xref: /freebsd/sbin/newfs/mkfs.c (revision 8522d140a568be6044aad4288042c72e8d3b72a7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program.
12  *
13  * Copyright (c) 1980, 1989, 1993
14  *	The Regents of the University of California.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if 0
42 #ifndef lint
43 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
44 #endif /* not lint */
45 #endif
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #define	IN_RTLD			/* So we pickup the P_OSREL defines */
50 #include <sys/param.h>
51 #include <sys/disklabel.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/mman.h>
55 #include <sys/resource.h>
56 #include <sys/stat.h>
57 #include <sys/wait.h>
58 #include <err.h>
59 #include <grp.h>
60 #include <limits.h>
61 #include <signal.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <stdint.h>
65 #include <stdio.h>
66 #include <time.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ufs/dir.h>
70 #include <ufs/ffs/fs.h>
71 #include "newfs.h"
72 
73 /*
74  * make file system for cylinder-group style file systems
75  */
76 #define UMASK		0755
77 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
78 
79 static struct	csum *fscs;
80 #define	sblock	disk.d_fs
81 #define	acg	disk.d_cg
82 
83 union dinode {
84 	struct ufs1_dinode dp1;
85 	struct ufs2_dinode dp2;
86 };
87 #define DIP(dp, field) \
88 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
89 	(dp)->dp1.field : (dp)->dp2.field)
90 
91 static caddr_t iobuf;
92 static long iobufsize;
93 static ufs2_daddr_t alloc(int size, int mode);
94 static int charsperline(void);
95 static void clrblock(struct fs *, unsigned char *, int);
96 static void fsinit(time_t);
97 static int ilog2(int);
98 static void initcg(int, time_t);
99 static int isblock(struct fs *, unsigned char *, int);
100 static void iput(union dinode *, ino_t);
101 static int makedir(struct direct *, int);
102 static void setblock(struct fs *, unsigned char *, int);
103 static void wtfs(ufs2_daddr_t, int, char *);
104 static u_int32_t newfs_random(void);
105 
106 void
107 mkfs(struct partition *pp, char *fsys)
108 {
109 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
110 	long i, j, csfrags;
111 	uint cg;
112 	time_t utime;
113 	quad_t sizepb;
114 	int width;
115 	ino_t maxinum;
116 	int minfragsperinode;	/* minimum ratio of frags to inodes */
117 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
118 	struct fsrecovery *fsr;
119 	char *fsrbuf;
120 	union {
121 		struct fs fdummy;
122 		char cdummy[SBLOCKSIZE];
123 	} dummy;
124 #define fsdummy dummy.fdummy
125 #define chdummy dummy.cdummy
126 
127 	/*
128 	 * Our blocks == sector size, and the version of UFS we are using is
129 	 * specified by Oflag.
130 	 */
131 	disk.d_bsize = sectorsize;
132 	disk.d_ufs = Oflag;
133 	if (Rflag)
134 		utime = 1000000000;
135 	else
136 		time(&utime);
137 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
138 	sblock.fs_flags = 0;
139 	if (Uflag)
140 		sblock.fs_flags |= FS_DOSOFTDEP;
141 	if (Lflag)
142 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
143 	if (Jflag)
144 		sblock.fs_flags |= FS_GJOURNAL;
145 	if (lflag)
146 		sblock.fs_flags |= FS_MULTILABEL;
147 	if (tflag)
148 		sblock.fs_flags |= FS_TRIM;
149 	/*
150 	 * Validate the given file system size.
151 	 * Verify that its last block can actually be accessed.
152 	 * Convert to file system fragment sized units.
