1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define IN_RTLD /* So we pickup the P_OSREL defines */ 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 static struct csum *fscs; 80 #define sblock disk.d_fs 81 #define acg disk.d_cg 82 83 union dinode { 84 struct ufs1_dinode dp1; 85 struct ufs2_dinode dp2; 86 }; 87 #define DIP(dp, field) \ 88 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 89 (dp)->dp1.field : (dp)->dp2.field) 90 91 static caddr_t iobuf; 92 static long iobufsize; 93 static ufs2_daddr_t alloc(int size, int mode); 94 static int charsperline(void); 95 static void clrblock(struct fs *, unsigned char *, int); 96 static void fsinit(time_t); 97 static int ilog2(int); 98 static void initcg(int, time_t); 99 static int isblock(struct fs *, unsigned char *, int); 100 static void iput(union dinode *, ino_t); 101 static int makedir(struct direct *, int); 102 static void setblock(struct fs *, unsigned char *, int); 103 static void wtfs(ufs2_daddr_t, int, char *); 104 static u_int32_t newfs_random(void); 105 106 void 107 mkfs(struct partition *pp, char *fsys) 108 { 109 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 110 long i, j, csfrags; 111 uint cg; 112 time_t utime; 113 quad_t sizepb; 114 int width; 115 ino_t maxinum; 116 int minfragsperinode; /* minimum ratio of frags to inodes */ 117 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 118 struct fsrecovery *fsr; 119 char *fsrbuf; 120 union { 121 struct fs fdummy; 122 char cdummy[SBLOCKSIZE]; 123 } dummy; 124 #define fsdummy dummy.fdummy 125 #define chdummy dummy.cdummy 126 127 /* 128 * Our blocks == sector size, and the version of UFS we are using is 129 * specified by Oflag. 130 */ 131 disk.d_bsize = sectorsize; 132 disk.d_ufs = Oflag; 133 if (Rflag) 134 utime = 1000000000; 135 else 136 time(&utime); 137 sblock.fs_old_flags = FS_FLAGS_UPDATED; 138 sblock.fs_flags = 0; 139 if (Uflag) 140 sblock.fs_flags |= FS_DOSOFTDEP; 141 if (Lflag) 142 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 143 if (Jflag) 144 sblock.fs_flags |= FS_GJOURNAL; 145 if (lflag) 146 sblock.fs_flags |= FS_MULTILABEL; 147 if (tflag) 148 sblock.fs_flags |= FS_TRIM; 149 /* 150 * Validate the given file system size. 151 * Verify that its last block can actually be accessed. 152 * Convert to file system fragment sized units. 153 */ 154 if (fssize <= 0) { 155 printf("preposterous size %jd\n", (intmax_t)fssize); 156 exit(13); 157 } 158 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 159 (char *)&sblock); 160 /* 161 * collect and verify the file system density info 162 */ 163 sblock.fs_avgfilesize = avgfilesize; 164 sblock.fs_avgfpdir = avgfilesperdir; 165 if (sblock.fs_avgfilesize <= 0) 166 printf("illegal expected average file size %d\n", 167 sblock.fs_avgfilesize), exit(14); 168 if (sblock.fs_avgfpdir <= 0) 169 printf("illegal expected number of files per directory %d\n", 170 sblock.fs_avgfpdir), exit(15); 171 172 restart: 173 /* 174 * collect and verify the block and fragment sizes 175 */ 176 sblock.fs_bsize = bsize; 177 sblock.fs_fsize = fsize; 178 if (!POWEROF2(sblock.fs_bsize)) { 179 printf("block size must be a power of 2, not %d\n", 180 sblock.fs_bsize); 181 exit(16); 182 } 183 if (!POWEROF2(sblock.fs_fsize)) { 184 printf("fragment size must be a power of 2, not %d\n", 185 sblock.fs_fsize); 186 exit(17); 187 } 188 if (sblock.fs_fsize < sectorsize) { 189 printf("increasing fragment size from %d to sector size (%d)\n", 190 sblock.fs_fsize, sectorsize); 191 sblock.fs_fsize = sectorsize; 192 } 193 if (sblock.fs_bsize > MAXBSIZE) { 194 printf("decreasing block size from %d to maximum (%d)\n", 195 sblock.fs_bsize, MAXBSIZE); 196 sblock.fs_bsize = MAXBSIZE; 197 } 198 if (sblock.fs_bsize < MINBSIZE) { 199 printf("increasing block size from %d to minimum (%d)\n", 200 sblock.fs_bsize, MINBSIZE); 201 sblock.fs_bsize = MINBSIZE; 202 } 203 if (sblock.fs_fsize > MAXBSIZE) { 204 printf("decreasing fragment size from %d to maximum (%d)\n", 205 sblock.fs_fsize, MAXBSIZE); 206 sblock.fs_fsize = MAXBSIZE; 207 } 208 if (sblock.fs_bsize < sblock.fs_fsize) { 209 printf("increasing block size from %d to fragment size (%d)\n", 210 sblock.fs_bsize, sblock.fs_fsize); 211 sblock.fs_bsize = sblock.fs_fsize; 212 } 213 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 214 printf( 215 "increasing fragment size from %d to block size / %d (%d)\n", 216 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 