }
1044 
1045 /*
1046  * possibly write to disk
1047  */
1048 static void
1049 wtfs(ufs2_daddr_t bno, int size, char *bf)
1050 {
1051 	if (Nflag)
1052 		return;
1053 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1054 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1055 }
1056 
1057 /*
1058  * check if a block is available
1059  */
1060 static int
1061 isblock(struct fs *fs, unsigned char *cp, int h)
1062 {
1063 	unsigned char mask;
1064 
1065 	switch (fs->fs_frag) {
1066 	case 8:
1067 		return (cp[h] == 0xff);
1068 	case 4:
1069 		mask = 0x0f << ((h & 0x1) << 2);
1070 		return ((cp[h >> 1] & mask) == mask);
1071 	case 2:
1072 		mask = 0x03 << ((h & 0x3) << 1);
1073 		return ((cp[h >> 2] & mask) == mask);
1074 	case 1:
1075 		mask = 0x01 << (h & 0x7);
1076 		return ((cp[h >> 3] & mask) == mask);
1077 	default:
1078 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1079 		return (0);
1080 	}
1081 }
1082 
1083 /*
1084  * take a block out of the map
1085  */
1086 static void
1087 clrblock(struct fs *fs, unsigned char *cp, int h)
1088 {
1089 	switch ((fs)->fs_frag) {
1090 	case 8:
1091 		cp[h] = 0;
1092 		return;
1093 	case 4:
1094 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1095 		return;
1096 	case 2:
1097 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1098 		return;
1099 	case 1:
1100 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1101 		return;
1102 	default:
1103 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1104 		return;
1105 	}
1106 }
1107 
1108 /*
1109  * put a block into the map
1110  */
1111 static void
1112 setblock(struct fs *fs, unsigned char *cp, int h)
1113 {
1114 	switch (fs->fs_frag) {
1115 	case 8:
1116 		cp[h] = 0xff;
1117 		return;
1118 	case 4:
1119 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1120 		return;
1121 	case 2:
1122 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1123 		return;
1124 	case 1:
1125 		cp[h >> 3] |= (0x01 << (h & 0x7));
1126 		return;
1127 	default:
1128 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1129 		return;
1130 	}
1131 }
1132 
1133 /*
1134  * Determine the number of characters in a
1135  * single line.
1136  */
1137 
1138 static int
1139 charsperline(void)
1140 {
1141 	int columns;
1142 	char *cp;
1143 	struct winsize ws;
1144 
1145 	columns = 0;
1146 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1147 		columns = ws.ws_col;
1148 	if (columns == 0 && (cp = getenv("COLUMNS")))
1149 		columns = atoi(cp);
1150 	if (columns == 0)
1151 		columns = 80;	/* last resort */
1152 	return (columns);
1153 }
1154 
1155 static int
1156 ilog2(int val)
1157 {
1158 	u_int n;
1159 
1160 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1161 		if (1 << n == val)
1162 			return (n);
1163 	errx(1, "ilog2: %d is not a power of 2\n", val);
1164 }
1165 
1166 /*
1167  * For the regression test, return predictable random values.
1168  * Otherwise use a true random number generator.
1169  */
1170 static u_int32_t
1171 newfs_random(void)
1172 {
1173 	static int nextnum = 1;
1174 
1175 	if (Rflag)
1176 		return (nextnum++);
1177 	return (arc4random());
1178 }
1179