153 	 */
154 	if (fssize <= 0) {
155 		printf("preposterous size %jd\n", (intmax_t)fssize);
156 		exit(13);
157 	}
158 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
159 	    (char *)&sblock);
160 	/*
161 	 * collect and verify the file system density info
162 	 */
163 	sblock.fs_avgfilesize = avgfilesize;
164 	sblock.fs_avgfpdir = avgfilesperdir;
165 	if (sblock.fs_avgfilesize <= 0)
166 		printf("illegal expected average file size %d\n",
167 		    sblock.fs_avgfilesize), exit(14);
168 	if (sblock.fs_avgfpdir <= 0)
169 		printf("illegal expected number of files per directory %d\n",
170 		    sblock.fs_avgfpdir), exit(15);
171 
172 restart:
173 	/*
174 	 * collect and verify the block and fragment sizes
175 	 */
176 	sblock.fs_bsize = bsize;
177 	sblock.fs_fsize = fsize;
178 	if (!POWEROF2(sblock.fs_bsize)) {
179 		printf("block size must be a power of 2, not %d\n",
180 		    sblock.fs_bsize);
181 		exit(16);
182 	}
183 	if (!POWEROF2(sblock.fs_fsize)) {
184 		printf("fragment size must be a power of 2, not %d\n",
185 		    sblock.fs_fsize);
186 		exit(17);
187 	}
188 	if (sblock.fs_fsize < sectorsize) {
189 		printf("increasing fragment size from %d to sector size (%d)\n",
190 		    sblock.fs_fsize, sectorsize);
191 		sblock.fs_fsize = sectorsize;
192 	}
193 	if (sblock.fs_bsize > MAXBSIZE) {
194 		printf("decreasing block size from %d to maximum (%d)\n",
195 		    sblock.fs_bsize, MAXBSIZE);
196 		sblock.fs_bsize = MAXBSIZE;
197 	}
198 	if (sblock.fs_bsize < MINBSIZE) {
199 		printf("increasing block size from %d to minimum (%d)\n",
200 		    sblock.fs_bsize, MINBSIZE);
201 		sblock.fs_bsize = MINBSIZE;
202 	}
203 	if (sblock.fs_fsize > MAXBSIZE) {
204 		printf("decreasing fragment size from %d to maximum (%d)\n",
205 		    sblock.fs_fsize, MAXBSIZE);
206 		sblock.fs_fsize = MAXBSIZE;
207 	}
208 	if (sblock.fs_bsize < sblock.fs_fsize) {
209 		printf("increasing block size from %d to fragment size (%d)\n",
210 		    sblock.fs_bsize, sblock.fs_fsize);
211 		sblock.fs_bsize = sblock.fs_fsize;
212 	}
213 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
214 		printf(
215 		"increasing fragment size from %d to block size / %d (%d)\n",
216 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
217 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
218 	}
219 	if (maxbsize == 0)
220 		maxbsize = bsize;
221 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
222 		sblock.fs_maxbsize = sblock.fs_bsize;
223 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
224 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
225 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
226 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
227 	} else {
228 		sblock.fs_maxbsize = maxbsize;
229 	}
230 	/*
231 	 * Maxcontig sets the default for the maximum number of blocks
232 	 * that may be allocated sequentially. With file system clustering
233 	 * it is possible to allocate contiguous blocks up to the maximum
234 	 * transfer size permitted by the controller or buffering.
235 	 */
236 	if (maxcontig == 0)
237 		maxcontig = MAX(1, MAXPHYS / bsize);
238 	sblock.fs_maxcontig = maxcontig;
239 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
240 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
241 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
242 	}
243 	if (sblock.fs_maxcontig > 1)
244 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
245 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
246 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
247 	sblock.fs_qbmask = ~sblock.fs_bmask;
248 	sblock.fs_qfmask = ~sblock.fs_fmask;
249 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
250 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
251 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
252 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
253 	if (sblock.fs_frag > MAXFRAG) {
254 		printf("fragment size %d is still too small (can't happen)\n",
255 		    sblock.fs_bsize / MAXFRAG);
256 		exit(21);
257 	}
258 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
259 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
260 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
261 
262 	/*
263 	 * Before the filesystem is finally initialized, mark it
264 	 * as incompletely initialized.
265 	 */
266 	sblock.fs_magic = FS_BAD_MAGIC;
267 
268 	if (Oflag == 1) {
269 		sblock.fs_sblockloc = SBLOCK_UFS1;
270 		sblock.fs_sblockactualloc = SBLOCK_UFS1;
271 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
272 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
273 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
274 		    sizeof(ufs1_daddr_t));
275 		sblock.fs_old_inodefmt = FS_44INODEFMT;
276 		sblock.fs_old_cgoffset = 0;
277 		sblock.fs_old_cgmask = 0xffffffff;
278 		sblock.fs_old_size = sblock.fs_size;
279 		sblock.fs_old_rotdelay = 0;
280 		sblock.fs_old_rps = 60;
281 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
282 		sblock.fs_old_cpg = 1;
283 		sblock.fs_old_interleave = 1;
284 		sblock.fs_old_trackskew = 0;
285 		sblock.fs_old_cpc = 0;
286 		sblock.fs_old_postblformat = 1;
287 		sblock.fs_old_nrpos = 1;
288 	} else {
289 		sblock.fs_sblockloc = SBLOCK_UFS2;
290 		sblock.fs_sblockactualloc = SBLOCK_UFS2;
291 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
292 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
293 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
294 		    sizeof(ufs2_daddr_t));
295 	}
296 	sblock.fs_sblkno =
297 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
298 		sblock.fs_frag);
299 	sblock.fs_cblkno = sblock.fs_sblkno +
300 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
301 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
302 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
303 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
304 		sizepb *= NINDIR(&sblock);
305 		sblock.fs_maxfilesize += sizepb;
306 	}
307 
308 	/*
309 	 * It's impossible to create a snapshot in case that fs_maxfilesize
310 	 * is smaller than the fssize.
311 	 */
312 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
313 		warnx("WARNING: You will be unable to create snapshots on this "
314 		      "file system.  Correct by using a larger blocksize.");
315 	}
316 
317 	/*
318 	 * Calculate the number of blocks to put into each cylinder group.