217 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 218 } 219 if (maxbsize == 0) 220 maxbsize = bsize; 221 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 222 sblock.fs_maxbsize = sblock.fs_bsize; 223 printf("Extent size set to %d\n", sblock.fs_maxbsize); 224 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 225 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 226 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 227 } else { 228 sblock.fs_maxbsize = maxbsize; 229 } 230 /* 231 * Maxcontig sets the default for the maximum number of blocks 232 * that may be allocated sequentially. With file system clustering 233 * it is possible to allocate contiguous blocks up to the maximum 234 * transfer size permitted by the controller or buffering. 235 */ 236 if (maxcontig == 0) 237 maxcontig = MAX(1, MAXPHYS / bsize); 238 sblock.fs_maxcontig = maxcontig; 239 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 240 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 241 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 242 } 243 if (sblock.fs_maxcontig > 1) 244 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 245 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 246 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 247 sblock.fs_qbmask = ~sblock.fs_bmask; 248 sblock.fs_qfmask = ~sblock.fs_fmask; 249 sblock.fs_bshift = ilog2(sblock.fs_bsize); 250 sblock.fs_fshift = ilog2(sblock.fs_fsize); 251 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 252 sblock.fs_fragshift = ilog2(sblock.fs_frag); 253 if (sblock.fs_frag > MAXFRAG) { 254 printf("fragment size %d is still too small (can't happen)\n", 255 sblock.fs_bsize / MAXFRAG); 256 exit(21); 257 } 258 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 259 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 260 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 261 262 /* 263 * Before the filesystem is finally initialized, mark it 264 * as incompletely initialized. 265 */ 266 sblock.fs_magic = FS_BAD_MAGIC; 267 268 if (Oflag == 1) { 269 sblock.fs_sblockloc = SBLOCK_UFS1; 270 sblock.fs_sblockactualloc = SBLOCK_UFS1; 271 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 272 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 273 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 274 sizeof(ufs1_daddr_t)); 275 sblock.fs_old_inodefmt = FS_44INODEFMT; 276 sblock.fs_old_cgoffset = 0; 277 sblock.fs_old_cgmask = 0xffffffff; 278 sblock.fs_old_size = sblock.fs_size; 279 sblock.fs_old_rotdelay = 0; 280 sblock.fs_old_rps = 60; 281 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 282 sblock.fs_old_cpg = 1; 283 sblock.fs_old_interleave = 1; 284 sblock.fs_old_trackskew = 0; 285 sblock.fs_old_cpc = 0; 286 sblock.fs_old_postblformat = 1; 287 sblock.fs_old_nrpos = 1; 288 } else { 289 sblock.fs_sblockloc = SBLOCK_UFS2; 290 sblock.fs_sblockactualloc = SBLOCK_UFS2; 291 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 292 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 293 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 294 sizeof(ufs2_daddr_t)); 295 } 296 sblock.fs_sblkno = 297 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 298 sblock.fs_frag); 299 sblock.fs_cblkno = sblock.fs_sblkno + 300 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 301 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 302 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 303 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 304 sizepb *= NINDIR(&sblock); 305 sblock.fs_maxfilesize += sizepb; 306 } 307 308 /* 309 * It's impossible to create a snapshot in case that fs_maxfilesize 310 * is smaller than the fssize. 311 */ 312 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 313 warnx("WARNING: You will be unable to create snapshots on this " 314 "file system. Correct by using a larger blocksize."); 315 } 316 317 /* 318 * Calculate the number of blocks to put into each cylinder group. 319 * 320 * This algorithm selects the number of blocks per cylinder 321 * group. The first goal is to have at least enough data blocks 322 * in each cylinder group to meet the density requirement. Once 323 * this goal is achieved we try to expand to have at least 324 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 325 * pack as many blocks into each cylinder group map as will fit. 326 * 327 * We start by calculating the smallest number of blocks that we 328 * can put into each cylinder group. If this is too big, we reduce 329 * the density until it fits. 330 */ 331 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 332 minfragsperinode = 1 + fssize / maxinum; 333 if (density == 0) { 334 density = MAX(NFPI, minfragsperinode) * fsize; 335 } else if (density < minfragsperinode * fsize) { 336 origdensity = density; 337 density = minfragsperinode * fsize; 338 fprintf(stderr, "density increased from %d to %d\n", 339 origdensity, density); 340 } 341 origdensity = density; 342 for (;;) { 343 fragsperinode = MAX(numfrags(&sblock, density), 1); 344 if (fragsperinode < minfragsperinode) { 345 bsize <<= 1; 346 fsize <<= 1; 347 printf("Block size too small for a file system %s %d\n", 348 "of this size. Increasing blocksize to", bsize); 349 goto restart; 350 } 351 minfpg = fragsperinode * INOPB(&sblock); 352 if (minfpg > sblock.fs_size) 353 minfpg = sblock.fs_size; 354 sblock.fs_ipg = INOPB(&sblock); 355 sblock.fs_fpg = roundup(sblock.fs_iblkno + 356 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 357 if (sblock.fs_fpg < minfpg) 358 sblock.fs_fpg = minfpg; 359 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 360 INOPB(&sblock)); 361 sblock.fs_fpg = roundup(sblock.fs_iblkno + 362 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 363 if (sblock.fs_fpg < minfpg) 364 sblock.fs_fpg = minfpg; 365 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 366 INOPB(&sblock)); 367 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 368 break; 369 density -= sblock.fs_fsize; 370 } 371 if (density != origdensity) 372 printf("density reduced from %d to %d\n", origdensity, density); 373 /* 374 * Start packing more blocks into the cylinder group until 375 * it cannot grow any larger, the number of cylinder groups 376 * drops below MINCYLGRPS, or we reach the size requested. 377 * For UFS1 inodes per cylinder group are stored in an int16_t 378 * so fs_ipg is limited to 2^15 - 1. 379 */ 380 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 381 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 382 INOPB(&sblock)); 383 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 384 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 385 break; 386 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 387 continue; 388 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 389 break; 390 } 391 sblock.fs_fpg -= sblock.fs_frag; 392 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 393 INOPB(&sblock)); 394 break; 395 } 396 /* 397 * Check to be sure that the last cylinder group has enough blocks 398 * to be viable. If it is too small, reduce the number of blocks 399 * per cylinder group which will have the effect of moving more 400 * blocks into the last cylinder group. 401 */ 402 optimalfpg = sblock.fs_fpg; 403 for (;;) { 404 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 405 lastminfpg = roundup(sblock.fs_iblkno + 406 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 407 if (sblock.fs_size < lastminfpg) { 408 printf("Filesystem size %jd < minimum size of %d\n", 409 (intmax_t)sblock.fs_size, lastminfpg); 410 exit(28); 411 } 412 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 413 sblock.fs_size % sblock.fs_fpg == 0) 414 break; 415 sblock.fs_fpg -= sblock.fs_frag; 416 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 417 INOPB(&sblock)); 418 } 419 if (optimalfpg != sblock.fs_fpg) 420 printf("Reduced frags per cylinder group from %d to %d %s\n", 421 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 422 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 423 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 424 if (Oflag == 1) { 425 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 426 sblock.fs_old_nsect = sblock.fs_old_spc; 427 sblock.fs_old_npsect = sblock.fs_old_spc; 428 sblock.fs_old_ncyl = sblock.fs_ncg; 429 } 430 /* 431 * fill in remaining fields of the super block 432 */ 433 sblock.fs_csaddr = cgdmin(&sblock, 0); 434 sblock.fs_cssize = 435 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 436 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 437 if (fscs == NULL) 438 errx(31, "calloc failed"); 439 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 440 if (sblock.fs_sbsize > SBLOCKSIZE) 441 sblock.fs_sbsize = SBLOCKSIZE; 442 if (sblock.fs_sbsize < realsectorsize) 443 sblock.fs_sbsize = realsectorsize; 