319 	 *
320 	 * This algorithm selects the number of blocks per cylinder
321 	 * group. The first goal is to have at least enough data blocks
322 	 * in each cylinder group to meet the density requirement. Once
323 	 * this goal is achieved we try to expand to have at least
324 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
325 	 * pack as many blocks into each cylinder group map as will fit.
326 	 *
327 	 * We start by calculating the smallest number of blocks that we
328 	 * can put into each cylinder group. If this is too big, we reduce
329 	 * the density until it fits.
330 	 */
331 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
332 	minfragsperinode = 1 + fssize / maxinum;
333 	if (density == 0) {
334 		density = MAX(NFPI, minfragsperinode) * fsize;
335 	} else if (density < minfragsperinode * fsize) {
336 		origdensity = density;
337 		density = minfragsperinode * fsize;
338 		fprintf(stderr, "density increased from %d to %d\n",
339 		    origdensity, density);
340 	}
341 	origdensity = density;
342 	for (;;) {
343 		fragsperinode = MAX(numfrags(&sblock, density), 1);
344 		if (fragsperinode < minfragsperinode) {
345 			bsize <<= 1;
346 			fsize <<= 1;
347 			printf("Block size too small for a file system %s %d\n",
348 			     "of this size. Increasing blocksize to", bsize);
349 			goto restart;
350 		}
351 		minfpg = fragsperinode * INOPB(&sblock);
352 		if (minfpg > sblock.fs_size)
353 			minfpg = sblock.fs_size;
354 		sblock.fs_ipg = INOPB(&sblock);
355 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
356 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
357 		if (sblock.fs_fpg < minfpg)
358 			sblock.fs_fpg = minfpg;
359 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
360 		    INOPB(&sblock));
361 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
362 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
363 		if (sblock.fs_fpg < minfpg)
364 			sblock.fs_fpg = minfpg;
365 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
366 		    INOPB(&sblock));
367 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
368 			break;
369 		density -= sblock.fs_fsize;
370 	}
371 	if (density != origdensity)
372 		printf("density reduced from %d to %d\n", origdensity, density);
373 	/*
374 	 * Start packing more blocks into the cylinder group until
375 	 * it cannot grow any larger, the number of cylinder groups
376 	 * drops below MINCYLGRPS, or we reach the size requested.
377 	 * For UFS1 inodes per cylinder group are stored in an int16_t
378 	 * so fs_ipg is limited to 2^15 - 1.
379 	 */
380 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
381 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
382 		    INOPB(&sblock));
383 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
384 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
385 				break;
386 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
387 				continue;
388 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
389 				break;
390 		}
391 		sblock.fs_fpg -= sblock.fs_frag;
392 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
393 		    INOPB(&sblock));
394 		break;
395 	}
396 	/*
397 	 * Check to be sure that the last cylinder group has enough blocks
398 	 * to be viable. If it is too small, reduce the number of blocks
399 	 * per cylinder group which will have the effect of moving more
400 	 * blocks into the last cylinder group.
401 	 */
402 	optimalfpg = sblock.fs_fpg;
403 	for (;;) {
404 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
405 		lastminfpg = roundup(sblock.fs_iblkno +
406 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
407 		if (sblock.fs_size < lastminfpg) {
408 			printf("Filesystem size %jd < minimum size of %d\n",
409 			    (intmax_t)sblock.fs_size, lastminfpg);
410 			exit(28);
411 		}
412 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
413 		    sblock.fs_size % sblock.fs_fpg == 0)
414 			break;
415 		sblock.fs_fpg -= sblock.fs_frag;
416 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
417 		    INOPB(&sblock));
418 	}
419 	if (optimalfpg != sblock.fs_fpg)
420 		printf("Reduced frags per cylinder group from %d to %d %s\n",
421 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
422 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
423 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
424 	if (Oflag == 1) {
425 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
426 		sblock.fs_old_nsect = sblock.fs_old_spc;
427 		sblock.fs_old_npsect = sblock.fs_old_spc;
428 		sblock.fs_old_ncyl = sblock.fs_ncg;
429 	}
430 	/*
431 	 * fill in remaining fields of the super block
432 	 */
433 	sblock.fs_csaddr = cgdmin(&sblock, 0);
434 	sblock.fs_cssize =
435 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
436 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
437 	if (fscs == NULL)
438 		errx(31, "calloc failed");
439 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
440 	if (sblock.fs_sbsize > SBLOCKSIZE)
441 		sblock.fs_sbsize = SBLOCKSIZE;
442 	if (sblock.fs_sbsize < realsectorsize)
443 		sblock.fs_sbsize = realsectorsize;
444 	sblock.fs_minfree = minfree;
445 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
446 		sblock.fs_metaspace = blknum(&sblock, metaspace);
447 	else if (metaspace != -1)
448 		/* reserve half of minfree for metadata blocks */
449 		sblock.fs_metaspace = blknum(&sblock,
450 		    (sblock.fs_fpg * minfree) / 200);
451 	if (maxbpg == 0)
452 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
453 	else
454 		sblock.fs_maxbpg = maxbpg;
455 	sblock.fs_optim = opt;
456 	sblock.fs_cgrotor = 0;
457 	sblock.fs_pendingblocks = 0;
458 	sblock.fs_pendinginodes = 0;
459 	sblock.fs_fmod = 0;
460 	sblock.fs_ronly = 0;
461 	sblock.fs_state = 0;
462 	sblock.fs_clean = 1;
463 	sblock.fs_id[0] = (long)utime;
464 	sblock.fs_id[1] = newfs_random();
465 	sblock.fs_fsmnt[0] = '\0';
466 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
467 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
468 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
469 	sblock.fs_cstotal.cs_nbfree =
470 	    fragstoblks(&sblock, sblock.fs_dsize) -
471 	    howmany(csfrags, sblock.fs_frag);
472 	sblock.fs_cstotal.cs_nffree =
473 	    fragnum(&sblock, sblock.fs_size) +
474 	    (fragnum(&sblock, csfrags) > 0 ?
475 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
476 	sblock.fs_cstotal.cs_nifree =
477 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
478 	sblock.fs_cstotal.cs_ndir = 0;
479 	sblock.fs_dsize -= csfrags;
480 	sblock.fs_time = utime;
481 	if (Oflag == 1) {
482 		sblock.fs_old_time = utime;
483 		sblock.fs_old_dsize = sblock.fs_dsize;
484 		sblock.fs_old_csaddr = sblock.fs_csaddr;
485 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
486 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
487 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
488 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
489 	}
490 	/*
491 	 * Set flags for metadata that is being check-hashed.
492 	 *
493 	 * Metadata check hashes are not supported in the UFS version 1
494 	 * filesystem to keep it as small and simple as possible.
495 	 */
496 	if (Oflag > 1) {
497 		sblock.fs_flags |= FS_METACKHASH;
498 		if (getosreldate() >= P_OSREL_CK_CYLGRP)
499 			sblock.fs_metackhash |= CK_CYLGRP;
500 		if (getosreldate() >= P_OSREL_CK_SUPERBLOCK)
501 			sblock.fs_metackhash |= CK_SUPERBLOCK;
502 	}
503 
504 	/*
505 	 * Dump out summary information about file system.
506 	 */
507 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
508 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
509 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
510 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
511 	    sblock.fs_fsize);
512 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
513 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
514 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
515 	if (sblock.fs_flags & FS_DOSOFTDEP)
516 		printf("\twith soft updates\n");
517 #	undef B2MBFACTOR
518 
519 	if (Eflag && !Nflag) {
520 		printf("Erasing sectors [%jd...%jd]\n",
521 		    sblock.fs_sblockloc / disk.d_bsize,
522 		    fsbtodb(&sblock, sblock.fs_size) - 1);
523 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
524 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
525 	}
526 	/*
527 	 * Wipe out old UFS1 superblock(s) if necessary.
528 	 */
529 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
530 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy,
531 		    SBLOCKSIZE);
532 		if (i == -1)
533 			err(1, "can't read old UFS1 superblock: %s",
534 			    disk.d_error);
535 
536 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
537 			fsdummy.fs_magic = 0;
538 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
539 			    chdummy, SBLOCKSIZE);
540 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
541 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) >
542 				    fssize)
543 					break;
544 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
545 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
546 			}
547 		}
548 	}
549 	if (!Nflag && sbput(disk.d_fd, &disk.d_fs, 0) != 0)
550 		err(1, "sbput: %s", disk.d_error);
551 	if (Xflag == 1) {
552 		printf("** Exiting on Xflag 1\n");
553 		exit(0);
554 	}
555 	if (Xflag == 2)
556 		printf("** Leaving BAD MAGIC on Xflag 2\n");
557 	else
558 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
559 
560 	/*
561 	 * Now build the cylinders group blocks and
562 	 * then print out indices of cylinder groups.
563 	 */
564 	printf("super-block backups (for fsck_ffs -b #) at:\n");
565 	i = 0;
566 	width = charsperline();
567 	/*
568 	 * Allocate space for two sets of inode blocks.
569 	 */
570 	iobufsize = 2 * sblock.fs_bsize;
571 	if ((iobuf = calloc(1, iobufsize)) == 0) {
572 		printf("Cannot allocate I/O buffer\n");
573 		exit(38);
574 	}
575 	/*
576 	 * Write out all the cylinder groups and backup superblocks.
577 	 */
578 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
579 		if (!Nflag)
580 			initcg(cg, utime);
581 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
582 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
583 		    cg < (sblock.fs_ncg-1) ? "," : "");
584 		if (j < 0)
585 			tmpbuf[j = 0] = '\0';
586 		if (i + j >= width) {
587 			printf("\n");
588 			i = 0;
589 		}
590 		i += j;
591 		printf("%s", tmpbuf);
592 		fflush(stdout);
593 	}
594 	printf("\n");
595 	if (Nflag)
596 		exit(0);
597 	/*
598 	 * Now construct the initial file system,
599 	 * then write out the super-block.