444 sblock.fs_minfree = minfree; 445 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 446 sblock.fs_metaspace = blknum(&sblock, metaspace); 447 else if (metaspace != -1) 448 /* reserve half of minfree for metadata blocks */ 449 sblock.fs_metaspace = blknum(&sblock, 450 (sblock.fs_fpg * minfree) / 200); 451 if (maxbpg == 0) 452 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 453 else 454 sblock.fs_maxbpg = maxbpg; 455 sblock.fs_optim = opt; 456 sblock.fs_cgrotor = 0; 457 sblock.fs_pendingblocks = 0; 458 sblock.fs_pendinginodes = 0; 459 sblock.fs_fmod = 0; 460 sblock.fs_ronly = 0; 461 sblock.fs_state = 0; 462 sblock.fs_clean = 1; 463 sblock.fs_id[0] = (long)utime; 464 sblock.fs_id[1] = newfs_random(); 465 sblock.fs_fsmnt[0] = '\0'; 466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 469 sblock.fs_cstotal.cs_nbfree = 470 fragstoblks(&sblock, sblock.fs_dsize) - 471 howmany(csfrags, sblock.fs_frag); 472 sblock.fs_cstotal.cs_nffree = 473 fragnum(&sblock, sblock.fs_size) + 474 (fragnum(&sblock, csfrags) > 0 ? 475 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 476 sblock.fs_cstotal.cs_nifree = 477 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 478 sblock.fs_cstotal.cs_ndir = 0; 479 sblock.fs_dsize -= csfrags; 480 sblock.fs_time = utime; 481 if (Oflag == 1) { 482 sblock.fs_old_time = utime; 483 sblock.fs_old_dsize = sblock.fs_dsize; 484 sblock.fs_old_csaddr = sblock.fs_csaddr; 485 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 486 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 487 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 488 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 489 } 490 /* 491 * Set flags for metadata that is being check-hashed. 492 * 493 * Metadata check hashes are not supported in the UFS version 1 494 * filesystem to keep it as small and simple as possible. 495 */ 496 if (Oflag > 1) { 497 sblock.fs_flags |= FS_METACKHASH; 498 if (getosreldate() >= P_OSREL_CK_CYLGRP) 499 sblock.fs_metackhash |= CK_CYLGRP; 500 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 501 sblock.fs_metackhash |= CK_SUPERBLOCK; 502 } 503 504 /* 505 * Dump out summary information about file system. 506 */ 507 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 508 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 509 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 510 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 511 sblock.fs_fsize); 512 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 513 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 514 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 515 if (sblock.fs_flags & FS_DOSOFTDEP) 516 printf("\twith soft updates\n"); 517 # undef B2MBFACTOR 518 519 if (Eflag && !Nflag) { 520 printf("Erasing sectors [%jd...%jd]\n", 521 sblock.fs_sblockloc / disk.d_bsize, 522 fsbtodb(&sblock, sblock.fs_size) - 1); 523 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 524 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 525 } 526 /* 527 * Wipe out old UFS1 superblock(s) if necessary. 528 */ 529 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 530 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 531 SBLOCKSIZE); 532 if (i == -1) 533 err(1, "can't read old UFS1 superblock: %s", 534 disk.d_error); 535 536 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 537 fsdummy.fs_magic = 0; 538 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 539 chdummy, SBLOCKSIZE); 540 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 541 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 542 fssize) 543 break; 544 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 545 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 546 } 547 } 548 } 549 if (!Nflag && sbput(disk.d_fd, &disk.d_fs, 0) != 0) 550 err(1, "sbput: %s", disk.d_error); 551 if (Xflag == 1) { 552 printf("** Exiting on Xflag 1\n"); 553 exit(0); 554 } 555 if (Xflag == 2) 556 printf("** Leaving BAD MAGIC on Xflag 2\n"); 557 else 558 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 559 560 /* 561 * Now build the cylinders group blocks and 562 * then print out indices of cylinder groups. 563 */ 564 printf("super-block backups (for fsck_ffs -b #) at:\n"); 565 i = 0; 566 width = charsperline(); 567 /* 568 * Allocate space for two sets of inode blocks. 569 */ 570 iobufsize = 2 * sblock.fs_bsize; 571 if ((iobuf = calloc(1, iobufsize)) == 0) { 572 printf("Cannot allocate I/O buffer\n"); 573 exit(38); 574 } 575 /* 576 * Write out all the cylinder groups and backup superblocks. 577 */ 578 for (cg = 0; cg < sblock.fs_ncg; cg++) { 579 if (!Nflag) 580 initcg(cg, utime); 581 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 582 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 583 cg < (sblock.fs_ncg-1) ? "," : ""); 584 if (j < 0) 585 tmpbuf[j = 0] = '\0'; 586 if (i + j >= width) { 587 printf("\n"); 588 i = 0; 589 } 590 i += j; 591 printf("%s", tmpbuf); 592 fflush(stdout); 593 } 594 printf("\n"); 595 if (Nflag) 596 exit(0); 597 /* 598 * Now construct the initial file system, 599 * then write out the super-block. 600 */ 601 fsinit(utime); 602 if (Oflag == 1) { 603 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 604 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 605 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 606 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 607 } 608 if (Xflag == 3) { 609 printf("** Exiting on Xflag 3\n"); 610 exit(0); 611 } 612 /* 613 * Reference the summary information so it will also be written. 614 */ 615 sblock.fs_csp = fscs; 616 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 617 err(1, "sbput: %s", disk.d_error); 618 /* 619 * For UFS1 filesystems with a blocksize of 64K, the first 620 * alternate superblock resides at the location used for 621 * the default UFS2 superblock. As there is a valid 622 * superblock at this location, the boot code will use 623 * it as its first choice. Thus we have to ensure that 624 * all of its statistcs on usage are correct. 625 */ 626 if (Oflag == 1 && sblock.fs_bsize == 65536) 627 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 628 sblock.fs_bsize, (char *)&sblock); 629 /* 630 * Read the last sector of the boot block, replace the last 631 * 20 bytes with the recovery information, then write it back. 632 * The recovery information only works for UFS2 filesystems. 633 */ 634 if (sblock.fs_magic == FS_UFS2_MAGIC) { 635 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 636 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 637 fsrbuf, realsectorsize) == -1) 638 err(1, "can't read recovery area: %s", disk.d_error); 639 fsr = 640 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 641 fsr->fsr_magic = sblock.fs_magic; 642 fsr->fsr_fpg = sblock.fs_fpg; 643 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 644 fsr->fsr_sblkno = sblock.fs_sblkno; 645 fsr->fsr_ncg = sblock.fs_ncg; 646 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 647 realsectorsize, fsrbuf); 648 free(fsrbuf); 649 } 650 /* 651 * Update information about this partition in pack 652 * label, to that it may be updated on disk. 653 */ 654 if (pp != NULL) { 655 pp->p_fstype = FS_BSDFFS; 656 pp->p_fsize = sblock.fs_fsize; 657 pp->p_frag = sblock.fs_frag; 658 pp->p_cpg = sblock.fs_fpg; 659 } 660 } 661 662 /* 663 * Initialize a cylinder group. 664 */ 665 void 666 initcg(int cylno, time_t utime) 667 { 668 long blkno, start; 669 off_t savedactualloc; 670 uint i, j, d, dlower, dupper; 671 ufs2_daddr_t cbase, dmax; 672 struct ufs1_dinode *dp1; 673 struct ufs2_dinode *dp2; 674 struct csum *cs; 675 676 /* 677 * Determine block bounds for cylinder group. 678 * Allow space for super block summary information in first 679 * cylinder group. 680 */ 681 cbase = cgbase(&sblock, cylno); 682 dmax = cbase + sblock.fs_fpg; 683 if (dmax > sblock.fs_size) 684 dmax = sblock.fs_size; 685 dlower = cgsblock(&sblock, cylno) - cbase; 686 dupper = cgdmin(&sblock, cylno) - cbase; 687 if (cylno == 0) 688 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 689 cs = &fscs[cylno]; 690 memset(&acg, 0, sblock.fs_cgsize); 691 acg.cg_time = utime; 692 acg.cg_magic = CG_MAGIC; 693 acg.cg_cgx = cylno; 694 acg.cg_niblk = sblock.fs_ipg; 695 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 696 acg.cg_ndblk = dmax - cbase; 697 if (sblock.fs_contigsumsize > 0) 698 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 699 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 700 if (Oflag == 2) { 701 acg.cg_iusedoff = start; 702 } else { 703 acg.cg_old_ncyl = sblock.fs_old_cpg; 704 acg.cg_old_time = acg.cg_time; 705 acg.cg_time = 0; 706 acg.cg_old_niblk = acg.cg_niblk; 707 acg.cg_niblk = 0; 708 acg.cg_initediblk = 0; 709 acg.cg_old_btotoff = start; 710 acg.cg_old_boff = acg.cg_old_btotoff + 711 sblock.fs_old_cpg * sizeof(int32_t); 