600 	 */
601 	fsinit(utime);
602 	if (Oflag == 1) {
603 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
604 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
605 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
606 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
607 	}
608 	if (Xflag == 3) {
609 		printf("** Exiting on Xflag 3\n");
610 		exit(0);
611 	}
612 	/*
613 	 * Reference the summary information so it will also be written.
614 	 */
615 	sblock.fs_csp = fscs;
616 	if (sbput(disk.d_fd, &disk.d_fs, 0) != 0)
617 		err(1, "sbput: %s", disk.d_error);
618 	/*
619 	 * For UFS1 filesystems with a blocksize of 64K, the first
620 	 * alternate superblock resides at the location used for
621 	 * the default UFS2 superblock. As there is a valid
622 	 * superblock at this location, the boot code will use
623 	 * it as its first choice. Thus we have to ensure that
624 	 * all of its statistcs on usage are correct.
625 	 */
626 	if (Oflag == 1 && sblock.fs_bsize == 65536)
627 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
628 		    sblock.fs_bsize, (char *)&sblock);
629 	/*
630 	 * Read the last sector of the boot block, replace the last
631 	 * 20 bytes with the recovery information, then write it back.
632 	 * The recovery information only works for UFS2 filesystems.
633 	 */
634 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
635 		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
636 		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
637 		    fsrbuf, realsectorsize) == -1)
638 			err(1, "can't read recovery area: %s", disk.d_error);
639 		fsr =
640 		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
641 		fsr->fsr_magic = sblock.fs_magic;
642 		fsr->fsr_fpg = sblock.fs_fpg;
643 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
644 		fsr->fsr_sblkno = sblock.fs_sblkno;
645 		fsr->fsr_ncg = sblock.fs_ncg;
646 		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
647 		    realsectorsize, fsrbuf);
648 		free(fsrbuf);
649 	}
650 	/*
651 	 * Update information about this partition in pack
652 	 * label, to that it may be updated on disk.
653 	 */
654 	if (pp != NULL) {
655 		pp->p_fstype = FS_BSDFFS;
656 		pp->p_fsize = sblock.fs_fsize;
657 		pp->p_frag = sblock.fs_frag;
658 		pp->p_cpg = sblock.fs_fpg;
659 	}
660 }
661 
662 /*
663  * Initialize a cylinder group.
664  */
665 void
666 initcg(int cylno, time_t utime)
667 {
668 	long blkno, start;
669 	off_t savedactualloc;
670 	uint i, j, d, dlower, dupper;
671 	ufs2_daddr_t cbase, dmax;
672 	struct ufs1_dinode *dp1;
673 	struct ufs2_dinode *dp2;
674 	struct csum *cs;
675 
676 	/*
677 	 * Determine block bounds for cylinder group.
678 	 * Allow space for super block summary information in first
679 	 * cylinder group.
680 	 */
681 	cbase = cgbase(&sblock, cylno);
682 	dmax = cbase + sblock.fs_fpg;
683 	if (dmax > sblock.fs_size)
684 		dmax = sblock.fs_size;
685 	dlower = cgsblock(&sblock, cylno) - cbase;
686 	dupper = cgdmin(&sblock, cylno) - cbase;
687 	if (cylno == 0)
688 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
689 	cs = &fscs[cylno];
690 	memset(&acg, 0, sblock.fs_cgsize);
691 	acg.cg_time = utime;
692 	acg.cg_magic = CG_MAGIC;
693 	acg.cg_cgx = cylno;
694 	acg.cg_niblk = sblock.fs_ipg;
695 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
696 	acg.cg_ndblk = dmax - cbase;
697 	if (sblock.fs_contigsumsize > 0)
698 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
699 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
700 	if (Oflag == 2) {
701 		acg.cg_iusedoff = start;
702 	} else {
703 		acg.cg_old_ncyl = sblock.fs_old_cpg;
704 		acg.cg_old_time = acg.cg_time;
705 		acg.cg_time = 0;
706 		acg.cg_old_niblk = acg.cg_niblk;
707 		acg.cg_niblk = 0;
708 		acg.cg_initediblk = 0;
709 		acg.cg_old_btotoff = start;
710 		acg.cg_old_boff = acg.cg_old_btotoff +
711 		    sblock.fs_old_cpg * sizeof(int32_t);
712 		acg.cg_iusedoff = acg.cg_old_boff +
713 		    sblock.fs_old_cpg * sizeof(u_int16_t);
714 	}
715 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
716 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
717 	if (sblock.fs_contigsumsize > 0) {
718 		acg.cg_clustersumoff =
719 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
720 		acg.cg_clustersumoff -= sizeof(u_int32_t);
721 		acg.cg_clusteroff = acg.cg_clustersumoff +
722 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
723 		acg.cg_nextfreeoff = acg.cg_clusteroff +
724 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
725 	}
726 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
727 		printf("Panic: cylinder group too big\n");
728 		exit(37);
729 	}
730 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
731 	if (cylno == 0)
732 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
733 			setbit(cg_inosused(&acg), i);
734 			acg.cg_cs.cs_nifree--;
735 		}
736 	if (cylno > 0) {
737 		/*
738 		 * In cylno 0, beginning space is reserved
739 		 * for boot and super blocks.