712 acg.cg_iusedoff = acg.cg_old_boff + 713 sblock.fs_old_cpg * sizeof(u_int16_t); 714 } 715 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 716 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 717 if (sblock.fs_contigsumsize > 0) { 718 acg.cg_clustersumoff = 719 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 720 acg.cg_clustersumoff -= sizeof(u_int32_t); 721 acg.cg_clusteroff = acg.cg_clustersumoff + 722 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 723 acg.cg_nextfreeoff = acg.cg_clusteroff + 724 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 725 } 726 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 727 printf("Panic: cylinder group too big\n"); 728 exit(37); 729 } 730 acg.cg_cs.cs_nifree += sblock.fs_ipg; 731 if (cylno == 0) 732 for (i = 0; i < (long)UFS_ROOTINO; i++) { 733 setbit(cg_inosused(&acg), i); 734 acg.cg_cs.cs_nifree--; 735 } 736 if (cylno > 0) { 737 /* 738 * In cylno 0, beginning space is reserved 739 * for boot and super blocks. 740 */ 741 for (d = 0; d < dlower; d += sblock.fs_frag) { 742 blkno = d / sblock.fs_frag; 743 setblock(&sblock, cg_blksfree(&acg), blkno); 744 if (sblock.fs_contigsumsize > 0) 745 setbit(cg_clustersfree(&acg), blkno); 746 acg.cg_cs.cs_nbfree++; 747 } 748 } 749 if ((i = dupper % sblock.fs_frag)) { 750 acg.cg_frsum[sblock.fs_frag - i]++; 751 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 752 setbit(cg_blksfree(&acg), dupper); 753 acg.cg_cs.cs_nffree++; 754 } 755 } 756 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 757 d += sblock.fs_frag) { 758 blkno = d / sblock.fs_frag; 759 setblock(&sblock, cg_blksfree(&acg), blkno); 760 if (sblock.fs_contigsumsize > 0) 761 setbit(cg_clustersfree(&acg), blkno); 762 acg.cg_cs.cs_nbfree++; 763 } 764 if (d < acg.cg_ndblk) { 765 acg.cg_frsum[acg.cg_ndblk - d]++; 766 for (; d < acg.cg_ndblk; d++) { 767 setbit(cg_blksfree(&acg), d); 768 acg.cg_cs.cs_nffree++; 769 } 770 } 771 if (sblock.fs_contigsumsize > 0) { 772 int32_t *sump = cg_clustersum(&acg); 773 u_char *mapp = cg_clustersfree(&acg); 774 int map = *mapp++; 775 int bit = 1; 776 int run = 0; 777 778 for (i = 0; i < acg.cg_nclusterblks; i++) { 779 if ((map & bit) != 0) 780 run++; 781 else if (run != 0) { 782 if (run > sblock.fs_contigsumsize) 783 run = sblock.fs_contigsumsize; 784 sump[run]++; 785 run = 0; 786 } 787 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 788 bit <<= 1; 789 else { 790 map = *mapp++; 791 bit = 1; 792 } 793 } 794 if (run != 0) { 795 if (run > sblock.fs_contigsumsize) 796 run = sblock.fs_contigsumsize; 797 sump[run]++; 798 } 799 } 800 *cs = acg.cg_cs; 801 /* 802 * Write out the duplicate super block. Then write the cylinder 803 * group map and two blocks worth of inodes in a single write. 804 */ 805 savedactualloc = sblock.fs_sblockactualloc; 806 sblock.fs_sblockactualloc = 807 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 808 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 809 err(1, "sbput: %s", disk.d_error); 810 sblock.fs_sblockactualloc = savedactualloc; 811 if (cgput(&disk, &acg) != 0) 812 err(1, "initcg: cgput: %s", disk.d_error); 813 start = 0; 814 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 815 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 816 for (i = 0; i < acg.cg_initediblk; i++) { 817 if (sblock.fs_magic == FS_UFS1_MAGIC) { 818 dp1->di_gen = newfs_random(); 819 dp1++; 820 } else { 821 dp2->di_gen = newfs_random(); 822 dp2++; 823 } 824 } 825 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 826 /* 827 * For the old file system, we have to initialize all the inodes. 828 */ 829 if (Oflag == 1) { 830 for (i = 2 * sblock.fs_frag; 831 i < sblock.fs_ipg / INOPF(&sblock); 832 i += sblock.fs_frag) { 833 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 834 for (j = 0; j < INOPB(&sblock); j++) { 835 dp1->di_gen = newfs_random(); 836 dp1++; 837 } 838 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 839 sblock.fs_bsize, &iobuf[start]); 840 } 841 } 842 } 843 844 /* 845 * initialize the file system 846 */ 847 #define ROOTLINKCNT 3 848 849 static struct direct root_dir[] = { 850 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 851 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 852 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 853 }; 854 855 #define SNAPLINKCNT 2 856 857 static struct direct snap_dir[] = { 858 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 859 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 860 }; 861 862 void 863 fsinit(time_t utime) 864 { 865 union dinode node; 866 struct group *grp; 867 gid_t gid; 868 int entries; 869 870 memset(&node, 0, sizeof node); 871 if ((grp = getgrnam("operator")) != NULL) { 872 gid = grp->gr_gid; 873 } else { 874 warnx("Cannot retrieve operator gid, using gid 0."); 875 gid = 0; 876 } 877 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 878 if (sblock.fs_magic == FS_UFS1_MAGIC) { 879 /* 880 * initialize the node 881 */ 882 node.dp1.di_atime = utime; 883 node.dp1.di_mtime = utime; 884 node.dp1.di_ctime = utime; 885 /* 886 * create the root directory 887 */ 888 node.dp1.di_mode = IFDIR | UMASK; 889 node.dp1.di_nlink = entries; 890 node.dp1.di_size = makedir(root_dir, entries); 891 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 892 node.dp1.di_blocks = 893 btodb(fragroundup(&sblock, node.dp1.di_size)); 894 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 895 iobuf); 896 iput(&node, UFS_ROOTINO); 897 if (!nflag) { 898 /* 899 * create the .snap directory 900 */ 901 node.dp1.di_mode |= 020; 902 node.dp1.di_gid = gid; 903 node.dp1.di_nlink = SNAPLINKCNT; 904 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 905 node.dp1.di_db[0] = 906 alloc(sblock.fs_fsize, node.dp1.di_mode); 907 node.dp1.di_blocks = 908 btodb(fragroundup(&sblock, node.dp1.di_size)); 909 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 910 sblock.fs_fsize, iobuf); 911 iput(&node, UFS_ROOTINO + 1); 912 } 913 } else { 914 /* 915 * initialize the node 916 */ 917 node.dp2.di_atime = utime; 918 node.dp2.di_mtime = utime; 919 node.dp2.di_ctime = utime; 920 node.dp2.di_birthtime = utime; 921 /* 922 * create the root directory 923 */ 924 node.dp2.di_mode = IFDIR | UMASK; 925 node.dp2.di_nlink = entries; 926 node.dp2.di_size = makedir(root_dir, entries); 927 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 928 node.dp2.di_blocks = 929 btodb(fragroundup(&sblock, node.dp2.di_size)); 930 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 931 iobuf); 932 iput(&node, UFS_ROOTINO); 933 if (!nflag) { 934 /* 935 * create the .snap directory 936 */ 937 node.dp2.di_mode |= 020; 938 node.dp2.di_gid = gid; 939 node.dp2.di_nlink = SNAPLINKCNT; 940 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 941 node.dp2.di_db[0] = 942 alloc(sblock.fs_fsize, node.dp2.di_mode); 943 node.dp2.di_blocks = 944 btodb(fragroundup(&sblock, node.dp2.di_size)); 945 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 946 sblock.fs_fsize, iobuf); 947 iput(&node, UFS_ROOTINO + 1); 948 } 949 } 950 } 951 952 /* 953 * construct a set of directory entries in "iobuf". 954 * return size of directory. 955 */ 956 int 957 makedir(struct direct *protodir, int entries) 958 { 959 char *cp; 960 int i, spcleft; 961 962 spcleft = DIRBLKSIZ; 963 memset(iobuf, 0, DIRBLKSIZ); 964 for (cp = iobuf, i = 0; i < entries - 1; i++) { 965 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 966 memmove(cp, &protodir[i], protodir[i].d_reclen); 967 cp += protodir[i].d_reclen; 968 spcleft -= protodir[i].d_reclen; 969 } 970 protodir[i].d_reclen = spcleft; 971 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 972 return (DIRBLKSIZ); 973 } 974 975 /* 976 * allocate a block or frag 977 */ 978 ufs2_daddr_t 979 alloc(int size, int mode) 980 { 981 int i, blkno, frag; 982 uint d; 983 984 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 985 sblock.fs_cgsize); 986 if (acg.cg_magic != CG_MAGIC) { 987 printf("cg 0: bad magic number\n"); 988 exit(38); 989 } 990 if (acg.cg_cs.cs_nbfree == 0) { 991 printf("first cylinder group ran out of space\n"); 992 exit(39); 993 } 994 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 995 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 996 goto goth; 997 printf("internal error: can't find block in cyl 0\n"); 998 exit(40); 999 goth: 1000 blkno = fragstoblks(&sblock, d); 1001 clrblock(&sblock, cg_blksfree(&acg), blkno); 1002 if (sblock.fs_contigsumsize > 0) 1003 clrbit(cg_clustersfree(&acg), blkno); 1004 acg.cg_cs.cs_nbfree--; 1005 sblock.fs_cstotal.cs_nbfree--; 1006 fscs[0].cs_nbfree--; 1007 if (mode & IFDIR) { 1008 acg.cg_cs.cs_ndir++; 1009 sblock.fs_cstotal.cs_ndir++; 1010 fscs[0].cs_ndir++; 1011 } 1012 if (size != sblock.fs_bsize) { 1013 frag = howmany(size, sblock.fs_fsize); 1014 fscs[0].cs_nffree += sblock.fs_frag - frag; 1015 