740 		 */
741 		for (d = 0; d < dlower; d += sblock.fs_frag) {
742 			blkno = d / sblock.fs_frag;
743 			setblock(&sblock, cg_blksfree(&acg), blkno);
744 			if (sblock.fs_contigsumsize > 0)
745 				setbit(cg_clustersfree(&acg), blkno);
746 			acg.cg_cs.cs_nbfree++;
747 		}
748 	}
749 	if ((i = dupper % sblock.fs_frag)) {
750 		acg.cg_frsum[sblock.fs_frag - i]++;
751 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
752 			setbit(cg_blksfree(&acg), dupper);
753 			acg.cg_cs.cs_nffree++;
754 		}
755 	}
756 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
757 	     d += sblock.fs_frag) {
758 		blkno = d / sblock.fs_frag;
759 		setblock(&sblock, cg_blksfree(&acg), blkno);
760 		if (sblock.fs_contigsumsize > 0)
761 			setbit(cg_clustersfree(&acg), blkno);
762 		acg.cg_cs.cs_nbfree++;
763 	}
764 	if (d < acg.cg_ndblk) {
765 		acg.cg_frsum[acg.cg_ndblk - d]++;
766 		for (; d < acg.cg_ndblk; d++) {
767 			setbit(cg_blksfree(&acg), d);
768 			acg.cg_cs.cs_nffree++;
769 		}
770 	}
771 	if (sblock.fs_contigsumsize > 0) {
772 		int32_t *sump = cg_clustersum(&acg);
773 		u_char *mapp = cg_clustersfree(&acg);
774 		int map = *mapp++;
775 		int bit = 1;
776 		int run = 0;
777 
778 		for (i = 0; i < acg.cg_nclusterblks; i++) {
779 			if ((map & bit) != 0)
780 				run++;
781 			else if (run != 0) {
782 				if (run > sblock.fs_contigsumsize)
783 					run = sblock.fs_contigsumsize;
784 				sump[run]++;
785 				run = 0;
786 			}
787 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
788 				bit <<= 1;
789 			else {
790 				map = *mapp++;
791 				bit = 1;
792 			}
793 		}
794 		if (run != 0) {
795 			if (run > sblock.fs_contigsumsize)
796 				run = sblock.fs_contigsumsize;
797 			sump[run]++;
798 		}
799 	}
800 	*cs = acg.cg_cs;
801 	/*
802 	 * Write out the duplicate super block. Then write the cylinder
803 	 * group map and two blocks worth of inodes in a single write.
804 	 */
805 	savedactualloc = sblock.fs_sblockactualloc;
806 	sblock.fs_sblockactualloc =
807 	    dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno)));
808 	if (sbput(disk.d_fd, &disk.d_fs, 0) != 0)
809 		err(1, "sbput: %s", disk.d_error);
810 	sblock.fs_sblockactualloc = savedactualloc;
811 	if (cgput(&disk, &acg) != 0)
812 		err(1, "initcg: cgput: %s", disk.d_error);
813 	start = 0;
814 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
815 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
816 	for (i = 0; i < acg.cg_initediblk; i++) {
817 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
818 			dp1->di_gen = newfs_random();
819 			dp1++;
820 		} else {
821 			dp2->di_gen = newfs_random();
822 			dp2++;
823 		}
824 	}
825 	wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf);
826 	/*
827 	 * For the old file system, we have to initialize all the inodes.
828 	 */
829 	if (Oflag == 1) {
830 		for (i = 2 * sblock.fs_frag;
831 		     i < sblock.fs_ipg / INOPF(&sblock);
832 		     i += sblock.fs_frag) {
833 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
834 			for (j = 0; j < INOPB(&sblock); j++) {
835 				dp1->di_gen = newfs_random();
836 				dp1++;
837 			}
838 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
839 			    sblock.fs_bsize, &iobuf[start]);
840 		}
841 	}
842 }
843 
844 /*
845  * initialize the file system
846  */
847 #define ROOTLINKCNT 3
848 
849 static struct direct root_dir[] = {
850 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
851 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
852 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
853 };
854 
855 #define SNAPLINKCNT 2
856 
857 static struct direct snap_dir[] = {
858 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
859 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
860 };
861 
862 void
863 fsinit(time_t utime)
864 {
865 	union dinode node;
866 	struct group *grp;
867 	gid_t gid;
868 	int entries;
869 
870 	memset(&node, 0, sizeof node);
871 	if ((grp = getgrnam("operator")) != NULL) {
872 		gid = grp->gr_gid;
873 	} else {
874 		warnx("Cannot retrieve operator gid, using gid 0.");
875 		gid = 0;
876 	}
877 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
878 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
879 		/*
880 		 * initialize the node
881 		 */
882 		node.dp1.di_atime = utime;
883 		node.dp1.di_mtime = utime;
884 		node.dp1.di_ctime = utime;
885 		/*
886 		 * create the root directory
887 		 */
888 		node.dp1.di_mode = IFDIR | UMASK;
889 		node.dp1.di_nlink = entries;
890 		node.dp1.di_size = makedir(root_dir, entries);
891 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
892 		node.dp1.di_blocks =
893 		    btodb(fragroundup(&sblock, node.dp1.di_size));
894 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
895 		    iobuf);
896 		iput(&node, UFS_ROOTINO);
897 		if (!nflag) {
898 			/*
899 			 * create the .snap directory
900 			 */
901 			node.dp1.di_mode |= 020;
902 			node.dp1.di_gid = gid;
903 			node.dp1.di_nlink = SNAPLINKCNT;
904 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
905 				node.dp1.di_db[0] =
906 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
907 			node.dp1.di_blocks =
908 			    btodb(fragroundup(&sblock, node.dp1.di_size));
909 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
910 				    sblock.fs_fsize, iobuf);
911 			iput(&node, UFS_ROOTINO + 1);
912 		}
913 	} else {
914 		/*
915 		 * initialize the node
916 		 */
917 		node.dp2.di_atime = utime;
918 		node.dp2.di_mtime = utime;
919 		node.dp2.di_ctime = utime;
920 		node.dp2.di_birthtime = utime;
921 		/*
922 		 * create the root directory
923 		 */
924 		node.dp2.di_mode = IFDIR | UMASK;
925 		node.dp2.di_nlink = entries;
926 		node.dp2.di_size = makedir(root_dir, entries);
927 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
928 		node.dp2.di_blocks =
929 		    btodb(fragroundup(&sblock, node.dp2.di_size));
930 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
931 		    iobuf);
932 		iput(&node, UFS_ROOTINO);
933 		if (!nflag) {
934 			/*
935 			 * create the .snap directory
936 			 */
937 			node.dp2.di_mode |= 020;
938 			node.dp2.di_gid = gid;
939 			node.dp2.di_nlink = SNAPLINKCNT;
940 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
941 				node.dp2.di_db[0] =
942 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
943 			node.dp2.di_blocks =
944 			    btodb(fragroundup(&sblock, node.dp2.di_size));
945 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
946 				    sblock.fs_fsize, iobuf);
947 			iput(&node, UFS_ROOTINO + 1);
948 		}
949 	}
950 }
951 
952 /*
953  * construct a set of directory entries in "iobuf".
954  * return size of directory.
955  */
956 int
957 makedir(struct direct *protodir, int entries)
958 {
959 	char *cp;
960 	int i, spcleft;
961 
962 	spcleft = DIRBLKSIZ;
963 	memset(iobuf, 0, DIRBLKSIZ);
964 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
965 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
966 		memmove(cp, &protodir[i], protodir[i].d_reclen);
967 		cp += protodir[i].d_reclen;
968 		spcleft -= protodir[i].d_reclen;
969 	}
970 	protodir[i].d_reclen = spcleft;
971 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
972 	return (DIRBLKSIZ);
973 }
974 
975 /*
976  * allocate a block or frag
977  */
978 ufs2_daddr_t
979 alloc(int size, int mode)
980 {
981 	int i, blkno, frag;
982 	uint d;
983 
984 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
985 	    sblock.fs_cgsize);
986 	if (acg.cg_magic != CG_MAGIC) {
987 		printf("cg 0: bad magic number\n");
988 		exit(38);
989 	}
990 	if (acg.cg_cs.cs_nbfree == 0) {
991 		printf("first cylinder group ran out of space\n");
992 		exit(39);
993 	}
994 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
995 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
996 			goto goth;
997 	printf("internal error: can't find block in cyl 0\n");
998 	exit(40);
999 goth:
1000 	blkno = fragstoblks(&sblock, d);