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1016 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1017 acg.cg_frsum[sblock.fs_frag - frag]++; 1018 for (i = frag; i < sblock.fs_frag; i++) 1019 setbit(cg_blksfree(&acg), d + i); 1020 } 1021 if (cgput(&disk, &acg) != 0) 1022 err(1, "alloc: cgput: %s", disk.d_error); 1023 return ((ufs2_daddr_t)d); 1024 } 1025 1026 /* 1027 * Allocate an inode on the disk 1028 */ 1029 void 1030 iput(union dinode *ip, ino_t ino) 1031 { 1032 ufs2_daddr_t d; 1033 1034 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1035 sblock.fs_cgsize); 1036 if (acg.cg_magic != CG_MAGIC) { 1037 printf("cg 0: bad magic number\n"); 1038 exit(31); 1039 } 1040 acg.cg_cs.cs_nifree--; 1041 setbit(cg_inosused(&acg), ino); 1042 if (cgput(&disk, &acg) != 0) 1043 err(1, "iput: cgput: %s", disk.d_error); 1044 sblock.fs_cstotal.cs_nifree--; 1045 fscs[0].cs_nifree--; 1046 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1047 printf("fsinit: inode value out of range (%ju).\n", 1048 (uintmax_t)ino); 1049 exit(32); 1050 } 1051 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1052 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1053 if (sblock.fs_magic == FS_UFS1_MAGIC) 1054 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1055 ip->dp1; 1056 else 1057 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1058 ip->dp2; 1059 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1060 } 1061 1062 /* 1063 * possibly write to disk 1064 */ 1065 static void 1066 wtfs(ufs2_daddr_t bno, int size, char *bf) 1067 { 1068 if (Nflag) 1069 return; 1070 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1071 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1072 } 1073 1074 /* 1075 * check if a block is available 1076 */ 1077 static int 1078 isblock(struct fs *fs, unsigned char *cp, int h) 1079 { 1080 unsigned char mask; 1081 1082 switch (fs->fs_frag) { 1083 case 8: 1084 return (cp[h] == 0xff); 1085 case 4: 1086 mask = 0x0f << ((h & 0x1) << 2); 1087 return ((cp[h >> 1] & mask) == mask); 1088 case 2: 1089 mask = 0x03 << ((h & 0x3) << 1); 1090 return ((cp[h >> 2] & mask) == mask); 1091 case 1: 1092 mask = 0x01 << (h & 0x7); 1093 return ((cp[h >> 3] & mask) == mask); 1094 default: 1095 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1096 return (0); 1097 } 1098 } 1099 1100 /* 1101 * take a block out of the map 1102 */ 1103 static void 1104 clrblock(struct fs *fs, unsigned char *cp, int h) 1105 { 1106 switch ((fs)->fs_frag) { 1107 case 8: 1108 cp[h] = 0; 1109 return; 1110 case 4: 1111 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1112 return; 1113 case 2: 1114 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1115 return; 1116 case 1: 1117 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1118 return; 1119 default: 1120 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1121 return; 1122 } 1123 } 1124 1125 /* 1126 * put a block into the map 1127 */ 1128 static void 1129 setblock(struct fs *fs, unsigned char *cp, int h) 1130 { 1131 switch (fs->fs_frag) { 1132 case 8: 1133 cp[h] = 0xff; 1134 return; 1135 case 4: 1136 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1137 return; 1138 case 2: 1139 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1140 return; 1141 case 1: 1142 cp[h >> 3] |= (0x01 << (h & 0x7)); 1143 return; 1144 default: 1145 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1146 return; 1147 } 1148 } 1149 1150 /* 1151 * Determine the number of characters in a 1152 * single line. 1153 */ 1154 1155 static int 1156 charsperline(void) 1157 { 1158 int columns; 1159 char *cp; 1160 struct winsize ws; 1161 1162 columns = 0; 1163 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1164 columns = ws.ws_col; 1165 if (columns == 0 && (cp = getenv("COLUMNS"))) 1166 columns = atoi(cp); 1167 if (columns == 0) 1168 columns = 80; /* last resort */ 1169 return (columns); 1170 } 1171 1172 static int 1173 ilog2(int val) 1174 { 1175 u_int n; 1176 1177 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1178 if (1 << n == val) 1179 return (n); 1180 errx(1, "ilog2: %d is not a power of 2\n", val); 1181 } 1182 1183 /* 1184 * For the regression test, return predictable random values. 1185 * Otherwise use a true random number generator. 1186 */ 1187 static u_int32_t 1188 newfs_random(void) 1189 { 1190 static int nextnum = 1; 1191 1192 if (Rflag) 1193 return (nextnum++); 1194 return (arc4random()); 1195 } 1196