1001 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1002 	if (sblock.fs_contigsumsize > 0)
1003 		clrbit(cg_clustersfree(&acg), blkno);
1004 	acg.cg_cs.cs_nbfree--;
1005 	sblock.fs_cstotal.cs_nbfree--;
1006 	fscs[0].cs_nbfree--;
1007 	if (mode & IFDIR) {
1008 		acg.cg_cs.cs_ndir++;
1009 		sblock.fs_cstotal.cs_ndir++;
1010 		fscs[0].cs_ndir++;
1011 	}
1012 	if (size != sblock.fs_bsize) {
1013 		frag = howmany(size, sblock.fs_fsize);
1014 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1015 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1016 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1017 		acg.cg_frsum[sblock.fs_frag - frag]++;
1018 		for (i = frag; i < sblock.fs_frag; i++)
1019 			setbit(cg_blksfree(&acg), d + i);
1020 	}
1021 	if (cgput(&disk, &acg) != 0)
1022 		err(1, "alloc: cgput: %s", disk.d_error);
1023 	return ((ufs2_daddr_t)d);
1024 }
1025 
1026 /*
1027  * Allocate an inode on the disk
1028  */
1029 void
1030 iput(union dinode *ip, ino_t ino)
1031 {
1032 	ufs2_daddr_t d;
1033 
1034 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1035 	    sblock.fs_cgsize);
1036 	if (acg.cg_magic != CG_MAGIC) {
1037 		printf("cg 0: bad magic number\n");
1038 		exit(31);
1039 	}
1040 	acg.cg_cs.cs_nifree--;
1041 	setbit(cg_inosused(&acg), ino);
1042 	if (cgput(&disk, &acg) != 0)
1043 		err(1, "iput: cgput: %s", disk.d_error);
1044 	sblock.fs_cstotal.cs_nifree--;
1045 	fscs[0].cs_nifree--;
1046 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1047 		printf("fsinit: inode value out of range (%ju).\n",
1048 		    (uintmax_t)ino);
1049 		exit(32);
1050 	}
1051 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1052 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1053 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1054 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1055 		    ip->dp1;
1056 	else
1057 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1058 		    ip->dp2;
1059 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1060 }
1061 
1062 /*
1063  * possibly write to disk
1064  */
1065 static void
1066 wtfs(ufs2_daddr_t bno, int size, char *bf)
1067 {
1068 	if (Nflag)
1069 		return;
1070 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1071 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1072 }
1073 
1074 /*
1075  * check if a block is available
1076  */
1077 static int
1078 isblock(struct fs *fs, unsigned char *cp, int h)
1079 {
1080 	unsigned char mask;
1081 
1082 	switch (fs->fs_frag) {
1083 	case 8:
1084 		return (cp[h] == 0xff);
1085 	case 4:
1086 		mask = 0x0f << ((h & 0x1) << 2);
1087 		return ((cp[h >> 1] & mask) == mask);
1088 	case 2:
1089 		mask = 0x03 << ((h & 0x3) << 1);
1090 		return ((cp[h >> 2] & mask) == mask);
1091 	case 1:
1092 		mask = 0x01 << (h & 0x7);
1093 		return ((cp[h >> 3] & mask) == mask);
1094 	default:
1095 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1096 		return (0);
1097 	}
1098 }
1099 
1100 /*
1101  * take a block out of the map
1102  */
1103 static void
1104 clrblock(struct fs *fs, unsigned char *cp, int h)
1105 {
1106 	switch ((fs)->fs_frag) {
1107 	case 8:
1108 		cp[h] = 0;
1109 		return;
1110 	case 4:
1111 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1112 		return;
1113 	case 2:
1114 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1115 		return;
1116 	case 1:
1117 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1118 		return;
1119 	default:
1120 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1121 		return;
1122 	}
1123 }
1124 
1125 /*
1126  * put a block into the map
1127  */
1128 static void
1129 setblock(struct fs *fs, unsigned char *cp, int h)
1130 {
1131 	switch (fs->fs_frag) {
1132 	case 8:
1133 		cp[h] = 0xff;
1134 		return;
1135 	case 4:
1136 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1137 		return;
1138 	case 2:
1139 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1140 		return;
1141 	case 1:
1142 		cp[h >> 3] |= (0x01 << (h & 0x7));
1143 		return;
1144 	default:
1145 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1146 		return;
1147 	}
1148 }
1149 
1150 /*
1151  * Determine the number of characters in a
1152  * single line.
1153  */
1154 
1155 static int
1156 charsperline(void)
1157 {
1158 	int columns;
1159 	char *cp;
1160 	struct winsize ws;
1161 
1162 	columns = 0;
1163 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1164 		columns = ws.ws_col;
1165 	if (columns == 0 && (cp = getenv("COLUMNS")))
1166 		columns = atoi(cp);
1167 	if (columns == 0)
1168 		columns = 80;	/* last resort */
1169 	return (columns);
1170 }
1171 
1172 static int
1173 ilog2(int val)
1174 {
1175 	u_int n;
1176 
1177 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1178 		if (1 << n == val)
1179 			return (n);
1180 	errx(1, "ilog2: %d is not a power of 2\n", val);
1181 }
1182 
1183 /*
1184  * For the regression test, return predictable random values.
1185  * Otherwise use a true random number generator.
1186  */
1187 static u_int32_t
1188 newfs_random(void)
1189 {
1190 	static int nextnum = 1;
1191 
1192 	if (Rflag)
1193 		return (nextnum++);
1194 	return (arc4random());
1195 }
1196